Chiral matter wavefunctions

in

warped compactifications

Paul McGuirk
University of Wisconsin-Madison

Based on:
arXiv:0812.2247,1012.2759 (F. Marchesano, PM, G. Shiu)

Presented at:
Cornell University, April 27, 2011

Outline

1.Motivation and setup
2.The adjoint sector: 7-7 strings
3.The chiral sector: 7-7’ strings
4.Application: 4d effective field theories
5.Caveats and conclusions

Outline

1.Motivation and setup

2.The adjoint sector: 7-7 strings
3.The chiral sector: 7-7’ strings
4.Application: 4d effective field theories
5.Caveats and conclusions

Warping and its benefits

- In this talk, l'll focus on warped geometries in string theory

$$
\mathrm{d} s_{10}^{2}=\underbrace{\mathrm{e}^{2 \alpha} \mathrm{~d} x_{4}^{2}+\mathrm{e}^{-2 \alpha} \mathrm{~d} y_{6}^{2}}_{\text {warp factor } \alpha=\alpha(y)}
$$

- Such geometries have interesting phenomenology
- Address Hierarchy problem [RS; GKP]
- Late-time acceleration [KKLT;...]
- Inflation [KKLMMT;...]
- Sequestering [Luty, Sundrum; Kachru, McAllister, Sundrum; Berg, Marsh, McAllister, Pajer;...]

Moduli stabilization

- Warping also a "generic" feature of string models
- String compactifications usually come with moduli: zeroenergy deformations of the internal space

- Such moduli determine 4d effective field theory and result in "fifth" forces so must be lifted

Moduli stabilization (cont.)

- Lifting can be achieved by the addition of fluxes

$$
W_{\mathrm{IIB}}=\int \Omega \wedge G^{(3)} \quad W_{\mathrm{IIA}}=\int \Omega \wedge H^{(3)}+\int \mathrm{e}^{J} \wedge F
$$

- Backreaction of fluxes complicates geometry (e.g. spoils Calabi-Yau)
- Least amount of complication: type IIB with ISD flux and constant dilaton allows for warped Calabi-Yau
- NB: non-perturbative effects needed to stabilize Kähler structure [KKLT] will break this condition [Koerber, Martucci; Heidenreich, McAllister, Torroba]

Open strings

- In type II theories, gauge groups and charged matter come from the open string excitations of D-branes
- Example: In flat space, the excitations of N coincident Dp-branes described by maximally supersymmetric (16 supercharges) U(N) Yang-Mills in ($p+1$)-
 dimensions

Open strings (cont.)

- Bifundamental matter comes from the intersection of Dbranes (or from branes at singularities)
- Without fluxes, the number of families is the number of intersections of the branes

Chiral matter

- We will focus on D7-branes in warped IIB geometries
- Two D7s intersect on a 2-cycle in the 6d internal space and so to get a chiral spectrum in 4d, the branes need to be magnetized

$$
\left\langle F^{(2)}\right\rangle \neq 0
$$

4d effective field theories

- Intersecting, magnetized D7 branes in flux compactifications are thus promising for building realistic string models (though other ingredients needed)
- A 4d effective field theory is useful to discuss long wavelength phenomenology
- Two routes to an eft:
- Conformal field theory techniques
- Dimensional reduction

4d effective field theories (cont.)

- $\mathcal{N}_{4}=1$ warped compactifications in type IIB necessarily involve Ramond-Ramond fluxes:

$$
\begin{gathered}
\mathrm{d} s_{10}^{2}=\mathrm{e}^{2 \alpha} \mathrm{~d} x_{4}^{2}+\mathrm{e}^{-2 \alpha} \mathrm{~d} y_{6}^{2} \\
F^{(5)}=(1+*) \mathcal{F}^{(5)} \quad \mathcal{F}^{(5)}=\mathrm{de}^{4 \alpha} \wedge \operatorname{dvol}_{R^{1,3}} \\
*_{6} G^{(3)}=\mathrm{i} G^{(3)}
\end{gathered}
$$

- This makes quantization of the string difficult and so the 4d eft cannot be easily extracted from stringy amplitudes

4d effective field theories (cont.)

- Alternate method: Higher dimensional actions are highly constrained so use dimensional reduction

$$
A_{\mu}(x, y)=A_{\mu}(x) s(y)
$$

Outline

1.Motivation and setup
2.The adjoint sector: 7-7 strings
3.The chiral sector: 7-7’ strings
4.Application: 4d effective field theories
5.Caveats and conclusions

Warped spherical cow

- Our goal is to learn something about the 4d eft from the 8d eft via dimensional reduction
- Since our focus is to learn about the effects of warping, l'll focus here on a simple background

$$
\begin{gathered}
\mathrm{d} s_{10}^{2}=\mathrm{e}^{2 \alpha} \mathrm{~d} x_{4}^{2}+\mathrm{e}^{-2 \alpha} \mathrm{~d} y_{6}^{2} \\
F^{(5)}=(1+*) \mathcal{F}^{(5)} \mathcal{F}^{(5)}=\mathrm{Te}^{4 \alpha} \wedge \operatorname{dvol}_{R^{1,3}}^{6} G^{(3)}=0
\end{gathered}
$$

- As a warmup, consider the adjoint matter on a single D7 wrapping $T^{4} \subset T^{6}$

Bosonic modes

- The 8d bosonic degrees of freedom are
$A_{\alpha} \quad$ 8d gauge boson $\longrightarrow A_{\mu} \quad$ 4d gauge boson
$\Phi^{i} \quad$ transverse fluctuations $\longrightarrow A_{a}, \Phi^{i} \quad 4 \mathrm{~d}$ scalars
- The bosonic action is the $\mathrm{DBI}+\mathrm{CS}$ action

$$
\begin{aligned}
& S_{\mathrm{D} 7}^{\mathrm{DBI}}=-\tau_{\mathrm{D} 7} \int_{\mathcal{W}} \mathrm{d}^{8} x \sqrt{\left|\operatorname{det}\left(\mathrm{P}\left[g_{\alpha \beta}\right]+\lambda F_{\alpha \beta}\right)\right|} \\
& S_{\mathrm{D} 7}^{\mathrm{CS}}=\tau_{\mathrm{D} 7} \int_{\mathcal{W}} \mathrm{P}\left[C^{(4)}\right] \wedge \mathrm{e}^{\lambda F^{(2)}} \quad \lambda=2 \pi \alpha^{\prime} \\
& \\
& \mathrm{P}\left[g_{\alpha \beta}\right]=g_{\alpha \beta}+\lambda^{2} g_{i j} \partial_{\alpha} \Phi^{i} \partial_{\beta} \Phi^{j}
\end{aligned}
$$

Bosonic modes (cont.)

- In this case, warping does not effect the zero modes

$$
\begin{array}{r}
\square_{R^{1,3}} \Phi^{i}+\mathrm{e}^{4 \alpha} \square_{T^{4}} \Phi^{i}=0 \\
\square_{R^{1,3}} A_{\mu}+\mathrm{e}^{4 \alpha} \square_{T^{4}} A_{\mu}=0 \\
\square_{R^{1,3}} A^{a}+\mathrm{e}^{2 \alpha} \partial_{b} F^{b a}+\mathrm{e}^{2 \alpha} \epsilon^{a b c d} \partial_{b}\left(\mathrm{e}^{4 \alpha} F_{c d}\right)=0
\end{array}
$$

- The zero modes satisfy

$$
\square_{R^{1,3}} X=0
$$

and so are constant

Fermionic modes

- The 8d fermionc degrees of freedom are encoded in a pair of 10d Majorana-Weyl fermions subject to a gauge redundancy called κ-symmetry (c.f. GS superstring)

$$
\Theta=\binom{\theta_{1}}{\theta_{2}} \quad \Theta \sim \Theta+P_{-}^{\mathrm{D} 7} \kappa \quad P_{ \pm}^{\mathrm{D} 7}=\frac{1}{2}\left(\begin{array}{cc}
1 & \pm \mathrm{i} \Gamma_{(8)} \\
\mp \mathrm{i} \Gamma_{(8)} & 1
\end{array}\right)
$$

- The 4d degrees of freedom are fermionic superpartners of the gauge boson and complexified scalars

$$
\begin{aligned}
\psi_{0} & \leftrightarrow A_{\mu} & & \text { gaugino } \\
\psi_{1,2} & \leftrightarrow A_{1,2} & & \text { Wilsonini } \\
\psi_{3} & \leftrightarrow \Phi & & \text { modulino }
\end{aligned}
$$

Fermionic modes (cont.)

- The fermionic action is [Martucci, Rosseel, Van denBleeken, Van Proeyen]
$S_{\mathrm{D} 7}^{\mathrm{f}}=\tau_{\mathrm{D} 7} \int_{\mathcal{W}} \sqrt{\left|\operatorname{det}\left(g_{\alpha \beta}\right)\right|} \bar{\Theta} P_{-}^{\mathrm{D} 7} \Gamma^{\alpha}\left(\nabla_{\alpha}+\frac{1}{16} \not F^{(5)} \Gamma_{\alpha} \mathrm{i} \sigma_{2}\right) \Theta$
- Then

$$
\left(\not \partial_{R^{1,3}}+\not \partial_{T^{4}}+\frac{1}{2} \not \partial_{T^{4}} \alpha\left[1+2 \stackrel{\llcorner }{\Gamma_{T^{4}}}\right]\right) \theta=0
$$

- For the zero modes:

$$
\begin{gathered}
\psi_{0}=\mathrm{e}^{-3 \alpha / 2} \eta_{0} \\
\psi_{1,2}=\mathrm{e}^{\alpha / 2} \eta_{1,2} \\
\psi_{3}=\mathrm{e}^{-3 \alpha / 2} \eta_{3}
\end{gathered}>\text { constant spinors }
$$

Fermionic modes (cont.)

- Since the Γ-matrices are warped, these are consistent with supersymmetry

$$
\begin{aligned}
\delta A_{\mu} & \sim \bar{\epsilon} \Gamma_{\mu} \psi_{0} \\
\delta A_{a} & \sim \bar{\epsilon} \Gamma_{a} \psi_{a} \\
\delta \Phi & \sim \bar{\epsilon} \Gamma^{i} \psi_{3}
\end{aligned}
$$

- This analysis can be generalized (see 0812.2247)
- Abelian magnetic flux
- Calabi-Yau
- Bulk fluxes (see also [Cámara, Marchesano])
- We'll return to the above wavefunctions later

Outline

1.Motivation and setup
2.The adjoint sector: 7-7 strings
3.The chiral sector: 7-7’ strings
4.Application: 4d effective field theories
5.Caveats and conclusions

Bifundamental matter

- Chiral matter is much more phenomenologically interesting, but more involved.
- Consider first vector-like bifundamental matter:

$$
T^{6}=\underbrace{T_{1}^{2} \times T_{2}^{2} \times T_{3}^{2}}_{\text {matter curve }}
$$

$\mathrm{D} 7_{1}: z^{3}=M_{3} z^{2}$
$\mathrm{D} 7_{2}: z^{3}=-M_{3} z^{2}$

Intersections as Higgsing

- When the branes are coincident, the symmetry is enhanced to $\mathrm{U}(2)$. The transverse fluctuations are promoted to an adjoint-valued scalar Φ

$$
\begin{aligned}
& \text { Position of } \mathrm{D} 7_{1} \quad \text { Position of } \mathrm{D} 7_{2} \\
& \Phi=\left(\begin{array}{c}
\phi^{a} \\
\phi^{+} \\
7_{1}-7_{2} \text { strings (bifundamental) }
\end{array} \phi^{b}\right.
\end{aligned}
$$

- vevs for $\phi^{a, b}$ correspond to background D7 positions

$$
\left\langle\phi^{a}\right\rangle=\lambda_{\nearrow}^{-1} M_{3} z^{2} \quad\left\langle\phi^{b}\right\rangle=-\lambda^{-1} M_{3} z^{2}
$$

small angle needed to neglect α^{\prime} corrections

Non-Abelian bosonic action

- Must use the non-Abelian action [Myers]

$$
\begin{aligned}
& S_{\mathrm{D} 7}^{\mathrm{DBI}}=-\tau_{\mathrm{D} 7} \int_{\mathcal{W}} \mathrm{d}^{8} x \operatorname{Str}\left\{\sqrt{\left|\operatorname{det}\left(M_{\alpha \beta}\right) \operatorname{det}\left(Q_{j}^{i}\right)\right|}\right\} \\
& S_{\mathrm{D} 7}^{\mathrm{CS}}=\tau_{\mathrm{D} 7} \int_{\mathcal{W}}^{\mathcal{S}} \underset{\mathcal{W}}{\mathcal{W}} \operatorname{tr}\left\{\mathrm{P}\left[\mathrm{e}^{\mathrm{i} \lambda \iota_{\Phi} \iota_{\Phi}} C^{(4)}\right] \wedge \mathrm{e}^{\lambda F^{(2)}}\right\} \\
& \text { symmetrization interior product } \\
& \mathrm{P}\left[v_{\alpha}\right]=v_{\alpha}+\lambda D_{\alpha} \Phi^{i} v_{i} \\
& M_{\alpha \beta}=\mathrm{P}\left[g_{\alpha \beta}+g_{\alpha i}\left(Q^{-1}-\delta\right)^{i j} g_{j \beta}\right]+\lambda F_{\alpha \beta} \\
& Q_{j}^{i}=\delta_{j}^{i}-\mathrm{i} \lambda\left[\Phi^{i}, \Phi^{k}\right] g_{k j}
\end{aligned}
$$

D7 bosonic action (cont.)

- Bulk fields given as a non-Abelian Taylor expansion
adjoint valued

$$
\begin{aligned}
& \\
& \text { neutral } \xrightarrow{\text { ljoint valued } \Psi[\Phi]}=\sum_{n=0}^{\infty} \frac{\lambda^{n}}{n!} \Phi^{i_{1}} \cdots \Phi^{i_{n}} \partial_{i_{1}} \cdots \partial_{i_{n}} \Psi_{0} \\
& \geq \Psi_{0}+\mathcal{O}(\lambda)
\end{aligned}
$$

- Leading order in α^{\prime}, action is warped Yang-Mills
- Equations of motion are second order and hard to solve in general

Non-Abelian fermionic action

- Abelian analogue of Martucci action not known

$$
S_{\mathrm{D} 7}^{\mathrm{F}}=\frac{1}{g_{8}^{2}} \int \mathrm{~d}^{8} x \bar{\theta}\left\{\mathrm{e}^{-\alpha} \not \emptyset_{R^{1,3}}+\mathrm{e}^{\alpha} \not \emptyset_{T^{4}}+\mathrm{e}^{\alpha} \frac{1}{2} \not \ddot{\phi}_{T^{4}} \alpha\left(1+2 \Gamma_{T^{4}}\right)\right\} \theta
$$

- To leading order in α^{\prime} [Wynants]

$$
\not \partial \rightarrow \not D \quad \delta \mathcal{L}=-\mathrm{i} \overline{\mathrm{\theta}}^{-\alpha} \Gamma_{i}\left[\Phi^{i}, \theta\right]
$$

Equations of motion

- For the bifundamental zero modes, take the ansatz

- Equations of motion from Fermionic action (no flux yet)

$$
\begin{aligned}
& 0=\partial_{1} \chi_{1}^{\mp}+\partial_{2} \chi_{2}^{\mp}+\mathrm{e}^{-4 \alpha} D_{3}^{\mp} \chi_{3}^{\mp} \\
& 0=\partial_{1} \chi_{0}^{\mp}+\partial_{2}^{*} \chi_{3}^{\mp}-D_{3}^{ \pm *} \chi_{2}^{\mp} \\
& 0=\partial_{1}^{*} \chi_{3}^{\mp}-\partial_{2} \chi_{0}^{\mp}-D_{3}^{ \pm *} \chi_{1}^{\mp} \\
& 0=\partial_{1}^{*} \chi_{2}^{\mp}-\partial_{2}^{*} \chi_{1}^{\mp}+\mathrm{e}^{-4 \alpha} \hat{D}_{3}^{\mp} \chi_{0}^{\mp}
\end{aligned} \quad D_{3}^{\mp}=\mp \mathrm{i} M_{3} \bar{z}^{\overline{2}}
$$

BPS conditions

- For a single D7 brane, the equations of motion follow from F- and D-flatness conditions: [Jockers, Louis; Martucci]
fundamental $W=\int_{T^{4}} \mathrm{P}[\gamma] \wedge \mathrm{e}^{\wedge^{(2)}}$
3-form $\quad \mathrm{d} \gamma=\Omega \wedge \mathrm{e}^{B^{(2)}}$

$$
\begin{aligned}
& D=\int_{T^{4}} \mathrm{P}[\operatorname{Im} \eta] \wedge \mathrm{e}^{\lambda F^{(2)}} \\
& \eta=\mathrm{e}^{2 \alpha} \operatorname{lm} \tau \mathrm{e}^{\mathrm{i} J} \widehat{\text { warped }} \text { (} \mathrm{e}^{B^{(2)}} \\
& \text { Kähler } \\
& \text { form }
\end{aligned}
$$

- Comparing to the CS-action, the non-Abelian version should be (see also [Butti et. al.])

$$
W=\int_{T^{4}} \operatorname{Str}\left\{\mathrm{P}\left[\mathrm{e}^{\mathrm{i} \lambda \iota_{\Phi} \iota \Phi} \gamma\right] \wedge \mathrm{e}^{\lambda F^{(2)}}\right\} D=\int_{T^{4}} \mathrm{~S}\left\{\mathrm{P}\left[\mathrm{e}^{\mathrm{i} \lambda \iota_{\Phi} / \Phi} \operatorname{Im} \eta\right] \wedge \mathrm{e}^{\lambda F^{(2)}}\right\}
$$

These yield the previous equations of motion with $\psi_{0}=0$

Unwarped zero mode

- In the absence of warping, the zero modes are exponentially localized on the intersection

$$
\begin{aligned}
& \psi_{0,1}^{\mp}=0 \\
& \psi_{2}^{\mp}=\sigma^{\mp}\left(x^{\mu}\right) \mathrm{e}^{-M_{3}\left|z^{2}\right|^{2}} \\
& \psi_{3}^{\mp}= \pm \mathrm{i} \sigma^{\mp}\left(x^{\mu}\right) \mathrm{e}^{-M_{3}\left|z^{2}\right|^{2}} \\
& \text { 4D field }
\end{aligned}
$$

- Mixture of deformation modulus and Wilson lines of the un-Higgsed theory

Warped zero mode

- For arbitrary warping, no simple analytic solution
- In the weak warping case, can treat the warping as a perturbation

$$
\mathrm{e}^{-4 \alpha}=1+\epsilon \beta \quad \epsilon \ll 1
$$

- Can then expand the warped zero mode in terms of the unwarped massive modes

Unwarped spectrum

- The equation of motion for the massive modes is
$\mathbf{D}^{\mp} \mathbf{X}_{\lambda}^{\mp}=m_{\lambda} \mathbf{X}_{\lambda}^{ \pm *} \quad \mathbf{D}^{\mp}=\left(\begin{array}{cccc}0 & \partial_{1} & \partial_{2} & D_{3}^{\mp} \\ -\partial_{1} & 0 & D_{3}^{ \pm *} & -\partial_{2}^{*} \\ -\partial_{2} & -D_{2}^{ \pm *} & 0 & \partial_{1}^{*} \\ -D_{3}^{\mp} & \partial_{2}^{*} & -\partial_{1}^{*} & 0\end{array}\right) \quad \mathbf{X}_{\lambda}^{\mp}=\left(\begin{array}{l}\chi_{0}^{\mp} \\ \chi_{1}^{\mp} \\ \chi_{2}^{\mp} \\ \chi_{3}^{\top}\end{array}\right)$
- Easiest to work in a rotated basis $\mathbf{X}^{\prime \mp}=\mathbf{J}^{-1} \mathbf{X}^{\mp}$

$$
\mathbf{J}=\left(\begin{array}{lll}
1 & & \\
& 1 & \\
& & 1 / \sqrt{2} \\
& & \mathrm{i} / \sqrt{2} \\
& & \mathrm{i} / \sqrt{2} \\
& 1 / \sqrt{2}
\end{array}\right) \begin{aligned}
& \partial_{1} \rightarrow \partial_{1} \\
& \partial_{2} \rightarrow \hat{D}_{2}^{\prime \mp}=\frac{1}{\sqrt{2}}\left(\partial_{2} \pm M_{3} \bar{z}^{\overline{2}}\right) \\
& \partial_{3} \rightarrow \hat{D}_{3}^{\prime \mp}=\frac{\mathrm{i}}{\sqrt{2}}\left(\partial_{2} \mp M_{3} \bar{z}^{\overline{2}}\right)
\end{aligned}
$$

Unwarped spectrum (cont.)

- Boundary conditions:
- Periodicity along matter curve T_{1}^{2}
- Localized on intersection
- - - sector modes built from ladder operators (giving two simple harmonic oscillator algebras) and Fourier modes

Unwarped spectrum (cont.)

- Unwarped spectrum:

$$
\begin{array}{ll}
m_{\lambda}^{2}=m^{2}+n^{2}+M_{3}(l+p+1) & \Phi_{\lambda}^{\prime-}=\left(\varphi_{m n l p}^{-}, 0,0,0\right)^{\mathrm{T}} \\
m_{\lambda}^{2}=m^{2}+n^{2}+M_{3}(l+p+1) & \Phi_{\lambda}^{\prime-}=\left(0, \varphi_{m n l p}^{-}, 0,0\right)^{\mathrm{T}} \\
m_{\lambda}^{2}=m^{2}+n^{2}+M_{3}(l+p) & \Phi_{\lambda}^{\prime-}=\left(0,0, \varphi_{m n l p}^{-}, 0\right)^{\mathrm{T}} \\
m_{\lambda}^{2}=m^{2}+n^{2}+M_{3}(l+p+2) & \Phi_{\lambda}^{\prime-}=\left(0,0,0, \varphi_{m n l p}^{-}\right)^{\mathrm{T}}
\end{array}
$$

Expanding the warped zero mode

- Write the warped zero mode as

$$
\mathbf{X}^{-}=\boldsymbol{\Phi}_{\substack{- \\ \text { unwarped } \\ \text { modes }}}+\sum_{\lambda} c_{\lambda} \boldsymbol{\Phi}_{\lambda}^{-}
$$

- To leading order

$$
c_{\lambda}=\frac{1}{m_{\lambda}^{2}} \int_{\mathcal{S}_{4}} \mathrm{~d}^{4} y\left(\boldsymbol{\Phi}_{\lambda}^{-}\right)^{*} \cdot\left(\mathbf{D}_{0}^{+}\right)^{*} \beta \mathbf{K}^{-} \boldsymbol{\Phi}_{0}^{-}
$$

where

$$
\mathbf{D}^{-}=\mathbf{D}_{0}^{-}+\epsilon \beta \mathbf{K}^{-}+\mathcal{O}\left(\epsilon^{2}\right)
$$

- Examples given in [1012.2759]

Chirality

- Without magnetic flux, the spectrum is vector-like
- In order to have a chiral theory, the intersection must be magnetized

$$
\frac{1}{2 \pi} \int_{T^{2}} F^{(2)}=M_{1} \sigma_{3}
$$

- SUSY requires [Marino, Minasian, Moore, Strominger; ...]

$$
F^{(2)}=-*_{4} F_{\text {Hodge-*on } \mathcal{S}_{4}}^{F^{(2)}}
$$

Unwarped zero modes

-For example, if $M_{1}>0$, only the - -sector has zero modes
-Due to magnetic flux, wavefunction are quasi-periodic [Cremades, Ibáñez, Marchesano;...]

$$
\begin{aligned}
& \varphi_{0}^{j,-}=\mathrm{e}^{-\kappa}\left|z^{2}\right|^{2} \mathrm{e}^{2 \pi \mathrm{i} M_{1} z^{1} \operatorname{Im} z^{1}} \vartheta\left[\begin{array}{l}
\left(\frac{M_{1}}{2}\right)^{2}+M_{3}^{2}
\end{array} \quad \begin{array}{l}
j / 2 M_{1} \\
\prod_{0}
\end{array}\right]\left(2 M_{1} z^{1}, \mathrm{i} 2 M_{1}\right) \\
& \text { families orthogonal: } \int_{T^{4}} \mathrm{~d}^{4} y\left(\varphi_{0}^{j,-}\right)^{*} \varphi_{0}^{k,-}=\delta^{k j}
\end{aligned}
$$

- Each family is a Gaussian peak at a different location on the matter curve

Warped zero modes

- As in unmagnetized case, warped zero mode has no general simple analytic solution
- Again, expand in unwarped massive modes
- Spectrum built from three QSHO algebras

$$
\varphi_{n l p}^{j,-}=\left(\mathrm{i} D_{1}^{\prime-}\right)^{n}\left[\mathrm{i}\left(D_{2}^{\prime+}\right)^{\dagger}\right]^{l}\left(\mathrm{i} \hat{D}_{3}^{\prime-}\right)^{p} \varphi_{0}^{j,-} \quad \begin{aligned}
& D_{1}^{\prime \mp}=\partial_{1} \mp M_{1} \bar{z}^{\overline{1}} \\
& D_{2}^{\prime \mp} \propto \partial_{2} \pm \kappa \bar{z}^{2} \\
& D_{3}^{\prime \mp} \propto \mathrm{i}\left(\partial_{2} \mp \kappa \bar{z}^{\overline{2}}\right)
\end{aligned}
$$

Warped zero modes (cont.)

- Expand warped zero mode in terms of unwarped massive modes
then

$$
\mathbf{X}^{j,-}=\boldsymbol{\Phi}_{0}^{j,-}+\sum_{k, \lambda} c_{\lambda}^{k} \boldsymbol{\Phi}_{\lambda}^{k,-}
$$

$$
c_{\lambda}^{k}=\frac{1}{m_{\lambda}^{2}} \int_{\mathcal{S}_{4}} \mathrm{~d}^{4} y\left(\boldsymbol{\Phi}_{\lambda}^{\text {unnwarped modes }}{ }_{\text {family mixing is generic }}^{\text {und }}\right)^{*} \cdot\left(\mathbf{D}_{0}^{+}\right)^{*} \beta \mathbf{K}^{-} \boldsymbol{\Phi}_{0}^{j,-}
$$

- Examples given in [1012.2759]

Outline

1.Motivation and setup
2.The adjoint sector: 7-7 strings
3.The chiral sector: 7-7’ strings
4.Application: 4d effective field theories
5.Caveats and conclusions

Warped kinetic terms

- The warped wavefunctions are useful in deducing the warped effective field theory
- Example: kinetic terms for modulino

$$
\begin{aligned}
& \theta_{3}\left(x^{\mu}, y^{a}\right)=\mathrm{e}^{-3 \alpha / 2} \psi_{3}\left(x^{\mu}\right) \otimes \eta_{3}\left(y^{a}\right) \\
& \int_{\mathcal{W}} \mathrm{d}^{8} x \sqrt{g} \bar{\theta}_{3} \Gamma^{\mu} \partial_{\mu} \theta_{3} \\
& =\int_{R^{1,3}} \mathrm{~d}^{4} x \bar{\psi}_{3} \not \partial \psi_{3} \int_{\mathcal{S}^{4}} \mathrm{~d}^{4} y \sqrt{\tilde{g}} \mathrm{e}^{-4 \alpha} \eta_{3}^{\dagger} \eta_{3} \\
& \Gamma^{\mu} \sim \mathrm{e}^{-\alpha} \quad \sqrt{g}=\sqrt{\tilde{g}}
\end{aligned}
$$

Warped kinetic terms (cont.)

- Can infer that the Kähler metric behaves as

$$
\left.\begin{array}{rl}
\mathcal{K}_{3 \overline{3}} \sim \frac{\mathcal{V}_{4}^{\mathrm{W}}}{\mathcal{V}_{6}^{\mathrm{W}}} & \mathcal{V}_{6}^{\mathrm{W}}
\end{array}=\int_{Y^{6}} \mathrm{~d}^{6} y \sqrt{\tilde{g}} \mathrm{e}^{-4 \alpha}\right)
$$

- Agrees with bosonic analysis:

$$
\begin{aligned}
& \Phi\left(x^{\mu}, y^{a}\right)=\text { const } \times \sigma\left(x^{\mu}\right) \\
& \int_{\mathcal{W}} \mathrm{d}^{8} x \sqrt{g} g^{\mu \nu} g_{i j} \partial_{\mu} \Phi^{i} \partial_{\nu} \Phi^{j} \\
& \sim \int_{R^{1,3}} \mathrm{~d}^{4} x \eta^{\mu \nu} \partial_{\mu} \sigma \partial_{\mu} \sigma^{*} \int_{\mathcal{S}^{4}} \mathrm{~d}^{4} y \sqrt{\tilde{g}} \mathrm{e}^{-4 \alpha}
\end{aligned}
$$

Warped kinetic terms (cont.)

- For a more general Calabi-Yau,

$$
\begin{gathered}
\Phi\left(x^{\mu}, y^{a}\right)=\sigma^{A}\left(x^{\mu}\right) s_{A}(y)+\text { c.c. } \\
\mathcal{K}_{A \bar{B}} \sim \frac{1}{\mathcal{V}_{6}^{\mathrm{w}}} \int_{\mathcal{S}^{4}} \mathrm{e}^{-4 \alpha} m_{A} \wedge m_{\bar{B}} \quad m_{A}=\iota_{S_{A}} \Omega
\end{gathered}
$$

- Then borrowing from warped closed string results [Shiu, Torroba, Underwood, Douglas] and unwarped closed-open results [Jockers, Louis]

$$
\begin{gathered}
\mathcal{K}=-\log \left[-\mathrm{i}(S-\bar{S})-2 \mathrm{i} \mathcal{L}_{A \bar{B}} \sigma^{A} \bar{\sigma}^{\bar{B}}\right] \\
S=\tau-\mathcal{L}_{A \bar{B}} \sigma^{A} \bar{\sigma}^{\bar{B}}
\end{gathered}
$$

Wilson lines

- Similarly, for Wilson lines

$$
\mathcal{K}_{a \bar{b}} \sim \frac{1}{\mathcal{V}_{6}^{\mathrm{W}}} \int_{\mathcal{S}^{4}} \sqrt{\tilde{g}} \tilde{g}^{a \bar{b}}
$$

- In the Calabi-Yau case

$$
\begin{gathered}
A_{\mathrm{int}}^{(1)}=w_{I}\left(x^{\mu}\right) W^{I}(y)+\text { c.c. } \\
\mathcal{K}_{I \bar{J}} \sim \frac{1}{\mathcal{V}_{6}^{\mathrm{N}}} \int_{\mathcal{S}^{4}} \mathrm{P}[\tilde{J}] \wedge W^{I} \wedge \bar{W}_{\text {unwarped Kähler form }}
\end{gathered}
$$

- Kähler potential can be found in special cases

Bifundamentals

- Warping modifications for chiral matter more complex much less is known about Kähler potential even in the unwarped toroidal case
- For non-chiral bifundamental matter
$S=-\frac{1}{g_{8}^{2}} \int_{\mathcal{W}} \mathrm{d}^{8} x \sqrt{\tilde{g}} \operatorname{tr}\left\{\frac{1}{2} \eta^{\mu \nu} \tilde{g}^{a b} F_{\mu a} F_{\nu b}+\mathrm{e}^{-4 \alpha} \eta^{\mu \nu} \tilde{g}_{i j} \partial_{\mu} \Phi^{i} \partial_{\nu} \Phi^{j}\right\}$

$$
\begin{aligned}
\mathcal{K}_{i \bar{i}}^{\mp} \sim \frac{1}{\mathcal{V}_{6}^{W}} \int_{\mathcal{S}^{4}} \mathrm{~d}^{4} y \sqrt{\tilde{g}}\left(\mathbf{X}^{\mp}\right)^{*} \cdot \mathrm{e}^{\# \alpha} \mathbf{X}^{\mp} \\
\mathrm{e}^{\# \alpha}=\operatorname{diag}\left(\mathrm{e}^{-4 \alpha}, 1,1, \mathrm{e}^{-4 \alpha}\right)
\end{aligned}
$$

warped zero mode

Bifundamentals (cont.)

- Recall the bifundamental wavefunctions are exponentially localized in the weakly warped case
- Approximating the Gaussians as δ-functions, for weak warping

Wilson line contribution Modulus contribution

$$
\mathcal{V}_{2}^{\mathrm{w}}=\int_{\Sigma^{2}} \mathrm{~d}^{2} y \sqrt{\tilde{g}} \mathrm{e}^{-4 \alpha}
$$

Chiral matter

- For chiral matter, warping induces off-diagonal entries in Kähler metric

$$
\mathcal{K}_{j \bar{k}}^{\mp} \sim \frac{1}{\mathcal{V}_{6}^{W}} \int_{\mathcal{S}^{4}} \mathrm{~d}^{4} y \sqrt{\tilde{g}}\left(\mathbf{X}^{k, \mp}\right)^{*} \cdot \mathrm{e}^{\# \alpha} X^{j, \mp}
$$

- Even to leading order in weak warping, the family orthogonality is spoiled

$$
\int_{T^{4}} \mathrm{~d}^{4} y\left(\varphi_{0}^{j,-}\right)^{*} \varphi_{0}^{k,-} \mathrm{e}^{-4 \alpha} \neq \delta^{k j}
$$

- Requires care for model building of this sort

Soft terms

- All of the above analysis was performed in the supersymmetric case
- Non-supersymmetric perturbations will induce soft susybreaking terms that calculated using the above analysis (work in progress)
-Example (see also [Cámara, Ibáñez, Urangra;...])

$$
\delta m_{1 / 2} \sim \int_{\mathcal{S}^{4}} * G^{(3)} \wedge \Omega+\cdots
$$

Probe approximation

- All of the above was discussed in the probe approximation where the gravitational backreaction of D7 is ignored
- There are situations where this is ok (e.g. Sen limit, quenched approximation) but generically questionable
- Progress has been made for the adjoint case in the unwarped limit [Grimm]
- Such effects likely lead to problematic soft terms

Moduli stabilization

- We were lead to consider warping from the consideration of moduli stabilization (i.e. fluxes \rightarrow warping) but effects were fluxes were largely neglected here
- Since fluxes generate a potential for D7 moduli as well, expect impact on wavefunctions and 4d physics
- Additionally, stabilization of Kähler moduli requires departure from conformally Calabi-Yau

Conclusions

- We analyzed the wavefunctions for open string fields coming from D7s and intersections of D7s in warped geometries
- Warping effect on adjoint matter simple, but not so for chiral matter
- Such wavefunctions are important for understanding the 4d effective field theory of such constructions
- Here, I talked about some of the effects on kinetic terms (more on kinetic terms and Yukawas detailed in $0812.2247,1012.2759$)
- More realistic models will also include:
- Fluxes
- 7-brane backreaction
- Non-perturbative effects (for stabilizing Kähler moduli)

Thank you!

