Chiral matter wavefunctions in

warped compactifications

Paul McGuirk University of Wisconsin-Madison

Based on: arXiv:0812.2247,1012.2759 (F. Marchesano, PM, G. Shiu)

Presented at: Cornell University, April 27, 2011

Outline

1. Motivation and setup

2.The adjoint sector: 7-7 strings

3. The chiral sector: 7-7' strings

4. Application: 4d effective field theories

5.Caveats and conclusions

Outline

- 1. Motivation and setup
- 2. The adjoint sector: 7-7 strings
- 3. The chiral sector: 7-7' strings
- 4. Application: 4d effective field theories
- 5.Caveats and conclusions

Warping and its benefits

• In this talk, I'll focus on warped geometries in string theory

$$ds_{10}^2 = e^{2\alpha} dx_4^2 + e^{-2\alpha} dy_6^2$$
warp factor $\alpha = \alpha(y)$

- Such geometries have interesting phenomenology
 - Address Hierarchy problem [RS; GKP]
 - Late-time acceleration [KKLT;...]
 - Inflation [KKLMMT;...]
 - Sequestering [Luty, Sundrum; Kachru, McAllister, Sundrum; Berg, Marsh, McAllister, Pajer;...]

Moduli stabilization

- Warping also a "generic" feature of string models
- String compactifications usually come with moduli: zeroenergy deformations of the internal space

 Such moduli determine 4d effective field theory and result in "fifth" forces so must be lifted

Moduli stabilization (cont.)

Lifting can be achieved by the addition of fluxes

$$W_{\rm IIB} = \int \Omega \wedge G^{(3)} \qquad W_{\rm IIA} = \int \Omega \wedge H^{(3)} + \int e^J \wedge F$$

- Backreaction of fluxes complicates geometry (e.g. spoils Calabi-Yau)
- Least amount of complication: type IIB with ISD flux and constant dilaton allows for warped Calabi-Yau
- NB: non-perturbative effects needed to stabilize Kähler structure [KKLT] will break this condition [Koerber, Martucci; Heidenreich, McAllister, Torroba]

Open strings

- In type II theories, gauge groups and charged matter come from the open string excitations of D-branes
- Example: In flat space, the excitations of N coincident Dp-branes described by maximally supersymmetric (16 supercharges) U(N)
 Yang-Mills in (p+1)-dimensions

Open strings (cont.)

- Bifundamental matter comes from the intersection of Dbranes (or from branes at singularities)
- Without fluxes, the number of families is the number of intersections of the branes

Chiral matter

• We will focus on D7-branes in warped IIB geometries

 Two D7s intersect on a 2-cycle in the 6d internal space and so to get a chiral spectrum in 4d, the branes need to be magnetized

$$\left\langle F^{(2)} \right\rangle \neq 0$$

4d effective field theories

- Intersecting, magnetized D7 branes in flux compactifications are thus promising for building realistic string models (though other ingredients needed)
- A 4d effective field theory is useful to discuss long wavelength phenomenology
- Two routes to an eft:
 - Conformal field theory techniques
 - Dimensional reduction

4d effective field theories (cont.)

• $\mathcal{N}_4 = 1$ warped compactifications in type IIB necessarily involve Ramond-Ramond fluxes:

$$ds_{10}^2 = e^{2\alpha} dx_4^2 + e^{-2\alpha} dy_6^2$$

$$F^{(5)} = (1+*)\mathcal{F}^{(5)} \qquad \mathcal{F}^{(5)} = de^{4\alpha} \wedge dvol_{R^{1,3}}$$

$$*_6 G^{(3)} = iG^{(3)}$$

• This makes quantization of the string difficult and so the 4d eft cannot be easily extracted from stringy amplitudes

4d effective field theories (cont.)

- Alternate method: Higher dimensional actions are highly constrained so use dimensional reduction
- Requires solutions of higher-dimensional equations of motion

$$A_{\mu}(x,y) = A_{\mu}(x)s(y)$$

wavefunction

$$-\frac{1}{4g_8^2} \int_{\mathcal{W}} \sqrt{-g} F^2$$

$$\downarrow$$

$$\frac{1}{4g_8^2} \int_{R^{1,3}} d^4 x F^2 \int_{\Sigma^4} d^4 y \sqrt{g} s^2$$

$$\downarrow$$

$$\boxed{\frac{1}{g_4^2} = \frac{\mathcal{V}_{\mathcal{S}_4}}{g_8^2}}$$

Outline

- 1. Motivation and setup
- 2. The adjoint sector: 7-7 strings
- 3. The chiral sector: 7-7' strings
- 4. Application: 4d effective field theories
- 5.Caveats and conclusions

Warped spherical cow

- Our goal is to learn something about the 4d eft from the 8d eft via dimensional reduction
- Since our focus is to learn about the effects of warping, I'll focus here on a simple background $ds_{10}^2 = e^{2\alpha} dx_4^2 + e^{-2\alpha} dy_6^2$ T^6 $F^{(5)} = (1+*)\mathcal{F}^{(5)} \mathcal{F}^{(5)} = de^{4\alpha} \wedge dvol_{R^{1,3}} G^{(3)} = 0$
- As a warmup, consider the adjoint matter on a single D7 wrapping $T^4 \subset T^6$

Bosonic modes

- The 8d bosonic degrees of freedom are
 - A_{α} 8d gauge boson A_{μ} 4d gauge boson Φ^i transverse fluctuations A_a, Φ^i 4d scalars
- The bosonic action is the DBI+CS action

$$S_{D7}^{DBI} = -\tau_{D7} \int_{\mathcal{W}} d^8 x \sqrt{|\det(P[g_{\alpha\beta}] + \lambda F_{\alpha\beta})|}$$
$$S_{D7}^{CS} = \tau_{D7} \int_{\mathcal{W}} P[C^{(4)}] \wedge e^{\lambda F^{(2)}} \qquad \lambda = 2\pi\alpha'$$
$$P[g_{\alpha\beta}] = g_{\alpha\beta} + \lambda^2 g_{ij} \partial_\alpha \Phi^i \partial_\beta \Phi^j$$

Bosonic modes (cont.)

• In this case, warping does not effect the zero modes

$$\Box_{R^{1,3}} \Phi^{i} + e^{4\alpha} \Box_{T^{4}} \Phi^{i} = 0$$
$$\Box_{R^{1,3}} A_{\mu} + e^{4\alpha} \Box_{T^{4}} A_{\mu} = 0$$
$$\Box_{R^{1,3}} A^{a} + e^{2\alpha} \partial_{b} F^{ba} + e^{2\alpha} \epsilon^{abcd} \partial_{b} \left(e^{4\alpha} F_{cd} \right) = 0$$

• The zero modes satisfy

$$\Box_{R^{1,3}}X = 0$$

and so are constant

Fermionic modes

• The 8d fermionc degrees of freedom are encoded in a pair of 10d Majorana-Weyl fermions subject to a gauge redundancy called κ -symmetry (c.f. GS superstring)

$$\Theta = \begin{pmatrix} \theta_1 \\ \theta_2 \end{pmatrix} \quad \Theta \sim \Theta + P_{-}^{D7} \kappa \quad P_{\pm}^{D7} = \frac{1}{2} \begin{pmatrix} 1 & \pm i \Gamma_{(8)} \\ \mp i \Gamma_{(8)} & 1 \end{pmatrix}$$

• The 4d degrees of freedom are fermionic superpartners of the gauge boson and complexified scalars

$\psi_0 \leftrightarrow A_\mu$	gaugino
$\psi_{1,2} \leftrightarrow A_{1,2}$	Wilsonini
$\psi_3 \leftrightarrow \Phi$	modulino

Fermionic modes (cont.)

 The fermionic action is [Martucci, Rosseel, Van denBleeken, Van Proeyen]

• Then $\begin{array}{l} \text{4-cycle chirality operator} \\ \left(\partial \!\!\!\!/_{R^{1,3}} + \partial \!\!\!\!/_{T^4} + \frac{1}{2} \partial \!\!\!\!/_{T^4} \alpha \left[1 + 2 \Gamma_{T^4} \right] \right) \! \theta = 0 \end{array}$

• For the zero modes:

$$\psi_{0} = e^{-3\alpha/2} \eta_{0}$$

$$\psi_{1,2} = e^{\alpha/2} \eta_{1,2}$$

$$\psi_{3} = e^{-3\alpha/2} \eta_{3}$$

$$(\psi_{0}) = e^{-3\alpha/2} \eta_{1,2}$$

$$(\psi_{0}) = e^{-3\alpha/2} \eta_{1,2}$$

Fermionic modes (cont.)

• Since the $\Gamma-matrices$ are warped, these are consistent with supersymmetry

- This analysis can be generalized (see 0812.2247)
 - Abelian magnetic flux
 - Calabi-Yau
 - Bulk fluxes (see also [Cámara, Marchesano])
- We'll return to the above wavefunctions later

Outline

1. Motivation and setup

2.The adjoint sector: 7-7 strings

3. The chiral sector: 7-7' strings

4. Application: 4d effective field theories

5.Caveats and conclusions

Bifundamental matter

- Chiral matter is much more phenomenologically interesting, but more involved.
- Consider first vector-like bifundamental matter:

$$T^{6} = T_{1}^{2} \times T_{2}^{2} \times T_{3}^{2}$$

matter curve
$$D7_{1} : z^{3} = M_{3}z^{2}$$

$$D7_{2} : z^{3} = -M_{3}z^{2}$$

Intersections as Higgsing

• When the branes are coincident, the symmetry is enhanced to U (2). The transverse fluctuations are promoted to an adjoint-valued scalar Φ

Position of D7₁ Position of D7₂

$$\Phi = \begin{pmatrix} \phi^a & \phi^- \\ \phi^+ & \phi^b \end{pmatrix}$$
7₁-7₂ strings (bifundamental)

• vevs for $\phi^{a,b}$ correspond to background D7 positions

$$\left\langle \phi^a \right\rangle = \lambda^{-1} M_3 z^2 \quad \left\langle \phi^b \right\rangle = -\lambda^{-1} M_3 z^2$$

small angle needed to neglect α' corrections

Non-Abelian bosonic action

Must use the non-Abelian action [Myers]

$$S_{D7}^{DBI} = -\tau_{D7} \int_{\mathcal{W}} d^8 x \operatorname{Str} \left\{ \sqrt{\left| \det \left(M_{\alpha\beta} \right) \det \left(Q_j^i \right) \right|} \right\}$$

$$S_{D7}^{CS} = \tau_{D7} \int_{\mathcal{W}} \operatorname{Str} \left\{ P \left[e^{i\lambda\iota_{\Phi}\iota_{\Phi}} C^{(4)} \right] \wedge e^{\lambda F^{(2)}} \right\}$$
symmetrization interior product
$$\int P[v_{\alpha}] = v_{\alpha} + \lambda D_{\alpha} \Phi^i v_i$$

$$M_{\alpha\beta} = P \left[g_{\alpha\beta} + g_{\alpha i} \left(Q^{-1} - \delta \right)^{ij} g_{j\beta} \right] + \lambda F_{\alpha\beta}$$

$$Q_j^i = \delta_j^i - i\lambda \left[\Phi^i, \Phi^k \right] g_{kj}$$

D7 bosonic action (cont.)

Bulk fields given as a non-Abelian Taylor expansion

adjoint valued

$$\Psi[\Phi] = \sum_{n=0}^{\infty} \frac{\lambda^n}{n!} \Phi^{i_1} \cdots \Phi^{i_n} \partial_{i_1} \cdots \partial_{i_n} \Psi_0$$
neutral

$$\Psi_0 + \mathcal{O}(\lambda)$$

- Leading order in α' , action is warped Yang-Mills
- Equations of motion are second order and hard to solve in general

Non-Abelian fermionic action

Abelian analogue of Martucci action not known

$$S_{\mathrm{D7}}^{\mathrm{F}} = \frac{1}{g_8^2} \int \mathrm{d}^8 x \,\bar{\theta} \bigg\{ \mathrm{e}^{-\alpha} \partial_{R^{1,3}} + \mathrm{e}^{\alpha} \partial_{T^4} + \mathrm{e}^{\alpha} \frac{1}{2} \partial_{T^4} \alpha \big(1 + 2\Gamma_{T^4} \big) \bigg\} \theta$$

• To leading order in α' [Wynants]

$$\partial \to D \qquad \delta \mathcal{L} = -\mathrm{i}\bar{\theta}\mathrm{e}^{-\alpha}\Gamma_i[\Phi^i,\theta]$$

Equations of motion

• For the bifundamental zero modes, take the ansatz

$$\psi_{0,3}^{\mp} = e^{-3\alpha/2} \chi_{0,3}^{\mp} \qquad \qquad \psi_{1,2}^{\mp} = e^{\alpha/2} \chi_{1,2}^{\mp}$$
gaugino, modulino wilsonini

Equations of motion from Fermionic action (no flux yet)

$$0 = \partial_{1}\chi_{1}^{\mp} + \partial_{2}\chi_{2}^{\mp} + e^{-4\alpha}D_{3}^{\mp}\chi_{3}^{\mp}$$

$$0 = \partial_{1}\chi_{0}^{\mp} + \partial_{2}^{*}\chi_{3}^{\mp} - D_{3}^{\pm*}\chi_{2}^{\mp}$$

$$0 = \partial_{1}^{*}\chi_{3}^{\mp} - \partial_{2}\chi_{0}^{\mp} - D_{3}^{\pm*}\chi_{1}^{\mp}$$

$$0 = \partial_{1}^{*}\chi_{2}^{\mp} - \partial_{2}^{*}\chi_{1}^{\mp} + e^{-4\alpha}\hat{D}_{3}^{\mp}\chi_{0}^{\mp}$$

$$D_{3}^{\mp} = \mp iM_{3}\bar{z}^{2}$$

BPS conditions

• For a single D7 brane, the equations of motion follow from F- and D-flatness conditions: [Jockers, Louis; Martucci]

fundamental
$$W = \int_{T^4} P[\gamma] \wedge e^{\lambda F^{(2)}}$$
 $D = \int_{T^4} P[\operatorname{Im} \eta] \wedge e^{\lambda F^{(2)}}$ warped
3-form $d\gamma = \Omega \wedge e^{B^{(2)}}$ $\eta = e^{2\alpha} \operatorname{Im} \tau e^{iJ} \wedge e^{B^{(2)}}$ form

• Comparing to the CS-action, the non-Abelian version should be (see also [Butti et. al.])

$$W = \int_{T^4} \operatorname{Str} \left\{ \operatorname{P} \left[\operatorname{e}^{\mathrm{i}\lambda\iota_{\Phi}\iota_{\Phi}} \gamma \right] \wedge \operatorname{e}^{\lambda F^{(2)}} \right\} \ D = \int_{T^4} \operatorname{S} \left\{ \operatorname{P} \left[\operatorname{e}^{\mathrm{i}\lambda\iota_{\Phi}\iota_{\Phi}} \operatorname{Im} \eta \right] \wedge \operatorname{e}^{\lambda F^{(2)}} \right\}$$

These yield the previous equations of motion with $\psi_0 = 0$

Unwarped zero mode

• In the absence of warping, the zero modes are exponentially localized on the intersection

 Mixture of deformation modulus and Wilson lines of the un-Higgsed theory

Warped zero mode

- For arbitrary warping, no simple analytic solution
- In the weak warping case, can treat the warping as a perturbation

$$e^{-4\alpha} = 1 + \epsilon\beta \qquad \epsilon \ll 1$$

• Can then expand the warped zero mode in terms of the unwarped massive modes

Unwarped spectrum

The equation of motion for the massive modes is

$$\mathbf{D}^{\mp} \mathbf{X}_{\lambda}^{\mp} = m_{\lambda} \mathbf{X}_{\lambda}^{\pm *} \quad \mathbf{D}^{\mp} = \begin{pmatrix} 0 & \partial_{1} & \partial_{2} & D_{3}^{\mp} \\ -\partial_{1} & 0 & D_{3}^{\pm *} & -\partial_{2}^{*} \\ -\partial_{2} & -D_{3}^{\pm *} & 0 & \partial_{1}^{*} \\ -D_{3}^{\mp} & \partial_{2}^{*} & -\partial_{1}^{*} & 0 \end{pmatrix} \quad \mathbf{X}_{\lambda}^{\mp} = \begin{pmatrix} \chi_{0}^{\mp} \\ \chi_{1}^{\mp} \\ \chi_{2}^{\mp} \\ \chi_{3}^{\mp} \end{pmatrix}$$

• Easiest to work in a rotated basis $\mathbf{X}'^{\mp} = \mathbf{J}^{-1}\mathbf{X}^{\mp}$

$$\mathbf{J} = \begin{pmatrix} 1 & & \\ & 1 & & \\ & & 1/\sqrt{2} & i/\sqrt{2} \\ & & i/\sqrt{2} & 1/\sqrt{2} \end{pmatrix} \qquad \begin{array}{l} \partial_1 \to \partial_1 \\ \partial_2 \to \hat{D}_2^{\prime \mp} = \frac{1}{\sqrt{2}} \left(\partial_2 \pm M_3 \bar{z}^{\bar{2}} \right) \\ \partial_3 \to \hat{D}_3^{\prime \mp} = \frac{1}{\sqrt{2}} \left(\partial_2 \mp M_3 \bar{z}^{\bar{2}} \right) \end{array}$$

Unwarped spectrum (cont.)

- Boundary conditions:
 - Periodicity along matter curve T_1^2
 - Localized on intersection
- – sector modes built from ladder operators (giving two simple harmonic oscillator algebras) and Fourier modes

Unwarped spectrum (cont.)

• Unwarped spectrum:

$$m_{\lambda}^{2} = m^{2} + n^{2} + M_{3}(l + p + 1) \qquad \Phi_{2}^{2}$$

$$\Phi_{\lambda}^{\prime -} = \left(\varphi_{mnlp}^{-}, 0, 0, 0\right)^{\mathrm{T}}$$

$$\Phi_{\lambda}^{\prime -} = \left(0, \varphi_{mnlp}^{-}, 0, 0\right)^{\mathrm{T}}$$

$$m_{\lambda}^2 = m^2 + n^2 + M_3(l+p)$$

$$m_{\lambda}^{2} = m^{2} + n^{2} + M_{3}(l + p + 2)$$

 $m_{\lambda}^{2} = m^{2} + n^{2} + M_{3}(l + p + 1)$

$$\Phi_{\lambda}^{\prime -} = \left(0, 0, \varphi_{mnlp}^{-}, 0\right)^{\mathrm{T}}$$

$$\Phi_{\lambda}^{\prime -} = \left(0, 0, 0, \varphi_{mnlp}^{-}\right)^{\mathrm{T}}$$

Expanding the warped zero mode

• Write the warped zero mode as

$$\mathbf{X}^{-} = \boldsymbol{\Phi}_{0}^{-} + \sum_{\lambda} c_{\lambda} \boldsymbol{\Phi}_{\lambda}^{-}$$

unwarped modes

• To leading order

$$c_{\lambda} = \frac{1}{m_{\lambda}^2} \int_{\mathcal{S}_4} \mathrm{d}^4 y \left(\mathbf{\Phi}_{\lambda}^- \right)^* \cdot \left(\mathbf{D}_0^+ \right)^* \beta \mathbf{K}^- \mathbf{\Phi}_0^-$$

where

$$\mathbf{D}^{-} = \mathbf{D}_{0}^{-} + \epsilon \beta \mathbf{K}^{-} + \mathcal{O}(\epsilon^{2})$$

• Examples given in [1012.2759]

Chirality

- Without magnetic flux, the spectrum is vector-like
- In order to have a chiral theory, the intersection must be magnetized

$$\frac{1}{2\pi} \int_{T^2} F^{(2)} = M_1 \sigma_3$$

• SUSY requires [Marino, Minasian, Moore, Strominger; ...]

$$F^{(2)} = - *_4 F^{(2)}$$

$$\bigwedge_{\text{Hodge-*on } S_4}$$

Unwarped zero modes

- •For example, if $M_1 > 0$, only the --sector has zero modes
- •Due to magnetic flux, wavefunction are quasi-periodic [Cremades, Ibáñez, Marchesano;...]

$$\begin{split} \varphi_{0}^{j,-} &= \mathrm{e}^{-\kappa} \left| z^{2} \right|^{2} \mathrm{e}^{2\pi \mathrm{i}M_{1}z^{1}\mathrm{Im}\,z^{1}} \vartheta \begin{bmatrix} j/2M_{1} \\ \uparrow & 0 \end{bmatrix} \left(2M_{1}z^{1}, \mathrm{i}2M_{1} \right) \\ \kappa &= \sqrt{\left(\frac{M_{1}}{2}\right)^{2} + M_{3}^{2}} \qquad j = 0, \dots, 2M_{1} - 1 \\ \text{families orthogonal:} \quad \int_{\bar{T}^{4}} \mathrm{d}^{4}y \left(\varphi_{0}^{j,-}\right)^{*} \varphi_{0}^{k,-} &= \delta^{kj} \end{split}$$

 Each family is a Gaussian peak at a different location on the matter curve

Warped zero modes

- As in unmagnetized case, warped zero mode has no general simple analytic solution
- Again, expand in unwarped massive modes
- Spectrum built from three QSHO algebras

$$\varphi_{nlp}^{j,-} = \left(iD_1'^{-}\right)^n \left[i\left(D_2'^{+}\right)^{\dagger}\right]^l \left(i\hat{D}_3'^{-}\right)^p \varphi_0^{j,-}$$

$$D_1^{\prime \mp} = \partial_1 \mp M_1 \bar{z}^{\bar{1}}$$
$$D_2^{\prime \mp} \propto \partial_2 \pm \kappa \bar{z}^{\bar{2}}$$
$$D_3^{\prime \mp} \propto i \left(\partial_2 \mp \kappa \bar{z}^{\bar{2}}\right)$$

Warped zero modes (cont.)

Expand warped zero mode in terms of unwarped massive modes

• Examples given in [1012.2759]

Outline

- 1. Motivation and setup
- 2. The adjoint sector: 7-7 strings
- 3. The chiral sector: 7-7' strings
- 4.Application: 4d effective field theories
- 5.Caveats and conclusions

Warped kinetic terms

- The warped wavefunctions are useful in deducing the warped effective field theory
- Example: kinetic terms for modulino

$$\theta_{3}(x^{\mu}, y^{a}) = e^{-3\alpha/2} \psi_{3}(x^{\mu}) \otimes \eta_{3}(y^{a})$$
$$\int_{\mathcal{W}} d^{8}x \sqrt{g} \bar{\theta}_{3} \Gamma^{\mu} \partial_{\mu} \theta_{3}$$
$$= \int_{R^{1,3}} d^{4}x \bar{\psi}_{3} \partial \!\!\!/ \psi_{3} \int_{\mathcal{S}^{4}} d^{4}y \sqrt{\tilde{g}} e^{-4\alpha} \eta_{3}^{\dagger} \eta_{3}$$
$$\Gamma^{\mu} \sim e^{-\alpha} \quad \sqrt{g} = \sqrt{\tilde{g}}$$

Warped kinetic terms (cont.)

Can infer that the Kähler metric behaves as

$$\mathcal{K}_{3\bar{3}} \sim \frac{\mathcal{V}_4^{\mathsf{w}}}{\mathcal{V}_6^{\mathsf{w}}} \qquad \qquad \mathcal{V}_6^{\mathsf{w}} = \int_{Y^6} \mathrm{d}^6 y \sqrt{\tilde{g}} \,\mathrm{e}^{-4\alpha}$$
$$\mathcal{V}_4^{\mathsf{w}} = \int_{\mathcal{S}^4} \mathrm{d}^4 y \sqrt{\tilde{g}} \,\mathrm{e}^{-4\alpha}$$

• Agrees with bosonic analysis:

$$\Phi(x^{\mu}, y^{a}) = \text{const} \times \sigma(x^{\mu})$$
$$\int_{\mathcal{W}} \mathrm{d}^{8} x \sqrt{g} g^{\mu\nu} g_{ij} \partial_{\mu} \Phi^{i} \partial_{\nu} \Phi^{j}$$
$$\sim \int_{R^{1,3}} \mathrm{d}^{4} x \, \eta^{\mu\nu} \partial_{\mu} \sigma \partial_{\mu} \sigma^{*} \int_{\mathcal{S}^{4}} \mathrm{d}^{4} y \sqrt{\tilde{g}} \mathrm{e}^{-4\alpha}$$

Warped kinetic terms (cont.)

• For a more general Calabi-Yau,

$$\Phi(x^{\mu}, y^{a}) = \sigma^{A}(x^{\mu})s_{A}(y) + \text{c.c.}$$
$$\mathcal{K}_{A\bar{B}} \sim \frac{1}{\mathcal{V}_{6}^{W}} \int_{\mathcal{S}^{4}} e^{-4\alpha} m_{A} \wedge m_{\bar{B}} \qquad m_{A} = \iota_{S_{A}}\Omega$$

 Then borrowing from warped closed string results [Shiu, Torroba, Underwood, Douglas] and unwarped closed-open results [Jockers, Louis]

$$\mathcal{K} = -\log\left[-\mathrm{i}\left(S - \bar{S}\right) - 2\mathrm{i}\mathcal{L}_{A\bar{B}}\sigma^{A}\bar{\sigma}^{\bar{B}}\right]$$
$$S = \tau - \mathcal{L}_{A\bar{B}}\sigma^{A}\bar{\sigma}^{\bar{B}}$$

Wilson lines

• Similarly, for Wilson lines

$$\mathcal{K}_{a\bar{b}} \sim \frac{1}{\mathcal{V}_6^{\mathbf{w}}} \int_{\mathcal{S}^4} \sqrt{\tilde{g}} \tilde{g}^{a\bar{b}}$$

- In the Calabi-Yau case harmonic (1,0)-forms $A_{\rm int}^{(1)} = w_I(x^{\mu})W^I(y) + {\rm c.c.}$ $\mathcal{K}_{I\bar{J}} \sim \frac{1}{\mathcal{V}_6^{\rm w}} \int_{\mathcal{S}^4} {\rm P}[\tilde{J}] \wedge W^I \wedge \bar{W}^{\bar{J}}$ unwarped Kähler form
 - Kähler potential can be found in special cases

Bifundamentals

- Warping modifications for chiral matter more complex much less is known about K\u00e4hler potential even in the unwarped toroidal case
- For non-chiral bifundamental matter

$$S = -\frac{1}{g_8^2} \int_{\mathcal{W}} \mathrm{d}^8 x \,\sqrt{\tilde{g}} \,\mathrm{tr} \left\{ \frac{1}{2} \eta^{\mu\nu} \tilde{g}^{ab} F_{\mu a} F_{\nu b} + \mathrm{e}^{-4\alpha} \eta^{\mu\nu} \tilde{g}_{ij} \partial_\mu \Phi^i \partial_\nu \Phi^j \right\}$$

$$\mathcal{K}_{i\bar{i}}^{\mp} \sim \frac{1}{\mathcal{V}_{6}^{W}} \int_{\mathcal{S}^{4}} \mathrm{d}^{4}y \sqrt{\tilde{g}} \left(\mathbf{X}^{\mp}\right)^{*} \cdot \mathrm{e}^{\#\alpha} \mathbf{X}^{\mp}$$
$$\mathrm{e}^{\#\alpha} = \mathrm{diag} \left(\mathrm{e}^{-4\alpha}, 1, 1, \mathrm{e}^{-4\alpha}\right)$$

warped zero mode

Bifundamentals (cont.)

- Recall the bifundamental wavefunctions are exponentially localized in the weakly warped case
- Approximating the Gaussians as δ -functions, for weak warping

$$\mathcal{K}_{i\bar{i}} \sim \frac{\mathcal{V}_1 + \mathcal{V}_1^{\mathsf{w}}}{\mathcal{V}_6^{\mathsf{w}} M_3}$$

Wilson line contribution

Modulus contribution

$$\mathcal{V}_2^{\mathbf{w}} = \int_{\Sigma^2} \mathrm{d}^2 y \,\sqrt{\tilde{g}} \mathrm{e}^{-4\alpha}$$

Chiral matter

 For chiral matter, warping induces off-diagonal entries in Kähler metric

$$\mathcal{K}_{j\bar{k}}^{\mp} \sim \frac{1}{\mathcal{V}_{6}^{\mathbf{w}}} \int_{\mathcal{S}^{4}} \mathrm{d}^{4}y \,\sqrt{\tilde{g}} \left(\mathbf{X}^{k,\mp}\right)^{*} \mathrm{e}^{\#\alpha} X^{j,\mp}$$

 Even to leading order in weak warping, the family orthogonality is spoiled

$$\int_{T^4} \mathrm{d}^4 y \left(\varphi_0^{j,-}\right)^* \varphi_0^{k,-} \mathrm{e}^{-4\alpha} \neq \delta^{kj}$$

Requires care for model building of this sort

Soft terms

- All of the above analysis was performed in the supersymmetric case
- Non-supersymmetric perturbations will induce soft susybreaking terms that calculated using the above analysis (work in progress)
- Example (see also [Cámara, Ibáñez, Urangra;...])

$$\delta m_{1/2} \sim \int_{\mathcal{S}^4} *G^{(3)} \wedge \Omega + \cdots$$

Probe approximation

- All of the above was discussed in the probe approximation where the gravitational backreaction of D7 is ignored
- There are situations where this is ok (e.g. Sen limit, quenched approximation) but generically questionable
- Progress has been made for the adjoint case in the unwarped limit [Grimm]
- Such effects likely lead to problematic soft terms

Moduli stabilization

- We were lead to consider warping from the consideration of moduli stabilization (i.e. fluxes → warping) but effects were fluxes were largely neglected here
- Since fluxes generate a potential for D7 moduli as well, expect impact on wavefunctions and 4d physics
- Additionally, stabilization of K\u00e4hler moduli requires departure from conformally Calabi-Yau

Conclusions

- We analyzed the wavefunctions for open string fields coming from D7s and intersections of D7s in warped geometries
- Warping effect on adjoint matter simple, but not so for chiral matter
- Such wavefunctions are important for understanding the 4d effective field theory of such constructions
- Here, I talked about some of the effects on kinetic terms (more on kinetic terms and Yukawas detailed in 0812.2247,1012.2759)
- More realistic models will also include:
 - Fluxes
 - 7-brane backreaction
 - Non-perturbative effects (for stabilizing Kähler moduli)

Thank you!