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Using a sample of 1.85 millionDD̄ mesons collected at the Ψ(3770) with the CLEO-

c detector, and a reconstruction method based on the full event hermeticity, we

measure branching fractions and branching fraction ratios for the four exclusive

semileptonic decay modes D0 → π−e+ν, D0 → K−e+ν, D+ → π0e+ν and, D+ →

K̄0e+ν. For the branching fractions we find B(D0 → π−e+ν) = 0.299 ± 0.011 ±

0.008 %, B(D0 → K−e+ν) = 3.55 ± 0.03 ± 0.08 %, B(D+ → π0e+ν) = 0.371 ±

0.022±0.013 % and B(D+ → K̄0e+ν) = 8.53±0.13±0.22 %. The ratios are found

to be B(D0 → π−e+ν)/B(D0 → K−e+ν) = 0.084±0.003±0.001, B(D+ → π0e+ν)/

B(D+ → K̄0e+ν) = 0.044 ± 0.003 ± 0.001, Γ(D0 → π−e+ν)/Γ(D+ → π0e+ν) =

2.04± 0.14± 0.08 and Γ(D0 → K−e+ν)/Γ(D+ → K̄0e+ν) = 1.06± 0.02± 0.03. In

addition, form factors are studied through fits to the partial branching fractions

obtained in five q2 ranges. Combining our results with recent unquenched lattice

calculations we extract the CKM matrix elements |Vcs| and |Vcd|. Averaging over

isospin conjugate modes, we find |Vcs| = 1.01 ± 0.01 ± 0.01 ± 0.11 and |Vcd| =

0.217± 0.010± 0.004± 0.023.
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Chapter 1

Overview

This chapter orients the reader as to the goals of this analysis. We examine the

measurements to be presented and give a flavor of the reasons for our interest in

these decays, though these will be explored more fully in the next chapter. Finally

an overall outline of the thesis structure is also given.

1.1 Physics Goals

Before embarking on the details of this analysis we should first justify our in-

terest in the exclusive semileptonic charm decays, D0 → π−e+ν, D0 → K−e+ν,

D+ → π0e+ν and D+ → K̄0e+ν and their charge conjugates. In other words,

why study them at all? In essence the answer is that understanding the properties

of these decays provides an important contribution to our knowledge of the more

fundamental underlying question: What are the basic building blocks of matter?

This is perhaps a seemingly simple question, yet despite its long history we still

do not have a completely satisfactory answer.

The idea of fundamental particles, imperishable and indivisible elements to

serve at the foundations of matter, dates back to the Greek philosopher Democritus

(∼460BC - 370BC), who first gave these particles the name “atomos”, or atom in

English, literally meaning non-divisible. In the intervening two and a half thousand

years since this first proposal of the “atom”, much has been discovered about the

nature of the elementary particles, most of it within the last two centuries and a

good portion of that within only the last few decades.

1
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The particles currently believed to be the fundamental constituents of mat-

ter, as well the forces mediating their interactions, are described by the theory

known as the “Standard Model”. Since its conception, the Standard Model of

particle physics has had many successes, including numerous cases of astounding

predictive accuracy. However, several shortcomings of the model hint at a higher

level of underlying physics. But where, if anywhere, does the Standard Model fall

apart and the new physics enter? To answer this question the predictions of the

model must be carefully experimentally examined. There are many ways in which

the model might be tested, but amongst the most important candidates are the

predicted mixings of the quark mass eigenstates given by the Cabbibo Kobayashi

Maskawa (CKM) matrix.

Experimentally one of the best places to examine the quark flavor changing

currents is semileptonic decays. In particular, D semileptonic decays are of inter-

est since they come from the charm sector of the CKM matrix, where the quark

mixings are relatively well measured. This fact allows measurement of the strong

dynamics of these decays, which are exceedingly difficult to determine theoreti-

cally. Confidence in these theoretical predictions, however, is key for precision

measurements of the smallest CKM elements. These measurements in turn are

essential for determining whether or not the mixing matrix of the Standard Model

can be experimentally over-constrained to show unitarity. If the matrix proves not

to appear unitary, then the Standard Model has broken down and new physics is

required to explain the phenomenon.

In this analysis we study four charmed semileptonic decays: D0 → π−e+ν,

D0 → K−e+ν, D+ → π0e+ν and D+ → K̄0e+ν. For each of the four decay modes

we measure the branching fraction spectrum binned as a function of the electron-
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neutrino invariant mass. We are then able to fit these results using various different

theoretical models for the strong dynamics of the decays. The resulting parameter

values of best fit for each model can be compared with their theoretical predictions

as a test of the theory. Finally we can also measure the relevant elements of the

CKM matrix and compare with those predicted using unitarity constraints.

1.2 Structure

The presentation of our analysis is structured as follows. To start we give a detailed

introduction to the theory of the semileptonic charm decays. This is followed by

an overview of the CLEO-c detector, with which our data was taken, as well as the

details of the data and Monte Carlo (MC) samples used. A detailed description

of our analysis method is given, along with our event selection criteria and the

details of our fit. We specify each of our systematic errors and describe how

the one standard deviation (σ) contribution to the overall systematic error was

determined. Finally we give the results of our branching fraction measurements

and the physics interpretation of these results in terms of the form factors and

CKM matrix elements.



Chapter 2

Semileptonic Charm Decays

In this chapter we give an outline of the physics necessary for a comprehensive

understanding of the semileptonic charm decays of interest. We start with the

necessary background physics, building to the dynamics of the charmed D meson

decays themselves and concluding with the physics into which these decays give us

some new insight.

2.1 The Physics of Elementary Particles

The elementary particles are those constituents of matter believed to be the most

fundamental; they are the underlying set of indivisible components from which

everything else can be assembled. Much of the behavior and interaction of these

particles is described, with a startling degree of accuracy, by a theory that has

come to be known as the Standard Model. According to this model there are just

three types of elementary particle necessary to the formation of all matter: the

leptons, quarks and gauge bosons1. The leptons and quarks, or fermions, provide

the basic building blocks of matter whilst the gauge bosons are the “glue” that

allows these particles to bind together in stable configurations. Put another way,

gauge bosons mediate the forces that cause the fundamental particles to interact.

In nature we observe four fundamental forces: the electromagnetic, the weak,

the strong and gravity. Of these four forces only first three can be described in the

1A fourth type of particle is in fact required in order to endow these particles
with the masses with which they are observed today: the Higgs Boson. This
particle will be discussed in more detail in what follows.

4
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Standard Model theory. The gravitational force differs from the other three in that

it is “non-renormalizable” within the structure of the model, essentially the rele-

vant equations become saturated with infinities that cannot be removed. Putting

this fact together with several other observed shortcomings, we are compelled to

postulate that the Standard Model is to some degree a low energy effective theory.

In other words, it seems that there must exist a more fundamental description of

nature.

Despite its flaws, however, in the electroweak sector and at energies lower than

∼1TeV the Standard Model has been experimentally verified to better than 1%

precision: a remarkably successful theory by any standard. We begin our discussion

of the physics of elementary particles therefore with a review of some of the key

physical ideas giving rise to the Standard Model. In the next section we will go on

to examine the model itself in more detail.

2.1.1 Particles and Fields

To capture the physics of the fundamental particles at all energy scales the ma-

chinery of quantum mechanics alone is insufficient. The problem arises when a

quantum system enters the realm of special relativity, a regime wherein the equiv-

alence of mass and energy implies that energy can be converted into matter and

matter into energy. Consider the implications when we combine this equivalence

with the uncertainty principle, which tells us that over a very short time period

the energy of a particle can undergo significant fluctuations ∆E∆t ∼ 1/2.2 We

must expect that in the case of a system both quantum mechanical and relativistic

in nature, the energetic fluctuations can produce new matter, or new particles. In

2Throughout this thesis we work in natural units where h̄ = c = 1.
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other words, it should be possible for one particle to become many. Now take the

Shrödinger equation describing the wave-function of a single electron. No matter

how hard we look there is simply no mechanism for the electron to produce more

particles, it will always be just a single electron. To solve this problem we need an

object that can describe a continuum of possible particle states and their ability to

be created from the vacuum, propagate, interact and annihilate. In essence what

we need is a field that is quantum mechanical in nature. In fact it should not

come as a complete surprise that this is the answer to the marriage of quantum

mechanics and special relativity. We are used to thinking of the electromagnetic

field as being made up of a series of tiny harmonic oscillators, particles we call

photons. In quantum field theory we are simply formalizing this description and

promoting the other fundamental particles to the same footing.

On their own fields are more or less classical in nature, but as we have already

discovered, to think in terms of elementary particles they must be “quantized”.

We must explicitly derive the relationship between particle and field. The most

common way to proceed is via a canonical quantization. To do so we start with

the Lagrangian for a scalar field

L =
∫
d3x

[
1
2(∂µφ)2 − 1

2m
2φ2

]
=
∫
d3xL

(
φ(x, t), φ̇(x, t)

)
. (2.1)

The momentum density conjugate to the field φ is defined in the usual way,

π(x, t) ≡ δL

δφ̇(x, t))
. (2.2)

To quantize we promote the fields φ(x, t) and π(x, t) to the status of operators by

imposing the equal time canonical commutation relation

[π(x, t), φ(x′, t)] = −iδ3(x− x′) (2.3)
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and of course [π(x, t), π(x′, t)] = [φ(x, t), φ(x′, t)] = 0. We can now write down the

Hamiltonian

H =
∫
d3x

[
π(x′, t)φ̇(x′, t)−L

]
(2.4)

=
∫
d3x 1

2

[
π2 + (∇φ)2 +m2φ2

]
and the implied equation of motion, which we recognize as the Klein-Gordon equa-

tion

(∂2 +m2)φ = 0. (2.5)

This equation can also be viewed as the equation of motion for a harmonic os-

cillator with frequency ωp =
√
|p|2 +m2.3 In quantum mechanics the spectrum

of the Harmonic oscillator can be expressed in terms of ladder, or creation and

annihilation operators: operators that create and annihilate single particle states.

In the case of the Klein-Gordon equation each Fourier mode (or momentum state)

of the field φ can be treated as an independent oscillator with its own creation

and annihilation operators. The field can be Fourier expanded in terms of these

operators as

φ(x, t) =
∫ d3p√

(2π)3

1√
2Ep

[
ape

−ip·x + a†pe
ip·x
]
, (2.6)

where p = (Ep,p) and x = (t,x). The overall multiplicative factors give the correct

normalization such that the commutation relation for ap and a†p,

[
ap, a

†
p′

]
= δ3(p− p′), (2.7)

implies the commutation relation in Eq. 2.3. As expected a†p and ap are the creation

and annihilation operators for a scalar particle with momentum p. That is the

vacuum, or ground state, |0〉 is defined such that ap |0〉 = 0 and
√

2Ep a
†
p |0〉 = |p〉.

3It is particularly easy to verify this by Fourier transforming to momentum
space.
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This then is our quantized field: an object describing a continuum of possible

particle states.

One further question of interest is how we can use our result to describe the

propagation of a relativistic scalar particle. What we need to calculate is the value

of the propagator 〈0|φ(y, t2)φ(x, t1) |0〉: a scalar particle is created at x at time

t1 = x0 and propagates to y at time t2 = y0 before being annihilated. In fact

we already have enough information to write down the answer to this question.

Firstly, however, we will be careful to time order the product of the fields.4 We

define

T [φ(y)φ(x)] = θ(y0 − x0)φ(y)φ(x) + θ(x0 − y0)φ(x)φ(y), (2.8)

where θ is the usual Heaviside function. Then using Eq. 2.6 together with Eq. 2.7

we find

〈0|T [φ(y)φ(x)] |0〉 =
∫ d3p

(2π)3

1

2Ep

[
θ(y0 − x0)e−ip·(x−y) + θ(x0 − y0)eip·(x−y)

]
.

(2.9)

It can furthermore be shown that this expression for the propagator is equal to the

so called Green’s function D(x− y) where

(∂2 +m2)D(x− y) = −iδ4(x− y), (2.10)

so that in momentum space

D̃(p) =
i

p2 −m2
. (2.11)

With the two point propagator in hand it is possible to calculate any property of

our free relativistic scalar field.

4Time ordering simply ensures that if t2 > t1 we propagate from x to y whilst if
t1 > t2 we propagate from y to x. This ordering also ensures that we must always
create before we annihilate, a form of causality.
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Of course the example of a free scalar field is rather simple and in general we

will be interested in the more complicated examples of interacting spin-1 vector

fields or spin-1
2 Dirac fields. The quantization for these fields can be carried out

in a manner analogous to our scalar field example, although there will arise some

important differences. For example, in the case of a fermionic Dirac field we must

account for the anti-symmetric nature of the spin-1
2 particles by imposing anti-

commutation, rather than commutation, relations. Nevertheless, we have taken

the first step: we have seen how a physical description of the relativistic elementary

particles can be formulated in a field theory context. The next naturally arising

question is: How do these particles interact? Interestingly enough, the answer to

this question begins with symmetry.

2.1.2 Gauge Symmetry

Much of what is observed in the physical world can be explained in terms of

symmetry, that is invariance under a particular set of operations. Conservation

of energy and momentum are the two primary examples, being implied by the

invariance of a system under time and translational changes respectively. Similarly

rotational invariance, known as S0(3) symmetry, gives the conservation of angular

momentum. Additionally many physical systems observe discrete symmetries, such

as parity (x → −x) and charge (q → −q). It should not be surprising therefore

that symmetries play a key role in the physics of the elementary particles. In fact

it is symmetry which leads us to the interaction of gauge bosons with the fermions.

To observe this we begin by noticing that the Dirac Lagrangian for a free

fermion,

L = ψ̄(i 6∂ −m)ψ (2.12)
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is invariant under the global U(1) transformation

ψ → ψ′ ≡ eiqαψ, (2.13)

where qα is an arbitrary real constant. The same is not true, however, for a local

U(1) transformation

ψ(x) → ψ′(x) ≡ eiqα(x)ψ(x), (2.14)

where the transformed Lagrangian, L ′, contains an extra term,

L ′ = L − qψ̄γµψ∂µα (2.15)

The implication is that once a given phase convention has been adopted at some

reference point, x0, the same convention must be used at all points, x. This seems

highly unnatural: what happens at one point affects all the other points in the

universe. The solution is to invoke the “Gauge Principal”, requiring invariance

under local U(1) phase changes. This can only be achieved via the addition of a

new Lagrangian term that transforms in such a way as to cancel the extra ∂µα

term. The form of the new term is completely fixed by 2.14 and may be written

as

Lgauge = eqAµψ̄γ
µψ, (2.16)

where the spin-1 gauge field, Aµ, transforms as

Aµ → A′
µ ≡ Aµ +

1

e
∂µα. (2.17)

Local gauge invariance has produced a new interaction between the Dirac spinor

and the spin-1 “gauge field” Aµ. But Aµ is already familiar to us - it is nothing

more than the electromagnetic field. Hence the photon is the “gauge boson” that
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carries the electromagnetic interaction and we may finally write down the gauge-

invariant Dirac Lagrangian

L = ψ̄(i /D −m)ψ − 1

4
FµνF

µν , (2.18)

where the new gauge term has been incorporated into the covariant derivative,

Dµ ≡ ∂µ − ieqAµ, (2.19)

and a kinematic term has been added for the electromagnetic field, in which we

find familiar field strength tensor Fµν = ∂µAν − ∂νAµ. We should also note that a

mass term for the photon, m2AµA
µ, is ruled out as it would not be gauge invariant;

the symmetry tells us that the photon is massless.

The requirement of a local U(1) symmetry has given us the electromagnetic

interaction. The two remaining forces described in the standard model also result

from symmetries, with one important difference: the symmetries associated with

the weak and strong forces, SU(2) and SU(3), are non-Abelian. Just as in the

simple U(1) case of the photon, however, mass terms for the gauge bosons arising

from non-Abelian symmetries are ruled out by gauge invariance. This now poses

a problem because the weak force is observed to be extremely short ranged, a

property that would seem to imply the need for massive force carriers. Indeed it is

now well known that the vector bosons of the weak gauge fields, the familiar W±

and Z0 are massive. So how can we solve this problem? Where do the masses of

these particles come from? Indeed, where do the fermion masses come from? To

answer these questions we need to add another field to our repertoire of elementary

particles, a scalar field whose properties will allow us to endow the gauge bosons

and fermions with their observed masses.
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2.1.3 Spontaneous Symmetry Breaking

As we have already suggested, the Standard Model contains one further particle in

addition to the leptons, quarks and gauge bosons, namely the Higgs boson. Though

the existence of such a particle has never been confirmed experimentally, the Higgs

field is required in the Standard Model to explain the masses of the other particles.

To understand how the Higgs scalar field results in massive fermions and gauge

bosons we must first understand a little about the ideas of hidden symmetries and

spontaneous symmetry breaking.

A hidden symmetry occurs when the Lagrangian itself is invariant under some

exact symmetry whilst its dynamics result in a set of degenerate vacuum states

that do not obey this symmetry. The original symmetry is then said to be hidden

because some degeneracy, for example a set of particles with identical masses, is

broken. The simplest example of spontaneous symmetry breaking resulting in a

hidden symmetry is that of a scalar field φ with Lagrangian

L =
1

2
(∂µφ)(∂µφ) + V (φ), (2.20)

where the scalar potential, V (φ), is given by

V (φ) =
1

2
µ2φ2 +

1

4
|λ|φ4. (2.21)

The Lagrangian respects the discrete symmetry of parity invariance, φ → −φ. If

µ2 > 0 the scalar potential will have only one vacuum state at the minimum of the

potential, 〈φ〉0 = 0 and thus will also be invariant under parity changes. If µ2 < 0,

however, there are two degenerate vacua at 〈φ〉0 = ±
√
−µ2/|λ| = ±v. Choosing

one of the degenerate vacua at random, 〈φ〉0 = +v, and defining the shifted field

φ′ = φ− v, it can be seen that the Lagrangian,

L =
1

2
(∂µφ

′)(∂µφ′)− |µ|2
(
φ′4

4v2
+
φ′3

v
+ φ′2 − v2

4

)
, (2.22)
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no longer obeys the original symmetry. Effectively, because of the two possible

minima, the parity invariance of the Lagrangian is broken in the physical vacuum.

In addition, if we take the limit of small oscillations about the minimum the

Lagrangian becomes

L =
1

2
(∂µφ

′)(∂µφ′)− |µ|2φ′2, (2.23)

and it is readily apparent that we are describing the oscillations of a spin-zero

particle with mass 2|µ|2.

This idea readily generalizes to more complicated cases of continuous, non-

Abelian symmetry breaking. In the case of a spontaneously broken continuous

symmetry it can be shown that in addition to the appearance of the massive scalar

boson from Eq. 2.23 there will appear one additional massless spin-zero particle

for each broken generator of the original symmetry group. This phenomenon is

known as Goldstone’s theorem and the massless particles are referred to as the

Goldstone bosons. This is all well and good, but we have still managed to generate

only massless bosons, making it difficult to see how the this symmetry breaking

mechanism can help us in our quest to fix the problem of our massless vector gauge

bosons. For this we need to examine specifically the case of a spontaneously broken

gauge symmetry.

Rather than explain the breaking of a gauge symmetry in general terms we

will jump directly to the example of interest: the electroweak symmetry breaking.

We introduce the four massless vector gauge bosons, b1µ, b
2
µ, b

3
µ and b0µ that arise

from the SU(2)L × U(1)Y symmetry of the Lagrangian. The biµ, where i = 1, 2, 3,

are associated with the SU(2)L symmetry while b0µ is associated with U(1)Y . An

electroweak Lagrangian is constructed from these gauge fields and the fermions in

the usual way, we modify the theory, however, by adding a complex doublet of
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scalar fields,

φ =

 φ+

φ0

 . (2.24)

The Lagrangian for this scalar field is given by

Lscalar = (Dµφ)†(Dµφ) + V (φ†φ), (2.25)

where the covariant derivative is

Dµ = ∂µ +
ig′

2
b0µ +

ig

2
τ · bµ, (2.26)

with g and g′ the coupling constants of weak-isospin SU(2)L and hypercharge

U(1)Y respectively and τ the vector of Pauli matrices. The scalar potential takes

the familiar form

V (φ†φ) = µ2(φ†φ) + |λ|(φ†φ)2. (2.27)

We may now assume a spontaneously broken symmetry, by setting µ2 < 0, and

see what happens.

To begin we choose a vacuum expectation value for the scalar field

〈φ〉0 =

 0

v/
√

2

 , (2.28)

with v =
√
−µ2/|λ| as before. The physics of our broken symmetry will be con-

tained in the expansion of the Lagrangian about the minimum of the scalar po-

tential. To do this we define a shifted field, φ′ = φ − 〈φ〉0 and parameterize φ

as

φ = exp
(
iη · τ

2v

) 0

(v +H)/
√

2

 , (2.29)

where H and η are small perturbations. Since we are free to choose any gauge it

is also more convenient to gauge away the non-physical Goldstone bosons (η1, η2
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and η3) by setting

φ→ exp
(−iη · τ

2v

)
φ (2.30)

and assuming the corresponding changes for the gauge fields. Then in terms of the

shifted field:

φ′ =

 0

H/
√

2

 (2.31)

the scalar field Lagrangian becomes

Lscalar =
1

2
(∂µH)(∂µH)− µ2H2 +

v2

8

[
g2|b1µ − ib2µ|2 + (g′b0µ − gb3µ)

2
]
+ . . . (2.32)

where we have neglected to write down the interaction terms. It is immediately

apparent that the H field has acquired a mass, M2
H = −2µ2 > 0, indeed this par-

ticle is none other than the physical Higgs boson. To make sense of the remainder

we define the charged gauge fields

W±
µ =

b1µ ∓ b2µ√
2

(2.33)

as well as the orthogonal combinations

Zµ =
−g′b0µ + gb3µ√

g2 + g′2
(2.34)

and

Aµ =
gb0µ + g′b3µ√
g2 + g′2

. (2.35)

In terms of these fields it is easy to show that we have three massive vector bosons,

W±
µ with MW± = gv/2 and Zµ with MZ =

√
g2 + g′2v/2, and one massless vector

boson Aµ that preserves the U(1)EM symmetry. Via the Higgs mechanism we have

achieved exactly our observed electroweak sector.

Finally it should be noted that we are also free to add interaction terms between

the Higgs field and the fermions. These Yukawa couplings will result in mass terms
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for the fermions when the symmetry is spontaneously broken and the Higgs field

falls to its vacuum expectation value. We thus appear to have solved all of our

original problems: the Higgs field endows both the fermions and gauge bosons with

mass. However, this is not quite the end of the story. We must remember that

whilst the Higgs mechanism seems plausible, and even beautiful, the Higgs boson

has yet to be observed in nature. In fact, with masses less than ∼114 GeV already

ruled out by current data [1], it appears we must wait for the next generation of

energy frontier experiments to see if the Higgs particle really exists. If this turns

out not to be the case, an alternate explanation for the particle masses must be

found. In the absence of any evidence to the contrary, however, we will assume

that the Higgs mechanism is valid and using the ideas we have developed, go on

to describe the Standard Model in some more technical detail.

2.2 The Standard Model

In the previous section we described three key results, which taken together form

the basis of modern particle physics. Namely, we saw that elementary particles

can be described as relativistic quantum fields whose interactions are mediated

by gauge bosons and whose masses derive from the broken symmetry of the scalar

Higgs field. To proceed to the Standard Model we must piece together, in a physical

manner, the fields of all the observed elementary particles. This superposition of

the various particles and their interactions can be summarized in the resulting

Lagrangian expression for the fields:

LSM = LG + LF + LH + LM + LGF + LFP , (2.36)
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where LSM is the total Standard Model Lagrangian, LG is the Yang-Mills, or

gauge field, Lagrangian without matter fields, LF is the coupling of the fermionic

matter fields with the gauge fields, LH is the Higgs field Lagrangian, LM contains

the fermion mass terms, LGF contains gauge-fixing terms and LFP describes the

Fadeev Popov ghosts. This Lagrangian contains three generations of leptons and

quarks composed of left-handed doublets and right-handed singlets,

e−R,

 νe

e−


L

, µ−R,

 νµ

µ−


L

, τ−R ,

 ντ

τ−


L

and

uR, dR,

 u

d


L

, cR, sR,

 c

s


L

, tR, bR,

 t

b


L

.

It should be noted here that already our description has become somewhat in-

accurate. The fact that the leptonic generations contain only left-handed neu-

trinos (right-handed anti-neutrinos) implies massless neutrinos, whereas neutrino

mixing is now an experimentally confirmed phenomenon [2][4]. This fix can be

incorporated into the Standard Model, however, for the present purposes it is not

necessary.

The two most useful parts of the Standard Model Lagrangian for the present

purpose, that is the study of D semileptonic decays, are LF and LM , which (for

one lepton generation) may be expanded fully as

LF + LM = iē 6∂e+ iν̄L 6∂νL + i
∑
n

q̄n 6∂qn

+
e√

2 sin θW

(
ν̄L 6W+eL + ēL 6W−νL

)
+

e

sin 2θW
ν̄L 6ZνL

+
e

sin 2θW

(
ē 6Z

(
2 sin2 θW − 1− γ5

2

)
e
)
− eē 6Ae

+
e√

2 sin θW

∑
I,i

(
q̄I 6W+qiL

(
V †
)
Ii

+ q̄i 6W−qILViI
)
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+
e

sin 2θW

∑
I

(
q̄I 6Z

(
1− γ5

2
− 2QI sin2 θW

)
qI

)

+
e

sin 2θW

∑
I

(
q̄i 6Z

(−1 + γ5

2
− 2Qi sin

2 θW

)
qi

)
+ e

∑
n

Qnq̄n 6Aqn + gs
∑
n

q̄nG
a
µγ

µtaqn

− eme

MZ sin 2θW
Hēe− e

MZ sin 2θW

∑
n

mnHq̄nqn

+
ie
√

2me

MZ sin 2θW

(
ω−ēνL − ω+ν̄Le

)
+

ieme

MZ sin 2θW
zēγ5e

+
ie√

2MZ sin 2θW
ω+

∑
I,i

(
V †
)
I,i
q̄I (mI −mi − (mI +mi) γ5) qi

+
ie√

2MZ sin 2θW
ω−

∑
I,i

(V )i,I q̄i (mi −mI − (mI +mi) γ5) qI

− ie

MZ sin 2θW

(∑
I

mI q̄Iγ5qI +
∑
i

miq̄iγ5qi

)
, (2.37)

where we follow the notation used in [5]. The I(i) = 1, 2, 3 denote the up (down)

quarks,

sin θW ≡ g′/
√
g2 + g′2,

and the Higgs doublet φ is given by,

φ =

 iω+

(v +H − iz) /
√

2

 .
In this case ω± and z are massless Goldstone bosons that may be gauged away as

we saw in the previous section. In fact, it is common to think of these particles

as having been “eaten” by the gauge bosons: the Goldstone bosons become the

non-zero longitudinal components inherent to the massive vector bosons. The only

physical field is once again H, the Higgs boson.

The Standard Model that we have just written down accurately describes many

aspects of elementary particle interactions and is a useful effective theory. However,

as we have already noted at the beginning of this chapter, there are still some

fundamental aspects of particle physics that it fails to address.
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One concern is that the theory contains many free parameters, such as the par-

ticle masses, which can be determined only by experimental measurement. There

is also the so called “hierarchy problem” [6], in which the Higgs scalar field must

have a mass many orders of magnitude smaller than the scale of the highest order

symmetry breaking (e.g. when gravity unites with the other forces at roughly the

Planck scale) in order to endow the W and Z bosons from (2.37) with their observed

masses at the electroweak symmetry breaking. This requires some extraordinary

cancellations, or fine tuning, in the mass-squared term of the Higgs field during

renormalization. Additionally the Standard Model has no explanation for gravity

or how this fourth force might be united with the other three. Such questions

must be answered by physics “beyond the Standard Model”, which is to say, there

must be a more fundamental underlying theory that encompasses the physics of

the Standard Model to some degree. In order to grasp this new physics it is first

necessary to fully test the Standard Model experimentally. Only by measuring and

over-constraining the free parameters of the theory can it be seen if, and where,

the Standard Model will break down to reveal the physics that lies beyond it.

One of the key places to test the physics of the Standard Model is the Cabibbo

Kobayashi Maskawa (CKM) matrix. This matrix has in fact already been intro-

duced in (2.37), where it is denoted as ViI and is clearly seen to transform the

quark fields from their mass eigenstate basis. By convention this matrix is de-

fined to operate on the down, or Q = −e/3, quark mass eigenstates and is usually

written as, 
d′

s′

b′

 =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb




d

s

b

 .
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Within the framework of the standard model the mixing matrix is derived as

a product of two unitary matrices, and is therefore unitary by construction [6].

Using this unitarity constraint and removing unphysical quark phases it can be

shown that the three generation CKM matrix contains just four independent, real

parameters [9]. A standard parameterization is [2],

V =


c12c13 s12c13 s13e

−iδ13

−s12c23 − c12s23s13e
−iδ13 c12c23 − s12s23s13e

−iδ13 s23c13

s12s23 − c12c23s13e
−iδ13 −c12s23 − s12c23s13e

−iδ13 c23c13

 , (2.38)

where cij = cos θij and sij = sin θij. The angles θ12, θ23 and θ13 specify the rotation

whilst δ13 is a complex phase that results from the presence of three quark and

lepton generations.5 CP violation is an important, and observable, consequence

of the complex phase. Another expansion of the CKM matrix is motivated by

the fact that, as well as being unitary, the matrix is also close to unity. This

parameterization, due to Wolfenstein [10], is an expansion of the matrix in the small

parameter λ = sin θC ≈ 0.22 where θC is the Cabibbo angle (see for example [6]),

and is given by
1− λ2

2
λ Aλ3 (ρ− iη)

−λ 1− λ2

2
Aλ2

Aλ3 (1− ρ− iη) −Aλ2 1

+O
(
λ4
)
. (2.39)

It should also be noted that all the parameters in this expansion apart from λ, i.e.,

A, ρ and η, are of order unity. Combining this parameterization with the unitarity

constraint,

V ∗
ubVud + V ∗

cbVcd + V ∗
tbVtd = 0. (2.40)

5We note than in general, for n generations, there are n(n − 1)/2 angles and
(n− 1)(n− 2)/2 phases [11].
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allows the CKM parameters to be represented as a triangle in the complex (ρ̄, η̄)

plane, shown in Fig. 2.1, where ρ̄ = ρ (1− λ2/2) and η̄ = η (1− λ2/2). The side

lengths of the triangle CA and BA are given by Rb and Rt respectively where,

Rb ≡
|VudV ∗

ub|
|VcdV ∗

cb|
=
√
ρ̄2 + η̄2 = (1− λ2

2
)
1

λ

∣∣∣∣VubVcb

∣∣∣∣ (2.41)

and

Rt ≡
|VtdV ∗

tb|
|VcdV ∗

cb|
=
√

(1− ρ̄)2 + η̄2 =
1

λ

∣∣∣∣VtdVcb
∣∣∣∣ . (2.42)

b
t

βγ

α

C=(0,0) B=(1,0)

R
R

A=(ρ,η)

Figure 2.1: Unitarity Triangle.

Like the fermion masses, the parameters of the CKM matrix are input parame-

ters to the standard model: they are not predicted, but must instead be measured

experimentally. The CKM matrix is thus an important focus of experimental par-

ticle physics: not only must its elements be measured but it also provides a pivotal

arena for testing the validity of the standard model. If the standard model is cor-

rect experimental determination of the parameters should verify unitarity, whilst

deviations would indicate the presence of new physics. Unitarity may be verified by

over-constraint of the unitarity triangle discussed above, the current experimental

constraints are shown in Fig. 2.2 [12]. Measurement of the CKM matrix is diffi-

cult, however, precisely because it is close to unity, leaving the small off-diagonal
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Figure 2.2: The latest experimental constraints on the unitarity triangle.

elements to be determined via decays with small branching fractions. It thus

remains a continuing experimental challenge to fully test unitarity via precision

measurement of the CKM matrix.

2.3 Charm Physics and Semileptonic Decays

One of the best experimental frameworks for CKM measurements is the semilep-

tonic decays of B and D mesons, see Fig 2.3. From a theoretical viewpoint semilep-

tonic decays are relatively simple when compared to mesons decaying via fully

hadronic final states. This simplicity is due to the fact that the semileptonic

decays may be factored into the product of the well understood leptonic cur-

rent and the more complicated hadronic current, allowing the complexity of the

strong interactions to be isolated. In addition, the strong final state interactions
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present in hadronic decays are removed. Experimentally semileptonic decays are

also tractable and are preferred over purely leptonic decays because of their much

larger branching fractions.

u

c

+W

d

+e

eν

0D -π

Figure 2.3: Example of a semi-leptonic D meson decay, D0 → π−e+νe

CLEO-c has obtained a very large, clean sample of D semileptonic decays at

the ψ(3770) charm resonance. For such decays, where the charmed D meson, Dcq̄′ ,

with q̄′ = ū or d̄, decays to some pseudoscalar meson, Pqq̄′ , the amplitude is of the

form [13]

M (Dcq̄′ → Pqq̄′e
+νe) = −iGF√

2
VcqL

µHµ, (2.43)

where GF is the Fermi constant, Vcq the appropriate CKM matrix element and

Lµ and Hµ are the leptonic and hadronic currents. The leptonic current can be

written in terms of the electron and neutrino Dirac spinors, ue and vν ,

Lµ = ūeγ
µ(1− γ5)vν . (2.44)



24

In general the hadronic current is a matrix element given by,

Hµ = 〈P |q̄γµ(1− γ5)c|D〉 . (2.45)

However, in the case of pseudoscalar decays, there is no axial-vector contribution

and this simplifies to,

Hµ = 〈P |q̄γµc|D〉 . (2.46)

In either case it is no simple matter to calculate this matrix element. It is possible

to simplify the situation, however, by noting that in the pseudoscalar decay there

are only two independent four vectors, usually taken to be p′ + p and q ≡ p′ − p

where p′ and p are the four vectors of the parent D meson and the daughter P

meson respectively. We recognize q as the four vector of the virtual W boson (see

Fig. 2.3). The hadronic current can be written in terms of these two four vectors

as

〈P |q̄γµc|D〉 = f+(q2)(p′ + p)µ + f−(q2)(p′ − p)µ, (2.47)

where f+ and f− are the form factors of the decay and depend only on q2. The

current is also commonly expressed in terms of the alternate form factors F1 and

F0,

〈P |q̄γµc|D〉 = F1(q
2)

(
(p′ + p)µ − M2

D −m2
P

q2
qµ
)

+ F0(q
2)
M2

D −m2
P

q2
qµ, (2.48)

where F1(q
2) = f+(q2) and

F0(q
2) = f+(q2) +

q2

M2
D −m2

P

f−(q2). (2.49)

Nominally we shall use the f+ and f− form factor notation, however, in practice

the expression for the matrix element can be simplified to contain just the f+ form

factor, which is exactly the same in either case. This simplification arises due to
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the small mass of the electron.6 In the limit me → 0, we have qµLµ = 0, so that, to

a very good approximation7 the decays may be described by a single form factor,

〈P |q̄γµc|D〉 = f+(q2)(p′ + p)µ. (2.50)

Substituting this form of the hadronic current into Eq. 2.43, the partial decay

width becomes

dΓ(D → Peν)

dq2
=
G2
F |Vcq|2

24π3
p3|f+(q2)|2. (2.51)

It is now possible to understand why study of the D semileptonic decays is

important. In the first place, from the measured branching fractions it is possible

to extract values for |Vcs| and |Vcd|, providing direct constraints on the CKM

matrix. Moreover, the size and quality of the CLEO-c data sample (1.8 million DD̄

pairs) allows for these measurements to be made with unprecedented experimental

precision - at the few percent level or less. In addition, precision measurement of

the branching fractions in multiple q2 ranges enables extraction of precise results

for the form factor shapes and CKM adjusted normalizations (i.e. |Vcq|f+(0)), in

both D → K and D → π decays. By allowing confirmation of high precision

theoretical calculations of the form factors these results make an indirect, yet

highly important, contribution to improvement of the experimental constraints

on the unitarity of the CKM matrix. This contribution is possible, and indeed

necessary, due to the fact that many of the current constraints on unitarity (shown

in Fig. 2.2), and thus on physics beyond the Standard Model, are dominated by

the presence of large theoretical errors. In particular, our results will contribute

to the study of B semileptonic decays, which can be related to the D decays via

6We note that we are only concerned with the electron decays here because
muons cannot be distinguished from pions in CLEO-c

7The exact suppression of the second form factor is given by (me/MD)2.
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the use of heavy quark symmetry (HQET). Importantly, this can give increased

accuracy for the extraction of the small CKM matrix element |Vub|. The precise

measurement of form factors in charm semileptonic decays therefore, will make

significant contributions toward understanding the validity of the Standard Model.

With this motivation in view, we turn now to a more detailed description of

the form factors themselves.

2.4 Form Factors

The form of the semileptonic partial decay width reveals the fundamental nature of

the connection between the CKM matrix elements and the hadronic form factors:

to measure one we must know the other. This tells us that for any experimental

determination of the CKM matrix elements via semileptonic decays, some theo-

retical estimation of the form factor is necessary. Such calculations therefore have

become a considerable industry in recent times, with a variety of techniques being

employed.

Prominent amongst these techniques have been quark model calculations, such

as the ISGW2 model [30], the use of QCD sum rules and their more advanced

counterpart light-cone sum rules (LCSR) as well as lattice QCD (LQCD) methods.

Quark models have long been disfavored due to a somewhat “ad hoc” construction

of the quark behavior that makes it hard to quantify their accuracy. For some

years the LCSR technique and LQCD, both based on the true dynamics of QCD,

competed in accuracy, with errors at the 20 − 30% level. More recently, how-

ever, advances in both computing power and calculational techniques have allowed

LQCD to progress significantly, to the point where it will soon be the most precise
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theoretical method.8 Semileptonic form factors (for both B and D decays) have

been calculated in LQCD with errors at the 10% level [14] and these are predicted

to shrink still further, to the few percent level or less, in the near future. The im-

plication is that lattice calculations of the form factors have come to be extremely

important in the extraction of CKM elements from experimental measurements.

Since the CKM measurements of this analysis will also utilize such calculations, it

is worthwhile to give a brief overview of LQCD and how lattice techniques can be

used to calculate form factors. This will be followed with a discussion of the some

of the relevant parameterizations chosen for the form factors.

2.4.1 Lattice QCD

The necessity of tools such as lattice QCD is brought about by the nature of the

running of the strong coupling constant. In low energy regimes (E ∼ 1 GeV or less)

the running leads to a strong coupling of order unity and perturbative methods

fail. Thus for a broad spectrum hadronic physics, and in particular the heavy to

light quark decays we are interested in, Fig 2.4, many of the fundamental quantities

must be calculated non-perturbatively. Lattice QCD provides a method for such

calculations.

To evaluate any quantity in quantum field theory it is common to formulate

the relevant equations using a path integral approach. For our present purpose it

will be useful to remind ourselves of how path integrals are formulated in quantum

mechanics. We start with the amplitude for a particle to propagate from point xI

8For B → π/K`ν decays LCSR methods have also been used to predict form
factors with errors as low as ∼ 10% [15]. Very recent LCSR results for D → π/K`ν
decays also have errors at this level [16], whilst older published results have errors
as large as ∼ 20% or higher [17] [18].
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+e
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Figure 2.4: Example of a semi-leptonic D meson decay, D0 → π−e+νe. The QCD

corrections are illustrated by the gluons being exchanged between the initial and

final state hadrons. The leptonic vertex is easily calculated, whilst the hadronic

vertex requires non-perturbative methods.

to point xF in time T, given by

〈xF | e−iHT |xI〉 , (2.52)

where H is the Hamiltonian. Breaking this expression into N equal time segments

δt, and using the fact that |x〉 forms a complete set of states we can write this as

〈xF | e−iHT |xI〉 =
∫
dx1 . . . dxN−1 〈xF | eiHδt |xN−1〉 . . . 〈x1| eiHδt |xI〉 . (2.53)

Now consider the individual element 〈xk+1| e−iHδt |xk〉. Each such element can

be easily evaluated by Fourier transforming to momentum space. This procedure
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leads to the expression

〈xk+1| e−iδt(p̂
2/2m+V (x̂)) |xk〉 =

(−2πim

δt

) 1
2

eiδt[(m/2)((xk+1−xk)/δt)2−V (xk)], (2.54)

where we have used the standard Hamiltonian, H = p̂2/2m+V (x̂), with potential

V (x) and momentum and position operators p̂ and x̂ respectively. Inserting this

expression into Eq. 2.53 and taking the continuum limit δt→ 0 gives

〈
xF |e−iHT |xI

〉
=
∫
Dx(t) ei

∫ T

0
dt[ 1

2
mẋ2−V (x)] =

∫
Dx(t) eiS[x], (2.55)

where S[x] is the classical action and we have defined

∫
Dx(t) = lim

N→∞

(−2πim

δt

)N
2
∫
dx1 . . . dxN−1. (2.56)

This tells us something deep: the quantum mechanical amplitude, Eq. 2.52, is a

sum over all possible particle paths or trajectories, x(t). Moreover, this sum is

weighted by the classical action so that the contributions from most paths will be

largely canceled; only those paths near the extremum of the action where δS = 0,

will contribute significantly. The difficulty, however, lies in the calculation of such

expressions. How do we really take a sum over all possible paths?

Let us go back one step from Eq. 2.55, undoing just the fact that we have taken

a continuum limit. The result is

〈
xF |e−iHT |xI

〉
= C

N−1∏
k=1

∫
dxk e

iδt
∑N−1

k=0 [(m/2)((xk+1−xk)/δt)2−V (xk)], (2.57)

where C is a constant. In this case we have an expression for the amplitude

that is discretized in time. Importantly however, because the time steps are now

discrete, the equation in this form may be solved numerically. In fact this is the

key idea behind lattice QCD: to solve the exact equations of QCD numerically by

discretizing the path integrals.
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For the general case, where the evaluation of some excited state is required,

our path integral is given by,

〈0|Γ[x] |0〉 =

∫
Dx(t) Γ[x]e−S[x]∫
Dx(t) e−S[x]

, (2.58)

where we have changed to a Euclidean metric, taking t → it in order that the

oscillations be removed from our integrals. To calculate such an expression we

first discretize as above giving,

〈0|Γ[x] |0〉 =

∏
k

∫
dxk Γ[x]e−Slat[xk]∏
k

∫
dxk e−S[x]

, (2.59)

where the paths are now given by a discrete set of points, sometimes known as a

“configuration”,

x = {x(t0), x(t1), . . . , x(tN)}, (2.60)

and Slat[xk] =
∑N−1
k=0 [(m/2)((xk+1 − xk)/δt)

2 − V (xk)] is the discrete action. The

numerical evaluation proceeds by generating a large number of paths, Np, in such

a way that the probability for obtaining a particular path, x(α) with α = 1, . . . , Np,

is proportional to its weight,

P (x(α)) ∝ e−S[x(α)]. (2.61)

The unweighted average of Γ[x] over this set of paths then approximates the

weighted average over the set of uniformly distributed paths. Further details on

the generation of lattice paths can be found in [20].

In order to discuss the calculation of QCD quantities we must translate our

simple quantum mechanical expressions into field theoretical ones. The most intu-

itive approach is simply to make a direct substitution, taking x(t) → φ(x), where

φ is the field of some given particle type and x = (t, ~x) is now a four dimensional
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a
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link

site

Figure 2.5: The discretization of space-time points in lattice QCD. The lattice

spacing is given by a and the size of the lattice is given by L.

space-time point. The path integral in field theory is then given by

〈0|Γ[φ] |0〉 =
1

Z

∫
Dφ Γ[φ]eiS[φ], (2.62)

where

Z =
∫
Dφ eiS[φ]. (2.63)

To discretize, it is now the space-time points that become a grid, with values of

the fields given at the grid points, Fig 2.5. Evaluated on the grid, the path integral
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expression becomes,

〈0|Γ[φ] |0〉 =
1

Z

∏
xkε grid

∫
dφ(xk) Γ[φ]eiS[φ], (2.64)

where the action now contains the appropriately discretized forms of the field φ.9

For example the second derivative of φ must be replaced by an expression wherein

φ is evaluated only at the lattice points. For a coarse grid it is usual to make the

approximation as accurate as possible. Thus a second derivative in the field, for

example, would become

∂2φ(xk)

∂x2
= ∆(2)

x φ(xk)−
a2

12
(∆(2)

x )2φ(xk) +O(a4), (2.65)

where

∆(2)
x ≡ φ(x+ a)− 2φ(x) + φ(x− a)

a2
, (2.66)

and a gives the lattice spacing. In general we will also need to worry about such

things as putting fermions on the lattice and ensuring that gauge invariance is

maintained in our discretized regime. For example, to in order to maintain gauge

invariance it is necessary to express the gauge boson fields, Aµ(x), in terms of “link

variables”, Uµ(x). The link variables are defined as the path integral of Aµ(x) along

a “link” joining points x and x+ aµ̂ (see Fig 2.5),

Uµ(x) ≡ Pe−i
∫ x+aµ̂

x
gA·dy, (2.67)

where P is a path-ordering operator. Several nice reviews are available that cover

such topics (see for example [20][21][22]), here a more general understanding is

sufficient. Instead what we must now worry about is how the final results of

lattice calculations will be affected by the discretization. Two factors are of vital

9For the calculation of semileptonic form factors Γ[φ(x)] will in general be the
two-point and three-point correlation functions. An explanation of these function-
als can be found in [23].
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importance in this determination: the lattice spacing, a, and the overall size of the

lattice L. We discuss each in turn.

The size of a is important in two ways. In the first place the accuracy of our

derivative approximations will go as the fourth power of a. This gives accuracies of

a few percent even for objects four or five lattice spacings across, so that we would

expect lattice spacing about one quarter the diameter of a hadron, ∼ 0.4fm, to

suffice. However, there is another consequence of the size of a that turns out to be

more limiting. In effect, because we are considering quantum mechanical objects,

the lattice imposes an ultraviolet cutoff, thus gluons and quarks with wavelengths

smaller than twice the lattice spacing are excluded from the theory by the lattice.

To solve this problem it is usual to require that a be small enough such that for the

range of momenta excluded by the cutoff perturbative techniques are valid. The

effect of these states can then be mimicked with addition of some extra localized

interactions and a renormalization of the discretized parameters. With sufficiently

small a the required renormalization can be calculated using perturbation theory.

For these calculations to be valid it has been found that lattice spacings must be

less than 0.1− 0.5fm.10

The finite spatial extent of the entire lattice is also important. If we wish our

results to be independent of this quantity we must avoid particles for which the

correlation lengths are of order the size of the lattice, i.e., 1/m ∼ O(L), where m

is the particle mass. However, the lattice sizes that can be afforded are bound by

the computational cost, where

cost ≈
(
L

a

)4 1

m2
πa

2
. (2.68)

10Most current calculations use a “coarse” lattice spacing of about 0.12fm, see
for example [14][24].
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In practice L = 2 − 3fm and the light quarks u and d cannot be directly cal-

culated with their true masses. Instead these quarks are simulated with heavier

masses (as light as ms/8, with ms the mass of the strange quark, for recent calcu-

lations [14]) and the final answer is extracted using a “chiral extrapolation”. This

extrapolation procedure, which uses an expansion in the quark masses from chiral

perturbation theory, used to be one of the largest sources of error in the calculation

of heavy to light form factors, on the order of 10− 20%. However, one of the most

significant improvements to lattice QCD in recent times, the introduction of the

Kogut-Susskind or “staggered fermion” action [25][26] has dramatically reduced

this error.

Staggered fermions have their spinor components split onto different lattice

spacings, a technique designed to eliminate a lattice artifact known as fermion

“doublers”. The doubling problem is an effect of the naive discretization of the

Dirac action: for every space-time dimension on the lattice the number of fermions

is doubled. Thus where we wish to simulate a single fermion 2d fermions will

appear on a lattice with d dimensions, leaving us with fifteen extra fermions in

four dimensions. Staggering the fermion action reduces the doublers by a factor of

four, leaving four fermion “tastes” of which three are unphysical particles. This is

somewhat of a drawback for the staggered technique since the extra particles are

usually removed by taking the fourth root of the four-taste fermion determinant -

a technique that seems intuitive but has never been properly validated. Neverthe-

less, one of the great advantages of staggered fermions is that computation of the

propagator is fast, greatly speeding up lattice calculations and enabling the use of

much lighter u and d quark masses. Reduction in the masses of the light quarks is

crucial for reducing uncertainties associated with chiral extrapolation.
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The staggered fermion technique has also enabled the use of “unquenched”

lattice calculations. Quenching refers to the process of ignoring the vacuum polar-

ization contributions of the light quark loops. This approximation was commonly

used because calculation of the quark loops was so computationally expensive.

However, the associated errors were hard to estimate, resulting in a significant

improvement in systematic errors with the use of unquenched calculations.

The overall result of these improvements is that the accuracy of lattice QCD

calculations has been able to extend down to the few percent level. In several

“Golden modes” agreement with experiment has also been shown at this level [27].

These calculations should therefore also be reliable for calculation of semileptonic

form factors and we can test this assumption with our own results. To do so,

however, we need a parameterization of the form factors to fit to our branching

fractions. In fact even lattice calculations often use a specific parameterization

of the form factor in order to extrapolate their measurements to the appropriate

energies (see for example [14]). With this in mind we now explore some possible

form factor parameterizations.

2.4.2 Functional Forms

The goal of any particular parameterization of the semileptonic form factors is to

provide an accurate, and physically meaningful, expression of the strong dynamics

in the decays. One possible way to achieve this goal is to express the form factors in

terms of a dispersion relation. In fact this approach, the use of dispersion relations

and dispersive bounds in the description of form factors, has been well established

in the literature (see for example [43] and references therein). In general the dis-

persive representation is derived from evaluation of the two point function [43][44]
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and may be written as

f+(q2) =
f+(0)

1− α

1

1− q2

m2
pole

+
1

π

∫ ∞

(MD+mP )2
dt

Imf+(t)

t− q2
, (2.69)

where MD and mP are the masses of the D meson and pseudoscalar meson respec-

tively, while mpole is the mass of the lowest lying cq̄ vector meson, with c→ q the

quark transition of the semileptonic decay.11 The parameter α expresses the size

of the vector meson pole contribution at f+(0).

It is common to write the contribution from the continuum integral in Eq. 2.69

as a sum of effective poles:

f+(q2) =
f+(0)

1− α

1

1− q2

m2
pole

+
N∑
k=1

ρk

1− 1
γk

q2

m2
pole

, (2.70)

where ρk and γk are expansion parameters. The true form factor can then be ap-

proximated to any desired degree of accuracy by keeping a given numbers of terms,

or effective poles, in the expansion. A commonly conceived drawback of such an

approach, however, is that the decay dynamics are not explicitly predicted. Addi-

tionally, experimental data has suggested the need for only two parameters in the

description of the form factor shape. It is natural therefore, to seek simplifications

of this parameterization that can still capture all the necessary physics.

One way to simplify is to remove the contribution of the effective poles entirely,

keeping only the explicit vector meson pole. This scheme is referred to as “nearest

pole dominance” or “vector-meson dominance” and the resulting parameterization

of the form factor, known as the simple pole model, is given by

f+(q2) =
f+(0)

(1− q2

m2
pole

)
. (2.71)

11For the charm semileptonic decays we have mpole = MD∗ for D → πeν decays
and mpole = MD∗s for D → Keν decays.
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Experimental data, however, appear to disagree with the physical basis for this

approximation, since measurements of the parameter mpole that fit the data do

not agree with the true vector meson masses, see [47] and Tables 2.1 and 2.2.

Effectively, at low or medium values of q2 the spectrum is distorted compared

to the simple pole model, receiving contributions from the continuum of effective

poles above the lowest lying pole mass.

Table 2.1: Experimental measurements of the D → K form factor shape param-

eters. Here α is the shape parameter for the modified pole model (Eq. 2.72) and

mpole is the pole mass of the simple pole model (Eq. 2.71). The first errors are

statistical and the second systematic.

Shape Parameter

Measurement α mpole GeV

E691 1989 [48] - 2.1+0.4
−0.2 ± 0.2

CLEO 1991 [49] - 2.0+0.4+0.3
−0.2−0.2

MarkIII 1991 [50] - 1.8+0.5+0.3
−0.2−0.2

CLEOII 1993 [51] - 2.00± 0.12± 0.18

E687 1995 [52] - 1.87+0.11+0.07
−0.08−0.06

CLEOIII 2005 [55] 0.36± 0.10+0.03
−0.07 1.89± 0.05+0.04

−0.02

FOCUS 2005 [56] 0.28± 0.08± 0.07 1.93± 0.05± 0.03

Belle 2006 [57] 0.40± 0.12± 0.09 -

Babar 2006 [58] 0.43± 0.03± 0.04 1.854± 0.016± 0.020

The modified pole model, or Becirevic-Kaidelov (BK) parameterization [29], is

proposed to take care of this problem. The idea is to add the first term in the

effective pole expansion, while making simplifications such that the form factor can
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Table 2.2: Experimental measurements of the D → π form factor shape parame-

ters. Here α is the shape parameter for the modified pole model (Eq. 2.72) and

mpole is the pole mass of the simple pole model (Eq. 2.71). The first errors are

statistical and the second systematic.

Shape Parameter

Measurement α mpole GeV

CLEOIII 2005 [55] 0.37+0.20
−0.31 ± 0.15 1.86+0.10+0.07

−0.06−0.03

FOCUS 2005 [56] - 1.91+0.30
−0.15 ± 0.07

Belle 2006 [57] 0.03± 0.27± 0.13 -

be determined with only two parameters: the intercept f+(0) and an additional

shape parameter.12 The simplified one term expansion is usually written in the

form

f+(q2) =
f+(0)

(1− q2

m2
pole

)(1− α q2

m2
pole

)
. (2.72)

This model has been widely used in the extraction of semileptonic form factors from

experimental measurements. In addition, some recent lattice QCD calculations of

the form factor as a function of q2 have relied on this model for extrapolation and

interpolation purposes [14] and the results, which give the shape of the predicted

spectrum, are shown in Fig 2.6. To realize such a scheme, however, it is necessary

to make some physical assumptions in order that the multiple parameters initially

present (Eq. 2.70) be reduced to one. In the BK ansatz it is assumed that spectator

quark interactions (δ) are close to zero while scaling violations (β) are close to one,

12There will be three parameters if f−(q2) or F0(q
2) is also taken into account.
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a motivation that may be succinctly expressed as

1 + 1/β − δ ≡ (M2
D −m2

P )

f+(0)

df+

dq2

∣∣∣∣∣
q2=0

∼ 2. (2.73)

Once again, however, the experimental data do not bear out these assumptions,

see [47] and Tables 2.1 and 2.2. We should observe α ∼ 1.75 in order to obtain

1+1/β− δ = 2, whereas the observed data are removed from such values by many

standard deviations (σ).

It is thus apparent that while both the simple and modified pole functional

forms are able to provide adequate parameterizations of the data, this can only

happen if their parameters are allowed to be non-physical. Without a physical

underpinning for the parameterization, however, agreement between parameters

obtained by different experiments, or by theory and experiment, may not agree if

the form factor sensitivity differs as a function of q2.

To avoid the problem of non-physical parameterizations therefore, we utilize a

series expansion around q2 = t0 that has been advocated by several groups for a

physical description of heavy meson form factors [43, 44, 45, 46]. The series expan-

sion is commensurate with the dispersion relations, being guaranteed to contain

the true form factor, yet still rich enough to describe all variations that affect the

physical observables. Naive expansions in q2 have problems with convergence due

to the nearby poles, however, this series expansion allows convergence over the

entire q2 region. Convergence is obtained via a change in the expansion variable

from q2 to z such that the form factor is given by

f+(q2) =
1

P (q2)φ(q2, t0)

∞∑
k=0

ak(t0)[z(q
2, t0)]

k, (2.74)

with

z(q2, t0) =

√
t+ − q2 −

√
t+ − t0√

t+ − q2 +
√
t+ − t0

, t± ≡ (MD ±mP )2, (2.75)
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Figure 2.6: Lattice QCD calculations of the form factor as a function of q2 for

D0 → π−e+ν (top) and D0 → K−e+ν (bottom) decays. A B-K parameterization

is used for the functional form [29].
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and

P (q2) ≡


1, D → π

z(q2,M2
D∗s

), D → K
. (2.76)

The physical observables do not depend on the choice of φ or t0. We choose φ

as given in [46] and take t0 = 0. Using this parameterization it is possible to

obtain an unbiased comparison between lattice QCD results for the form factors

and experimental results. There is also the potential to assess how many terms in

the series we are sensitive to. If the series converges quickly it is likely that only

the first two or three terms will be observable in the data.

In our analysis of the D semileptonic decays we examine all three of the mod-

els just described and their ability to describe our experimental results for the

branching fractions. We take as our primary result the fits to the functional form

described by the series expansion, which is able to give a more physically meaning-

ful description. The simple and modified pole models are useful for comparative

purposes since they have been more widely used to extract form factor results, both

theoretically and experimentally. We fit our results with these models therefore,

purely in order to have an easy basis for the comparison of our measurements with

other experimental measurements, as well as the numbers predicted using various

theoretical calculations. Before we can proceed to such exploration of the physical

results of our analysis, however, we must first give a detailed description of the

experimental procedure.



Chapter 3

The CLEO-c Detector

In this chapter we give an overview of the CLEO-c detector and its components.

3.1 Detector Overview

The CLEO-c detector is a multi-component device designed to detect the particles

resulting from collisions of electrons and positrons in the Cornell Electron Storage

Ring (CESR) at beam energies ranging from 1−3 GeV. The results of this analysis

are based on 281 pb−1 of data collected at the Ψ′′ resonance, Ebeam ∼ 1.885 GeV.

The detector is mostly cylindrical and nearly hermetic, with some sub-components

having up to 93% coverage of the solid angle. A 3D cut away view of the detector

and its sub-components is shown in Fig. 3.1.

3.2 Inner Stereo Drift Chamber (ZD)

The innermost section of the CLEO-c detector is the ZD, a small, six layer drift

chamber (with an outer radius of less than 15cm) that surrounds the beam pipe.

All six layers of the ZD are wired with a stereo angle between 10.3◦ and 15.4◦, so

that it provides both z and r − φ information for charged particles close to the

beam pipe. The ZD works in a similar manner to the stereo sections of its outer

neighbor, the DR, whose function is described in detail in the next section.

42
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Figure 3.1: The CLEO-c Detector.

3.3 Drift Chamber (DR)

The main drift chamber surrounds the beam pipe and the ZD. It consists of forty-

seven layers of cells, where a cell is a sense wire surrounded by field wires. The

sense wires are held at a large positive voltage relative to the field wires and the DR

is filled with a helium-propane gas mixture which is ionized by charged particles

as they travel through it. The electric field resulting from the potential difference

between the voltage and sense wires attracts electrons from the ionized atoms. As

the electrons near the sense wires the electric field gets very large and supplies

them with enough energy to ionize more atoms. The electrons from these atoms

ionize further atoms and particles avalanche towards the sense wire.

When the avalanche of electrons arrives at the sense wire it is detected as a
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pulse. From the arrival time of the pulse the distance of closest approach of the

charged particle to the wire can be calculated. This is achieved by determining the

speed with which the electrons drift through the different regions of the DR cell

(sometimes called a drift cell) and combining this information with the precisely

known timing of the bunch trains through the storage ring. As the particle passes

through the many layers of the DR its distance of closest approach in each cell that

it “hits” gives information about its r − φ trajectory. To contribute information

about the z trajectory of the particle, thirty-one of the forty-seven DR layers are

arranged in groups of four layers with alternating negative and positive stereo

angles. The stereo angle is created by giving the wires in these layers a “twist”:

unlike the wires in the axial layers, they are not strung parallel to the beam axis,

but instead have different φ coordinates at either end. Additional z information is

provided by cathode strips surrounding the drift chamber.

The DR provides the information about the trajectory of a charged particle, its

momentum and the energy it loses per meter, its dE/dx, which can help identify

the particle type. The track momentum resolution at CLEO-c is 0.6% at 800 MeV.

3.4 RICH

Outside the DR is a Rich Imaging Cherenkov (RICH) detector that provides addi-

tional particle species identification. When particles travel faster than the speed of

light in a medium they create a cone of coherent light called Cherenkov radiation.

The half angle between the cone and the particle’s trajectory, θC , is given by the

expression,

cos θC =
1

nβ
, (3.1)
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where n is the refractive index of the medium and β = v/c is the velocity of the

particle as a fraction of the speed of light. Measuring this angle gives the velocity

of the particle. If its momentum is also known (i.e., from DR measurement) then

the mass of the particle and hence the type of particle can be determined.

The CLEO-c RICH is made up of a plane of LiF radiators at a radius of 82

cm, surrounded by a nitrogen expansion volume to let the Cherenkov photons

spread out. The ring of photons is detected using a triethylamine gas (TEA),

which is photosensitive. The geometry of a RICH cell is depicted in Fig.3.2. For

Figure 3.2: The CLEO-c RICH Detector schematic.

each charged particle found in the DR, the trajectory is projected out to the LiF
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radiators and an expected Cherenkov angle calculated for each particle hypothesis

(e.g., π, K, etc . . . ). All photons within ±5σ of the expected angle are used

to calculate a likelihood for the hypothesis. The likelihood depends upon the

angles of the photons and the total photon yield. For CLEO-c analyses, likelihood

differences are used to indicate the best particle hypothesis for a track.

3.5 Crystal Calorimeter

Outside of the RICH is the crystal calorimeter (CC) configured with a barrel

section that surrounds the entire drift chamber and two end caps at either end of

the detector. The CC consists of 7784 CsI crystals doped with thallium. Each

crystal is 30 cm long and 5 cm× 5 cm on a face. At the end caps, the crystals are

parallel to the beam pipe whilst outside the RICH they are shaped to point at the

interaction region, with some small adjustments to minimize photon loss through

gaps.

Particles passing through the crystals interact in the material and lose energy,

which is released in a shower of daughter particles. These daughters excite the

atoms in the crystal, which release photons as they de-excite. The photons are de-

tected at the back of the crystal where they are collected in photodiodes. Particles

will typically deposit energy in more than one crystal and these energies are added

together to give the total energy of the particle. Neutral particles are distinguished

from charged particles by the fact that they are not matched to tracks coming from

the DR. Additionally photon showers may be distinguished from other particles by

the shape of the shower. The typical π0 resolution achieved with the CC is about

6 MeV.
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3.6 Muon Detector

The Muon detector is the last element in the CLEO-c detector. This detector is

situated outside of the solenoidal coils that provide the magnetic field for the DR.

Particle detectors are interspersed between the layers of iron that serve as the flux

return for the magnet. Muons are the only particles that can penetrate deeply

into the layers of iron and thus may be identified according to the depth that is

penetrated by a detected particle.



Chapter 4

Analysis Method

In this chapter the data and monte carlo samples used for the analysis are detailed.

In addition, we describe the method used to reconstruct the neutrino and the signal

D decay candidates.

4.1 Analysis Method Overview

To reconstruct the semileptonic decay modes of interest for this analysis namely,

D0 → π−e+ν, D0 → K−e+ν, D+ → π0e+ν and, D+ → K̄0e+ν, it is first neces-

sary to have some means of reconstructing the four-momentum of the neutrino.

Neutrinos, neutral particles that are almost massless, long lived and only weakly

interacting, are notoriously difficult to reconstruct due to the fact that they do

not interact in the detector. As a result their presence can only be inferred by

the occurrence of events with missing energy and momentum corresponding to a

massless particle. At CLEO-c there are two main approaches to obtaining the

neutrino four-momentum and reconstructing semileptonic decays.

In the first method, a hadronically decaying D is reconstructed on one side of

the event and the semileptonic decay is reconstructed opposite this D “tag”. The

known momentum of the tagging D can be used to estimate the momentum of

the semileptonic D, which is not measured due to the undetected neutrino. The

remaining tracks and showers in the event (e.g. from K− and e+ or π− and e+,

etc.) can be then used to reconstruct the semileptonic decay. This method has

been used to measure semileptonic branching fractions with the first 56 pb−1 of

48
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CLEO-c data [59, 60], and preliminary results are available for an updated analysis

with 281 pb−1 of data [61].

At CLEO-c however, the excellent hermeticity and resolution of the detector

allow us to use an alternate “neutrino reconstruction” approach, wherein the neu-

trino is associated with the missing energy and momentum of the entire event. In

the neutrino reconstruction approach, which we use for this analysis, there is no

need for a D tag: the total reconstructed charged and neutral energies are summed

and used in combination with the known beam four-momentum to give the miss-

ing event four-momentum. Standard full-reconstruction techniques can then be

employed to combine the missing four-momentum with other daughter candidates

(e.g. K− and e+ or π− and e+) to give the reconstructed semileptonic D decay.

The advantage of this method is that we are not restricted to events in which

a D tag can be reconstructed, and can thus gain higher statistics for each mode.

On the other hand, there will also be more background and the resolution will be

poorer in comparison to a tagged analysis. Indeed, one of the key elements in doing

a precision measurement utilizing the neutrino reconstruction approach is correct

modeling of the backgrounds (discussed further in Chapter 6). The dominant

background contribution is from signal mode cross-feed, however, there are also

important background contributions from events with fake electrons, non-charm

continuum production (e+e− → qq̄, e+e− → τ+τ− and e+e− → γψ(2S)), and DD̄

processes other than signal.

In the sections below we discuss the data and Monte Carlo (MC) samples used

in this analysis as well as the details of reconstructing semileptonic decays using

the neutrino reconstruction method.
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4.2 Data and MC Samples

The analysis presented here is based on 281 pb−1 of CLEO-c data taken at the

ψ(3770) resonance. Luminosities are calculated using the run by run luminosity

with an appropriate scale factor, as given in [28].

The analysis uses ten different MC samples, four of which are signal sam-

ples and six of which are background. The four signal samples, D0 → π−e+ν,

D0 → K−e+ν, D+ → π0e+ν, D+ → KS(π
+π−)e+ν and two related background

samples D+ → KS(π
0π0)e+ν and D+ → KLe

+ν, consist of ψ(3770) → DD̄ events,

where one D always decays in the required semileptonic mode and the other D de-

cays generically. The semileptonic modes in these samples are decayed using a BK

parameterization [29] for the form factors, with parameters provided by the latest

FNAL lattice predictions for D → K and D → π [14]. For the generically de-

caying D meson, semileptonic form factors are calculated according to the ISGW2

model [30]. Each sample has statistics corresponding to approximately 20×Ldata,

where Ldata is the data luminosity.

The four remaining background samples consist of generic (non-signal) DD̄,

continuum, radiative returns from the ψ(2S) and τ pair production. TheDD̄ back-

ground MC, a sample of approximately 40×Ldata, consists of generic ψ(3770) →

DD̄ MC with events containing any of the six semileptonic modes discussed above

removed. The non-DD̄ background samples are generated to approximately 5 ×

Ldata. It should also be briefly noted that any resonant DD̄ production is removed

from the continuum MC. This is consistent with the method used to measure the

DD̄ cross section at the ψ(3770) [31].
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4.3 Event Reconstruction

In this section we describe the general algorithm applied to the reconstruction of

exclusive semileptonic decays without the use of a D tag. As we have already

stated, the most important aspect in finding the semileptonic decay is the recon-

struction of the neutrino which, as it cannot be detected, appears only as missing

four-momentum. The entire event must be carefully analyzed in order to find

the missing particle. Below we describe this procedure, as well as the subsequent

reconstruction of the semileptonic decay, in detail.

4.3.1 Neutrino Reconstruction

The missing four-momentum of an event is given by

Pmiss = Pevent − Pvisible, (4.1)

where Pvisible is the total event four-momentum visible to the detector as either

charged or neutral particles, i.e.,

Pvisible =
∑

Pcharged +
∑

Pneutral. (4.2)

The event four-momentum may be written simply as a combination of the known

quantities, beam energy, Ebeam, and crossing angle, α,

Pevent = (2Ebeam,−2Ebeam sinα, 0, 0). (4.3)

Calculation of the visible four-momentum, however, is not quite so simple. Naively

this quantity is given by the sum of the four-momenta from tracks left by charged

particles and showers left by neutral particles. The overwhelming problem we are

faced with in the case of both neutral and charged particle addition, however, is

that of double counting.
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In the case of tracks, double counting may be caused in three main ways. In

the first place, any charged particle with low enough transverse momentum can

complete one or more full revolutions of its helix before exiting the drift chamber.

Known as “curlers” such particles often cause more than one outgoing track to

be reconstructed, whereas we require only a single four-momentum measurement

(preferably the best available) for each particle in our charged four-momentum

sum. Secondly, the charged particle can decay, undergo material interactions, or

hard scatter inside the drift chamber, causing the initial track to terminate and

one or more new tracks to begin. For calculation of the true visible energy only

the initial track is needed. Finally, noise hits in the drift chamber can cause the

reconstruction of spurious tracks. Thus in order to calculate the visible charged

four-momentum, we must choose the correct set of tracks by removing the back

halves of curlers, extra tracks from decaying particles and noise tracks. Further-

more, we must do this while retaining a high efficiency for measuring every charged

particle, since loss of particles is as detrimental as double counting. A specialist

software package known as Trkman [32] provides the best estimate of this correct

set of tracks. In addition to the correct set of tracks for calculating the visible

charged four-momentum, Trkman also provides a second set of tracks to be used

for track-shower matching. This second set, which will usually differ from the

first, excludes any tracks that terminate within the drift chamber and includes any

decay or scatter products that may reach the calorimeter.

One final item to be considered in the charged particle four-momenta summa-

tion is the particle identification assigned to each track. The particle identification

is important since the mass hypothesis of a track will change the calculated four-

momentum. The energy calculation depends directly on the mass, but the momen-
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tum is also affected because the energy loss corrections used in the Kalman fitting

technique (see for example [33]) are mass dependent. To get the best estimate

of the neutrino four-momentum therefore, it is necessary to assign each charged

particle its most likely mass hypothesis.

We assign the mass hypotheses by first identifying any electrons in the event

(see below) and assigning the associated tracks an electron hypothesis. The re-

maining tracks consist of hadrons (with the exception of muons, which cannot

be distinguished from pions in CLEO-c) for which we must choose either a kaon

or pion hypothesis. For every hadronic track we calculate a probability for each

mass hypothesis based on the available particle identification information. If only

dE/dx is available the probability for each hypothesis is simply calculated using

the number of standard deviations that the track lies from the mean for that hy-

pothesis. If both dE/dx and RICH are available pions and kaons are separated by

combining χ2 values from both sources, and probabilities are extracted from the

cumulative χ2 distribution with two degrees of freedom.

The probabilities calculated in this manner are then weighted by the relative

abundances for each type of particle (as determined from generic DD̄ MC). The

importance of this weighting is demonstrated in Fig. 4.1, which shows the relative

abundance of pions and kaons as a function of momentum, along with the total

kaon fraction as a function of momentum. Overall about four times more pions

than kaons are produced in DD̄ events, thus even if the raw probabilities from

particle identification show that a track is equally likely to be a pion or a kaon,

there is still a greater probability that it is a pion. Weighting the raw probability by

the species abundance as a function of momentum reflects this.1 Finally, using the

1The weighting is done by calculating the kaon production probability as a
function of momentum. This function is found by fitting a polynomial to the
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production weighted probability, each track is assigned its most likely hypothesis.

With this technique we correctly identify 99.8% of pion tracks and 94.7% of kaon

tracks. Incorrectly identified kaon tracks are identified as pions 97.1% of the time.
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Figure 4.1: Charged pion and kaon abundances from DD̄ MC. The left hand plot

shows the overall charged hadron momentum spectrum (black line) as well as the

charged kaon momentum spectrum (open triangles). On the right is shown the

fraction of charged hadrons composed of kaons as a function of momentum. The

black line in this plot shows the fit function used for the kaon probability weighting.

For neutral particles the visible energy can appear only as showers in the crystal

calorimeter. However, of the neutral particles only photons will reliably leave an

appreciable fraction of their energy in the crystal calorimeter. Other particles, such

as KL’s or neutrons, will shower only partially and only some of the time, whilst

neutrinos leave no trace at all. For this reason neutral particles other than photons

fraction of charged hadrons comprised of kaons as a function of track momentum,
Fig 4.1. In DD̄ events the charged hadron spectrum is composed only of pions and
kaons, the pion probability therefore is simply one minus the kaon probability.
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can be problematic for neutrino reconstruction, tending to degrade association of

the neutrino four-momentum with the event missing four-momentum (i.e., since

these particles will also have contributed to the total missing four-momentum). A

variety of cuts are implemented to try and remove such events from our samples,

see Chapter 5.

The remaining problem for the neutral energy sum therefore, is to separate

photon showers from those caused by charged particles. As an initial approxi-

mation this can be achieved by excluding all showers that have been proximity

matched to tracks. Track shower matching is performed by projecting tracks into

the calorimeter. Any showers occurring within a certain (small) distance of the

projection are considered to be “matched” to the track. In addition, for neutrino

reconstruction we determined the best set of tracks to be used for shower matching

using Trkman information (see above). In this manner true photon showers are

rarely vetoed through track matching. Of the remaining “unmatched” showers,

however, a significant fraction will be caused by daughter particles produced in

the hadronic showers. Such showers, known as hadronic splitoffs, need not be in

close proximity to the hadronic track causing the initial shower and will thus often

be unmatched. To remove as many of these showers as possible, without throwing

away too many real photon showers, we use a package called Splitoff. Splitoff uti-

lizes that fact that the energy in the 3×3 array of crystals from a hadronic splitoff

will usually point back towards the parent hadronic shower (which is matched

to a track), whilst photon showers have no preferred direction. A neural net that

takes into account the shower’s shape, energy and proximity to any Trkman shower

matching approved tracks, is used to perform this task. Only showers approved

by Splitoff are used for neutrino reconstruction.
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The resulting energy and momentum resolutions for neutrinos reconstructed in

this manner are shown in Figs. 4.2 - 4.5. For all modes the one sigma resolution in

the peak region of the missing momentum is about 10 MeV/c, while in the missing

energy it roughly twice as large, at about 20 MeV.
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Figure 4.2: Neutrino resolution in signal D0 → π−e+ν MC for events with zero

net charge.

4.3.2 The D Meson

Once the missing four-momentum of the event has been found we may search for

possible signal candidates. A signal candidate is formed by combining a signal

electron track and signal hadron2 with the missing four-momentum, or neutrino.

The quality of the resulting D meson is determined based on how well the total

energy and total three-momentum of the event have been reconstructed. The D

energy is compared to the beam energy, and the momentum constraint is recast as

a “beam-constrained” mass Mbc =
√
E2

beam − ~p 2, which should reconstruct at the

2Criteria for signal electrons and hadrons will be outlined in section5.



57

 ν + e- K→ 0 D  ν + e- K→ 0 D

0

20000

40000

60000

80000

-0.4 -0.2 0 0.2 0.4 0

10000

20000

30000

40000

50000

60000

-0.4 -0.2 0 0.2 0.4

 (GeV)ν - EmissE  (GeV/c) ν - pmissp

E
ve

n
ts

/2
5 

M
eV

E
ve

n
ts

/1
0 

M
eV

/c

Figure 4.3: Neutrino resolution in signal D0 → K−e+ν MC for events with zero

net charge.
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Figure 4.4: Neutrino resolution in signal D+ → π0e+ν MC for events with zero

net charge.
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Figure 4.5: Neutrino resolution in signal D+ → KS(π
+π−)e+ν MC for events with

zero net charge.

mass MD, of the D meson.

For D mesons produced at CLEO-c via the decay chain e+e− → ψ′′ → DD̄,

the error in the measured D energy is known since the true energy is given by the

beam energy, Ebeam. We define

∆E = ED − Ebeam. (4.4)

Since, as can be seen in Figs. 4.2 to 4.5, the resolution of the missing momen-

tum is far superior to the resolution of the missing energy, we may improve the

∆E resolution by replacing the missing energy with the magnitude of the missing

momentum, i.e.,

Pmiss = (|~pmiss|, ~pmiss), (4.5)

so that,

ED = Ee + Ehadron + |~pmiss|. (4.6)

To calculate the bestMbc we use the fact that the resolution of ∆E is dominated
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by the resolution of |~pmiss|; the implication being that we can further improve the

missing four-momentum by scaling it such that ∆E = 0. That is,

Pmiss → P ′
miss ≡ βPmiss = β(|~pmiss|, ~pmiss), (4.7)

where β is given by

∆E = Ee + Ehadron + β|~pmiss| − Ebeam = 0. (4.8)

The beam constrained mass is then calculated as

Mbc =
√
E2

beam − ~p 2
D (4.9)

with

~pD = ~pe + ~phadron + β~pmiss. (4.10)

It should also be noted that the beam constrained mass Mbc, is calculated in the

center of mass rest frame in order to account for the crossing angle α, as introduced

in Eq. 4.3. For CLEO-c the crossing angle is very small, ∼10−3 radians, so that

this correction is not necessary in the calculation of ∆E, where the resolution is

much poorer.

Finally for each signal decay candidate we also calculate q2, the invariant mass

of the virtual W boson (see Fig. 2.3) given by

q2 = (Pe + P ′
miss)

2. (4.11)

In addition to scaling the neutrino momentum as described above, for calculation

of q2 the missing momentum is rotated through the smallest angle consistent with

forcing Mbc = MD. The resulting q2 resolutions for each mode, and for each

q2 bin used in the fit, are shown in Figs. 4.6 - 4.9. The overall widths (as σ =
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FWHM/(2
√

2 ln 2)) of the q2 resolutions for each mode are: σπ−e+νe = 0.013 GeV2,

σK−e+νe = 0.008 GeV2, σπ0e+νe
= 0.021 GeV2 and σKSe+νe = 0.011 GeV2.

One last important step in the reconstruction of the D semileptonic decay is the

recovery of Final State Radiation (FSR). FSR can occur through either radiation

of the electron, a charged hadron daughter or charged hadron parent, and results

in an additional photon in the final state, e.g., D0 → π−e+νγ. The electron is

the most likely particle to radiate, so we focus our efforts there. We take the

Splitoff approved photons and any Bremsstrahlung candidate showers3 and from

this list any showers within a ∼3.5◦ cone around the electron track are added to

the electron four-momentum. In addition, if the shower was not previously used

in the calculation of the missing four-momentum it is now added. In this manner

we recover approximately 53% of all reconstructed FSR showers and about 97% of

those within the angular cut. Just over 86% of the showers added are from either

true FSR or true Bremsstrahlung photons. FSR recovery gives a small efficiency

improvement for each of the signal decays modes (order 0.5% or less) and, in

reducing our sensitivity to the presence of FSR, also helps reduce the associated

systematic error.

3These are defined to be all showers within 100 mrad of a track’s projection
into the calorimeter.



Chapter 5

Event Selection

Selecting exclusive semileptonic events requires a number of event cuts designed to

remove background while retaining signal events. There is also some work in iden-

tifying the signal electron and hadrons with the same goals in mind. In this section

we outline the particle identification criteria as well as the overall requirements for

event selection.

5.1 Particle Identification

In this section we describe our identification criteria for signal electrons and hadrons.

The goal in identifying these particles is to find the optimal balance between good

efficiency and rejection of fakes. The balance that is considered “optimal” differs

between the various particle types, depending on the dominant sources of fakes

and whether or not they are significant.

5.1.1 Electron Identification

Electron identification occurs differently for data and MC, a procedure designed to

avoid using fake electron distributions from MC. In both cases, however, electron

candidate tracks are required to satisfy the following basic track quality criteria:

• Track is Trkman approved.

• Track was fit to an electron hypothesis and the fit did not abort.

• Track momentum > 0.200 GeV/c.

65
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• |cosθ| < 0.9.

In data electron tracks are identified using the Rochester Electron Identification

package (REId). This package combines assorted information about the track (dE/

dx, RICH, E/p, etc.) and its matched shower to form an electron likelihood, F ,

where 0 ≤ F ≤ 1 with F = 0 indicating a track least likely to be an electron

and F = 1 indicating a track most likely to be an electron. The resulting F

distributions for electrons, as compared to pions, kaons and muons, are shown in

Fig 5.1. Those tracks passing the above quality criteria and having F > 0.8 are

considered to be electrons. Electron candidates are identified with momenta (pe)

above 200 MeV/c and over 90% of the solid angle. The identification efficiency

(measured in data) above pe = 300 MeV/c is greater than 90% and above pe = 500

MeV/c is greater than 96%; the probability that a hadron is misidentified as an

electron is less than 0.8%. Below pe = 300 MeV/c the efficiency falls rapidly,

reaching 60% in the pe = 200− 250 MeV/c region.

In MC only true electrons are selected. We loop through the decay tree for

each event and identify true electrons that are matched to tracks passing the above

quality criteria. Electron candidates are selected at random from this sample, with

a selection rate based on the data measured efficiencies outlined in brief above. In

fact the efficiencies are measured in 50 MeV/c momentum bins from 200 MeV/c

to 1400 MeV/c.

5.1.2 Signal π± Identification

The signal charged pion selection criteria are chosen to maximize pion efficiency

whilst removing as many charged kaon and KS → π+π− daughter candidates as

possible. In particular, it is important to remove charged kaons that fake signal



67

0 0.2 0.4 0.6 0.8 1
0

1000

2000

3000

4000

5000

6000

Electrons

Pions, Kaons & Muons

F

N
u

m
b

er
/0

.0
2

Figure 5.1: Electron likelihood F , distributions for electron (black line), pion,

kaon and muon (gray line) tracks passing the electron candidate quality criteria.

For convenience the distribution of non-electron tracks is scaled to have the same

maximum as the electron distribution.
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pions, since these will be a source of peaking background in the D0 → π−e+ν

mode. In accordance with these criteria, a track is considered a signal charged

pion candidate if it satisfies the following momentum dependent criteria:

• Track is Trkman approved.

• Track has a pion fit.

• Track is not in a reconstructed KS with a clean vertex and −1.5 < σMKS
<

2.0.

• pπ < 650 MeV/c:

– |σdE/dx(π)| < 3.

• 650 MeV/c ≤ pπ < 750 MeV/c:

– |σdE/dx(π)| < 3 and |σdE/dx(π)| < |σdE/dx(K)|.

• pπ ≥ 750 MeV/c:

– RICH available,

– No. of photons in π hypothesis > 3,

– χ2
RICH(K)− χ2

RICH(π) ≥ 1.0 and |σdE/dx(π)| < 3.

The resulting signal charged pion efficiency and the rate at which true kaons fake

signal pions are shown in Fig 5.2.

5.1.3 Signal K± Identification

For identifying signal charged kaons the most important criterion is to obtain a

high efficiency. In this case, the presence of signal kaons being faked by charged
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pions is not a significant source of background because the pion semileptonic rate

is Cabibbo suppressed. Nevertheless we try to eliminate as many true pions from

the sample as possible, while keeping the overall efficiency high. A track is thus

considered to be a signal charged kaon candidate if it satisfies:

• Track is Trkman approved.

• Track has a kaon fit.

• pK < 500 MeV/c:

– |σdE/dx(K)| < 3.

• pK ≥ 500 MeV/c:

– |σdE/dx(K)| < 3.

– If RICH available and No. of photons in K hypothesis > 3:

∗ χ2
RICH(π)− χ2

RICH(K) ≥ 1.0.

The resulting signal charged kaon efficiency and the rate at which true pions fake

signal kaons are shown in Fig 5.2.

5.1.4 Signal π0 Identification

For signal π0 identification the goal is to eliminate as much combinatoric back-

ground as possible, while still keeping enough candidates to produce a significant

signal rate. To achieve this goal we select kinematically fit π0’s with a mass cut

corresponding to roughly 2.5 standard deviations. Signal π0’s are thus all recon-

structed π0 → γγ decays with Splitoff approved showers passing

• At least one shower in the barrel calorimeter.
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The left hand plot shows the overall signal pion efficiency (black circles) as well as

the fraction of signal pions that are faked by charged kaons (open triangles). The

right hand plot shows the overall signal kaon efficiency (black circles) as well as

the fraction of signal kaons that are faked by charged pions (open triangles). All

quantities are shown as a function of track momentum p.
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• Both showers pass E9/E25 99% photon like, or, if shower centers are within

25 cm, both showers pass unfolded E9/E25 99% photon like.

• |mπ0 − 0.135| < 0.015 GeV.

Requiring that the component showers be Splitoff approved has a two fold purpose.

In the first place this requirement helps remove combinatoric background from

non-photon showers, and secondly it ensures consistency with the reconstructed

missing event four-momentum. The resulting signal π0 efficiency as a function of

momentum is discussed in detail in section 7.11.

5.1.5 Signal KS(π+π−) Identification

Signal KS are reconstructed using a vertex fit to the π+π− daughter tracks. Both

pion tracks are required to be Trkman approved1 and the mass of the π+π− pair

is required to be within 4.5 standard deviations of the KS mass. Neither tighter

mass cuts, nor clean-up cuts, were of benefit as the backgrounds for this mode

were already so small. All further KS restrictions only created efficiency loss.

the resulting KS efficiency as a function of momentum is discussed in detail in

section 7.12.

5.2 Event Cuts

In this section we list the selection criteria for reconstructed signal D decays to be

passed to the fit. These criteria fall into three distinct groups according to their

general purpose. The focus of the first group of selection criteria is the improve-

ment of neutrino resolution: these are cuts designed specifically to assist with the

1Trkman tries to avoid cutting tracks from KS candidates, so requiring Trkman
approved tracks for the KS daughters should make almost no difference
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accurate reconstruction of the missing energy and momentum. In the second group

we class together those cuts which aim to improve the overall quality of the signal

D candidate. The final group, meanwhile, contains several miscellaneous cuts de-

signed to remove background from sources other than those represented in our MC.

It is also worthwhile to note that all selection criteria relying on specific numerical

“cut” values have been tuned on an independent sample of signal D0 → π±eν MC.

We tune to maximize S2/(S + B), where S is the number of signal events and B

the number of background events retained after the cut.

To ensure quality neutrino candidates it is desirable to remove events where

association of neutrino with the missing energy and momentum has been destroyed.

For example, as we have already discussed in section 4.3.1, this association will be

destroyed in events with any extra missing particles e.g., more than one neutrino,

partially showering KL’s, missing tracks, etc. To remove such events therefore we

implement three event selection criteria:

• Event Net Charge = 0 (from Trkman approved tracks).

• The event contains exactly one electron.

• |M2
miss/2pmiss| < 0.2 GeV/c3.

Of these selection criteria the net charge requirement needs the least explanation:

it removes events with extra or missing charged particles. The other two cuts,

however, require some additional details.

The one electron cut, or multiple electron veto, is designed to eliminate events

containing more than one neutrino (which we cannot correctly reconstruct since

the missing mass will always contain both particles). The veto succeeds in this

goal because events containing more than one electron are likely to also contain
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more than one neutrino.

The final neutrino requirement, the third listed above, ensures that the missing

mass of the event is consistent with the zero mass neutrino hypothesis. It is

familiarly known as the “Vee Cut”, Fig. 5.3. As we have already noted, such a

requirement is important for removing events with extra missing neutral particles

such as KL’s. The logic behind the particular form of the “Vee Cut” can be

motivated by looking at the resolution of M2
miss in terms of Emiss and pmiss:

σM2
miss

=
√

(2Emiss)2σ2
Emiss

+ (2pmiss)2σ2
pmiss

. (5.1)

Utilizing the fact that the contribution from the spread in missing energy will

dominate this resolution, we can then make the approximation

σM2
miss

∼ 2EmissσEmiss
∼ 2pmissσEmiss

. (5.2)

The “Vee Cut” therefore, is simply a zero missing mass requirement scaled to

be approximately uniform in the number of σEmiss
; it removes a large amount of

background that might otherwise fall into the D candidate signal region.

To ensure a signal D candidate of decent quality we firstly require consistency

with energy and momentum conservation:

• Mbc > 1.794 GeV.

• −0.06 < ∆E < 0.10 GeV.

These requirements are mostly self explanatory after our discussion of ∆E and

Mbc in Chapter 4. However, we pause to note that although all D candidates with

Mbc > 1.794 GeV are passed to the fit, a very loose requirement, we still define

the signal region as the subset of these decays with |Mbc −MD| < 15 MeV. This

requirement gives us signal candidates with masses consistent with that of a D
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Figure 5.3: Vee cut in MC for the D0 → π−e+ν signal mode. Filled boxes show

signal events, open boxes show background and the normalization is absolute. The

events shown pass zero net charge, one electron veto, QCD event classification, and

the multiple candidate veto. The solid lines show the signal region (and fit region)

Vee cut |M2
miss/2pmiss| < 0.2.
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meson and covers a wide range in terms of our Mbc resolution of ∼4 MeV. The

range of ∆E values passed to the fit covers roughly three standard deviations in

terms of the resolution of ∼50 MeV.

We next implement the following multiple candidate vetos, which simplify the

statistical interpretation of our results and ensure that the best quality candidate

is passed to the fit.

• A given event can contribute to at most one D0 and one D+ final state. From

multiple candidates with Mbc > 1.794 GeV and a given parent D charge, we

choose the one with the smallest |∆E|.2

• If the candidate is a D+ → π0e+ν decay the multiple candidate requirements

are stricter: the candidate must have the best ∆E in the whole event and

there must be no reconstructed D0 → K−e+ν in the event.

For the D+ → π0e+ν mode the stricter requirements remove almost all D0 →

K−e+ν cross-feed (with very little signal efficiency loss) as well as a significant

amount of other signal mode cross-feed backgrounds. This is important for the

π0 signal mode, where the cross-feed backgrounds are large, and reduction of the

cross-feed rate helps reduce the associated systematic uncertainties.

The pion modes have additional requirements on the energy of the non-signal

side of the event ∆EOS,
3 that help reduce cross-feed background. These cuts are

q2 bin dependent and are given by:

• D0 → π−e+νe

2For example, a D0 → π−e+ν candidate and a D0 → K−e+ν cannot be found
in the same event, while it is possible for the two candidate decays D0 → π−e+ν
and D+ → π0e+ν, to have come from the same event.

3The ∆E calculated from the sum of tracks and showers on the other side of
the event.
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– 0.0 ≤ q2 < 0.4: −0.20 < ∆EOS < 0.20

– 0.4 ≤ q2 < 0.8: −0.18 < ∆EOS < 0.20

– 0.8 ≤ q2 < 1.2: −0.20 < ∆EOS < 0.22

– 1.2 ≤ q2 < 1.6: −0.18 < ∆EOS < 0.22

– q2 > 1.6: −0.14 < ∆EOS < 0.38

• D+ → π0e+νe

– 0.0 ≤ q2 < 0.4: −0.20 < ∆EOS < 0.22

– 0.4 ≤ q2 < 0.8: −0.20 < ∆EOS < 0.34

– 0.8 ≤ q2 < 1.2: −0.22 < ∆EOS < 0.24

– 1.2 ≤ q2 < 1.6: −0.24 < ∆EOS < 0.38

– q2 > 1.6: −0.10 < ∆EOS < 0.16

As stated above, these requirements are tuned using S2/(S+B) as a figure of merit

(FOM). To give an example, we show the figure of merit plots for D+ → π0e+νe in

the highest q2 bin, Fig. 5.4. In this case, where there are long, relatively flat tails

in the FOM we choose to place the cut at the start of the tail since this eliminates

more background.

The final group of event level selection criteria removes backgrounds other than

those modeled in the MC. The first of these requirements looks at the event shape

and removes any events unlikely to fall into the desired categories for analysis.

For example, Bhabha events and events caused by cosmic rays are removed here.

Specifically we require:

• Event topology indicates that it is likely to contain QCD physics.
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78

Our final two requirements in this group are designed to remove an unexplained

discrepancy between data and MC at the corners of the qe cos θe vs qe cos θmiss

distributions. Here qe is the electron charge, cos θe is the electron track cos θ and

cos θmiss = pz miss/pmiss. The form of the discrepancy is a build up of events in the

data in these regions that is not apparent in the MC. Most likely this is due to some

background that has not been accounted for, such as two-photon events, for which

one expects the kind of charge-angle correlations that we observe. Since these

requirements remove almost no signal events, there seems to be no disadvantage in

making them. We require therefore, that all events passed to the fit must satisfy:

• !(qe cos θe > 0.7 AND qe cos θmiss > 0.9).

• !(qe cos θe > 0.7 AND qe cos θmiss < −0.9).

We conclude this section by looking at the effects of our event selection criteria

on the reconstruction efficiency. The individual selection requirements and the

resultant full efficiency matrix are both examined.

To document the effect of each event selection criterion on the overall recon-

struction efficiency, we look at a “cut history”. The cut history is created via the

successive addition of requirements to the list of event selection criteria. After the

addition of each new requirement the signal reconstruction efficiency, as a function

of q2, is extracted from MC. The results of this process for our signal D0 → π−e+ν

MC4 are given in Table 5.1. The final efficiencies (in the last row of the table) are

the total efficiencies in the signal Mbc region. We note that these will differ from

4The effects of the each of the event selection criteria on efficiency will be similar
for all of our signal modes. Each mode, however, will start with a different “no cut”
efficiency resulting primarily from differences in the signal hadron identification
efficiencies.
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the fit efficiencies we quote in Chapter 8, since the latter cover the entire fit range

1.794 < Mbc < 1.878 GeV (see Chapter 6 for details).

For completeness we also give the full efficiency matrix that results from ap-

plication our event selection criteria in the signal Mbc region, Tables 5.2 and 5.3.

This is the 20 × 20 matrix of efficiencies from our four signal modes and five fit

q2 ranges (see Chapter 6 for details). A similar efficiency matrix - with efficiencies

from the fit, rather than the signal, Mbc region - is input to our fitter in order to

extract the final yields for each mode. In fact, the details of this process will be

the topic of the next chapter.

Table 5.1: Cut history in terms of reconstruction efficiency in signal D0 → π−e+ν

MC. We start with no requirements but the particle identification criteria for the

electron and pion and the low beam constrained mass cut off Mbc > 1.794 GeV. To

avoid efficiencies of over 100% we never count more than one candidate per event.

(The effect of the multiple candidate veto therefore, is to exclude events where a

better D0 → K−e+ν candidate was found.) The given q2 intervals are those used

in the fit, see Chapter 6.

Cut History Efficiencies (%)
q2 Interval (GeV)2

Cut Added < 0.4 0.4− 0.8 0.8− 1.2 1.2− 1.6 > 1.6 All
None 60.30 65.73 68.11 70.08 78.82 68.63
Is QCD Event 60.24 65.64 68.03 69.95 78.57 68.50
Net Charge 48.18 52.25 54.68 55.28 58.69 53.73
Multiple Candidate 43.38 48.70 53.64 55.05 58.37 51.61
e± Veto 43.29 48.62 53.54 55.00 58.26 51.52
“Vee Cut” 26.83 28.56 30.57 31.14 32.52 29.85
∆E 20.75 22.01 23.59 24.00 25.29 23.08
∆EOS 19.94 21.11 22.85 23.24 23.77 22.11
“q cos θ” Cuts 19.81 21.08 22.66 22.80 23.17 21.83
Mbc 18.81 19.99 21.25 21.31 20.96 20.27
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Table 5.2: Full efficiency matrix - in the signal Mbc region - resulting from applica-

tion of all event selection criteria for the reconstructed D0 signal modes. For each

type of signal MC, we give the D0 signal mode reconstruction efficiencies (%) in

each of the five reconstructed and five true q2 ranges. The five q2 ranges are those

used in the analysis fit (detailed in Chapter 6), and are represented by the qi, with

i = 1, ..., 5.

Reconstructed Mode
D0 → π−e+ν D0 → K−e+ν

Signal MC Type q1 q2 q3 q4 q5 q1 q2 q3 q4 q5

q1 18.0 0.8 0.0 0.0 0.0 1.6 0.0 0.0 0.0 0.0
q2 0.8 18.4 0.9 0.0 0.0 0.4 0.6 0.0 0.0 0.0

D0 → π−e+ν q3 0.0 0.8 19.5 1.0 0.0 0.0 0.2 0.0 0.0 0.0
q4 0.0 0.0 0.8 19.8 0.5 0.0 0.0 0.0 0.0 0.0
q5 0.0 0.0 0.0 0.5 20.4 0.0 0.0 0.0 0.0 0.0
q1 0.2 0.0 0.0 0.0 0.1 17.7 0.8 0.0 0.0 0.0
q2 0.0 0.1 0.1 0.0 0.3 0.7 18.0 0.9 0.0 0.1

D0 → K−e+ν q3 0.0 0.0 0.1 0.2 0.8 0.0 0.7 17.5 0.9 0.1
q4 0.0 0.0 0.0 0.1 1.9 0.0 0.0 0.5 16.0 1.5
q5 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.3 10.9
q1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
q2 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

D+ → π0e+ν q3 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
q4 0.0 0.0 0.1 0.3 0.1 0.0 0.0 0.0 0.0 0.0
q5 0.0 0.0 0.0 0.1 1.3 0.0 0.0 0.0 0.0 0.0
q1 0.1 0.0 0.0 0.0 0.1 0.3 0.0 0.0 0.0 0.0
q2 0.0 0.1 0.1 0.0 0.2 0.0 0.1 0.0 0.0 0.0

D+ → KSe+ν q3 0.0 0.0 0.2 0.2 0.7 0.0 0.0 0.0 0.0 0.0
q4 0.0 0.0 0.0 0.3 1.4 0.0 0.0 0.0 0.1 0.2
q5 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.1
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Table 5.3: Full efficiency matrix - in the signal Mbc region - resulting from applica-

tion of all event selection criteria for the reconstructed D+ signal modes. For each

type of signal MC, we give the D+ signal mode reconstruction efficiencies (%) in

each of the five reconstructed and five true q2 ranges. The five q2 ranges are those

used in the analysis fit (detailed in Chapter 6), and are represented by the qi, with

i = 1, ..., 5.

Reconstructed Mode
D+ → π0e+ν D+ → KSe+ν

Signal MC Type q1 q2 q3 q4 q5 q1 q2 q3 q4 q5

q1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
q2 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0

D0 → π−e+ν q3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0
q4 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.2 0.0
q5 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.1 0.1
q1 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0
q2 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0

D0 → K−e+ν q3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.1 0.1
q4 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.3 0.4
q5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4
q1 7.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
q2 0.3 7.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0

D+ → π0e+ν q3 0.0 0.4 6.8 0.6 0.0 0.0 0.0 0.1 0.0 0.0
q4 0.0 0.0 0.2 6.1 0.2 0.0 0.0 0.0 0.0 0.0
q5 0.0 0.0 0.0 0.3 5.2 0.0 0.0 0.0 0.0 0.0
q1 0.0 0.0 0.0 0.0 0.0 10.8 0.5 0.0 0.0 0.0
q2 0.0 0.0 0.0 0.0 0.0 0.5 10.6 0.6 0.0 0.0

D+ → KSe+ν q3 0.0 0.0 0.0 0.0 0.1 0.0 0.5 10.8 0.7 0.1
q4 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.3 10.5 1.5
q5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 10.6



Chapter 6

Fitting for Yields

To determine a branching fraction for each of the signal decay modes we fit our

MC samples to the data. All four signal decay modes are fit simultaneously, which

allows us to correctly account for cross-feed between the modes. The fit, to be

discussed in more detail below, is a binned maximum likelihood fit following the

method of Barlow and Beeston [34]. It is binned in q2 and Mbc and the signal MC

is binned also in true q2 to account for q2 bin cross-feed. We will first discuss the

general details of the fit method, and then the specific details of the yield fits for

this analysis, including some necessary adjustments to the MC.

6.1 The Fit

To extract the branching fraction information, we perform a binned maximum

likelihood fit (described below) using the reconstructed Mbc distributions from our

four signal modes. The four modes are fit simultaneously and we extract partial

branching fractions in five q2 ranges: 0.0 − 0.4 GeV2, 0.4 − 0.8 GeV2, 0.8 − 1.2

GeV2, 1.2−1.6 GeV2, and ≥ 1.6 GeV2. The Mbc distributions in each q2 range are

divided into fourteen uniform bins over the region 1.794 < Mbc < 1.878 GeV.1 In

addition, we partition each of our signal MC samples into five subsamples based on

the generator level q2 range. Each of these subsamples is then analyzed individually

to obtain the 20 reconstructed Mbc distributions (4 modes × 5 reconstructed q2

1For our fit result plots we show an additional two bins above Mbc = 1.878
GeV. This gives us confidence that the fit results are also valid in the high Mbc

tail.
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ranges) for input to the fit. With this approach, the fit will automatically account

for the cross-feed among the four modes and five reconstructed q2 intervals that

is a result of finite resolution and mis-reconstruction. In other words, as was

foreshadowed in the previous chapter, we are effectively inputting a generalization

of the full efficiency matrix to the fit.

In addition to the signal MC components just described, the fit also contains

six background samples obtained from MC (see Section 4.2) and a sample of fake

electron backgrounds obtained from data. The fake electron fit component is

assembled by selecting approximately every fourth data event not containing an

identified electron track. For each of these events we make a list of tracks that

pass the basic electron track quality criteria (Section 5.1.1), these tracks are our

fake electrons. We loop over the events choosing each fake track in turn to be

our electron and reconstructing the event as usual. Any D candidates are then

stored with a weight representing the probability of the fake track having been

chosen as an electron. The weights come from data measured electron fake rates

consistent with our electron identification scheme; they are species and momentum

dependent. The fake electron component is added to the fit with a fixed scale factor

calculated from the ratio of the data luminosity to the fake luminosity (a factor

of only roughly four, since we actually use all non-electron events in every fourth

data run).

The fit normalizations of the six background MC samples vary according to

the physics they describe. The background MC samples for continuum, radiative

returns from the ψ(2S) and τ pair are normalized according to their measured

or predicted cross sections at the ψ(3770) and the total luminosity of our data.

Hence, the normalizations of these samples are fixed within the fit. The normaliza-
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tion for the generic DD̄ background floats separately for each reconstructed decay

mode, minimizing our sensitivity to poorly known branching fractions or missing

decay modes in our D decay model. The relative distribution across reconstructed

q2 within a mode remains fixed. The normalizations of the remaining background

components, D+ → KLe
+ν and D+ → KS(π

0π0)e+ν, are fixed by the normaliza-

tion of the signal D+ → KS(π
+π−)e+ν mode. These normalizations are derived

by combining the fact that the K0 is a two state quantum system - appearing in

our detector 50% of the time as KS and 50% as KL - with the known branching

fractions [2],

B(KS → π0π0) = 0.3105, (6.1)

and

B(KS → π+π−) = 0.6895. (6.2)

6.1.1 Fit Details

As stated above, to extract yields for our four signal modes we perform a binned

maximum likelihood fit. Following the method of Barlow and Beeston [34], the

likelihood fit is extended from its standard form to account for the finite statistics

of the MC samples. In this section we outline the details of the fit, following closely

the discussion of Barlow and Beeston.

The job of the fit is to determine the proportions of the signal decay modes in

the data, i.e., the Pj, where the index j enumerates the set of m MC sources. The

data is binned into a set of n bins with di events in bin i and the expected number

of events in this bin is given by,

fi =
m∑
j=1

pjaji, (6.3)
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where aji is the number of events in bin i from MC source j, and pj = NDPj/Nj,

with, ND =
∑
i di andNj =

∑
i aji. The standard approach to estimating the values

of the pj is to use a binned maximum likelihood fit, wherein a Poisson distribution

is assumed for each bin and the correct pj values are found by maximizing,

ln L =
n∑
i=1

di ln fi − fi. (6.4)

The problem with this method is that it fails to account for the fact that the MC

samples are also of finite size and will thus contribute to the uncertainty. Ideally

therefore, the quantity we maximize should allow for statistical fluctuations in the

aji. To correct this omission we follow the solution of Barlow and Beeston [34]. In

this case we now assume each source bin contains an unknown expected number

of events Aji, so that in place of Eq. 6.3, the expected number of events is now

given by,

fi =
m∑
j=1

pjAji. (6.5)

The Aji are the generating distribution for the aji. Nominally, the aij would be

distributed about the Aij according to a binomial distribution, but with typical

experimental acceptances we may approximate with the Poisson distribution. This

procedure results in a new likelihood expression where the combined probability

of the di and the aji is accounted for,

ln L =
n∑
i=1

di ln fi − fi +
n∑
i=1

m∑
j=1

aji lnAji − Aji. (6.6)

The new expression for the likelihood is a maximization problem in m× (n+1)

unknowns. By differentiating Eq. 6.6 and setting the derivatives to zero we obtain

the two sets of simultaneous equations that must be solved,

n∑
i=1

diAji
fi

− Aji = 0 ∀j (6.7)
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and

dipj
fi

− pj +
aji
Aji

= 0 ∀i, j. (6.8)

Fortunately this large system of equations may be greatly simplified. We start by

rewriting Eq. 6.8 as,

1− di
fi

=
1

pj

(
aji

Aji − 1

)
∀i, j. (6.9)

The left hand side depends only on i, let us call it ti,

ti = 1− di
fi
. (6.10)

Effectively this results in the reduction of an m×n problem to an order n problem.

To see this we note that we now have

Aji =
aji

1 + pjti
, (6.11)

so that the m×n unknowns Aji depend only on the n unknowns ti. Except in the

case where di = 0, for which set ti = 1, the ti are solved for using Eq. 6.10:

fi =
di

1− ti
=
∑
j

pjAji =
∑
j

pjaji
1 + pjti

, (6.12)

a system of n equations which, if satisfied, give a complete solution to the set of

simultaneous equations.

In order that the final value of the likelihood give an understandable estimate

of the fit quality we choose to maximize a slight modification of Eq. 6.6. What we

want to maximize is the likelihood ratio, which may be equated to the χ2 goodness

of fit test via χ2 = −2 ln L . As an example, for just the data portion the ratio is

given by,

L =
n∏
i=1

p(di, fi)

p(di, di)
, (6.13)



87

where p(a, b) is the probability the the predicted value a will fluctuate to the

observed value b. This leads to the new log likelihood expression

ln L =
n∑
i=1

di ln fi−fi−di ln di+di+
n∑
i=1

m∑
j=1

aji lnAji−Aji−aji ln aji+aji, (6.14)

which may be maximized exactly as described above since the newly added terms

are no more than constant offsets.

6.2 MC Corrections

To obtain a reasonable fit to the data it is necessary to make several corrections

to the generated MC. Below we list briefly each of the corrections along with the

section where a full discussion of the correction and its associated systematic error

can be found.

1. Fake Electrons (Section 7.16)

In the data, events can be vetoed as multiple electron events for one of two

reasons: the event many contain two or more real electrons or the event may

contain a real electron and a “fake” electron, a hadron incorrectly called an

electron. As we have already seen, however, in the MC, there are no fake

electrons, we use only real electrons.

To achieve the correct efficiency in our signal MC therefore, we must somehow

account for the fact that in data the multiple electron veto will remove events

with extra fake electrons as well as events with only real electrons. What we

require is a method for deciding whether or not a given MC event is likely

to contain a fake electron. To this end, in each event we sum the electron

fake probability (as measured in data) for each track that passes the basic

electron track quality criteria. This sum gives us the quantity necessary to
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make the desired efficiency correction, namely the total probability that the

event contains a fake. It is then simply a matter of using this probability

to decide whether or not a fake electron is to be added to event for veto

purposes.

2. Mbc Smear (Section 7.18)

In the three of the signal MC modes, D0 → π−e+ν, D0 → K−e+ν and D+ →

π0e+ν, the Mbc resolution appears too small. To correct this resolution

discrepancy we adjust the Mbc distributions of these signal samples2 using a

Gaussian smear to rearrange the contents of each bin. For each Mbc bin, i,

the smeared bin contents, a′i, are obtained from the original bin contents, ai,

via the formula,

a′i =
∑
j

ajp(|i− j|), (6.15)

where

p(n) =
1

2

(
erf

(
(2n+ 1)w√

2σ

)
− erf

(
(2n− 1)w√

2σ

))
, (6.16)

with w giving the bin half width and σ the adjustable width of the smear

Gaussian. To find the appropriate smear for each mode we allow the width

of the smear σ, to float in the fit. The smear is fixed over q2 so that there is

only one new parameter for each of the three smeared modes. The resulting

smears from the fit are: σπ−e+ν = 1.80 ± 0.24 MeV, σK−e+ν = 1.54 ± 0.07

MeV and σπ0e+ν = 1.86± 0.38 MeV. These may be compared with our Mbc

resolution of 4 MeV.

3. Hadronic Shower Addition (Sections 7.1 and 7.4)

To correctly estimate our neutrino reconstruction efficiency and resolution

2Note that in each q2 bin for each mode, we smear only the signal histogram.
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it is important to accurately model the production of hadronic showers in

the MC. In particular, the overall number of hadronic splitoff showers pro-

duced will strongly affect the precision of the neutral four-momentum sums

(see Chapter 4). However, using double tagged events it can be shown that

the number of extra showers (showers that are neither from π0 photons or

matched to tracks) in data exceeds the number of extra showers in MC. For

this reason we randomly add the appropriate number of extra hadronic show-

ers to the MC for inclusion in the calculation of the missing 4-momentum.

The poor hadronic shower modeling also results in a difference between the

number of KL’s depositing energy in the calorimeter in data and MC [35].

We also correct this difference by adding KL showers to the MC as needed.

4. KL Reweight (Section 7.5)

In any event containing a KL that does not fully shower in the calorime-

ter, the association of the missing event four-momentum with the neutrino

four-momentum will be degraded and the neutrino energy and momentum

distorted. The momentum spectrum of KL’s in the MC therefore will influ-

ence the neutrino resolution. It is thus important that we ensure the MC

produces the correct distribution and number of KL’s. We use KS’s from

data and MC to determine the necessary adjustments and re-weight the MC

accordingly.

5. Pion Background Reweight (Section 7.6)

The primary background for the signal pion modes is cross-feed from the

other signal modes. In most cases this cross-feed occurs when a pion from

the generically decaying D is swapped in to replace the signal hadron on the
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semileptonic side of the event. For example, we can get background from

D0 → K−e+ν events in our signal D0 → π−e+ν mode if a π− from the

generically decaying D on the other side is combined with the electron and

neutrino from the K−e+ν decay. It is therefore necessary to model the rate

and q2 dependence of this process accurately. We use generically produced

pions from data and MC to determine the necessary adjustments and re-

weight the MC accordingly.

6. Kaons Faking Pions (Section 7.7)

Cross-feed from D0 → K−e+νe into the D0 → π−e+νe signal mode can

become a peaking background if the K± is mis-identified as a signal π±. To

ensure that the mis-identification probability is modeled correctly in the MC

we use a sample of K± from data to determine the true rate of π± fakes.

The necessary corrections are then applied to the MC in the nominal fit.

7. Trkman Fakes (Section 7.10)

It is important to accurately model the number of fake tracks passing the Trk-

man selection criteria. Any differences in this number between data and MC

will result in an inaccurate efficiency estimation due to the net charge zero

requirement in our event selection. We study the number of extra Trkman

tracks in data and MC using the CLEO-c double tag sample and apply the

required correction to the MC based on the number of tracks with pT < 0.15

GeV in a given event.

8. Signal PID Efficiency (Sections 7.11, 7.14, 7.15 and 7.12)

The MC does not always estimate correctly the efficiencies of our signal

hadrons. For each of the signal hadronic particles, π0, π±,K± andKS(π
+π−),
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we therefore study the finding efficiencies3 in data and MC and weight to

make the necessary corrections to the MC.

9. FSR Reweight (Section 7.19)

The final adjustment to the MC for fitting is specific to the radiatively gener-

ated decays. By default these are generated by PHOTOS [41], however, the

PHOTOS generator ignores leading order correction diagrams, which contain

important interference terms. The modeling of the photon angular distribu-

tions in PHOTOS therefore, is expected to be inaccurate. The photon energy

distributions should be reasonably accurate, but could have small deviations.

For our nominal MC therefore we re-weight the photon energy and angular

distributions of the final state radiation events to match those generated by

the improved KLOR generator [42]. The weights include an overall factor to

match the radiative branching fractions to those predicted by KLOR.

6.3 Fit Results

The results of our simultaneous fit to the twenty Mbc distributions are shown in

Figs. 6.1 - 6.4. For this nominal fit we obtain −2 ln L = 275.55 for 280−27 = 253

degrees of freedom. To asses the validity of our fit results outside the fit region,

other important kinematic variables are also shown with MC components scaled

according to the results of the nominal fit. In all cases the variables are examined

in the signal Mbc region defined by |Mbc − MD| < 15 MeV. The ∆E plots are

shown in Figs. 6.5 - 6.8. The ∆E region included in the fit corresponds to the

four bins in the range −0.06 < ∆E < 0.1 GeV. Another important kinematic

3For the charged hadrons we refer here to PID finding efficiencies only, since
the track finding error in the MC is accounted for separately, see Section 7.8



92

variable is cos θWe, the cosine of the angle between the W in the D rest frame and

the electron in the W rest frame, which we expect to follow a sin2 θ distribution

(barring any adjustments for acceptance) when integrated over all q2, i.e.,

dN

d cos θWe

∝ sin2 θWe. (6.17)

Plots of this variable for each signal decay mode in the signal region are shown

in Figs. 6.9 - 6.12. Finally it is also important to see that the momentum of the

signal electron, pe, is being correctly modeled. Figs. 6.13 - 6.16 show plots of pe in

the signal region.

Summarizing these outcomes we find that our nominal fit has an excellent

reduced χ2 value of 1.01, produces results that describe the data accurately even

in regions well outside of those included in the fit, and shows accurate MC modeling

of several key kinematic variables. Confidence in our fit results therefore, would

appear to be well justified.

6.4 Testing the Fit

To test our fitting procedure we fit a set of mock data with known input branching

fractions. The mock data we use is the CLEO-c generic DD̄ MC sample (∼40 ×

Ldata). We fit this sample with our signal MC and the signal removed generic DD̄

background MC. The results, given in Table 6.1, clearly demonstrate that our fit

method is reliable and also that our branching fractions are model independent

(to be explored further in Section 7.20). Model independence can be inferred

from this test fit because our signal MC is generated with LQCD form factors

(Section. 4.2), whilst the generic DD̄ MC is generated using ISGW2 form factors

and thus predicts a very different shape for the q2 distributions (see Section 7.20).
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Figure 6.1: Fit Mbc distributions for D0 → π−e+ν. Points represent data (281

pb−1) and stacked histograms are: Clear - Signal MC, Gray - Summed Background

MC, Black - Fakes from Data.
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Figure 6.2: Fit Mbc distributions for D0 → K−e+ν. Points represent data (281

pb−1) and stacked histograms are: Clear - Signal MC, Gray - Summed Background

MC, Black - Fakes from Data.
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pb−1) and stacked histograms are: Clear - Signal MC, Gray - Summed Background
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Figure 6.8: Fit scaled ∆E distributions for D+ → KS(π
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Background MC, Black - Fakes from Data.
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Figure 6.9: Fit scaled cos θWe distributions for D0 → π−e+ν. Points represent
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data (281 pb−1) and stacked histograms are: Clear - Signal MC, Gray - Summed

Background MC, Black - Fakes from Data.
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Figure 6.11: Fit scaled cos θWe distributions for D+ → π0e+ν. Points represent

data (281 pb−1) and stacked histograms are: Clear - Signal MC, Gray - Summed

Background MC, Black - Fakes from Data.
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Figure 6.12: Fit scaled cos θWe distributions for D+ → KS(π
+π−)e+ν. Points

represent data (281 pb−1) and stacked histograms are: Clear - Signal MC, Gray -

Summed Background MC, Black - Fakes from Data.
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Figure 6.13: Fit scaled pe (electron momentum) distributions for D0 → π−e+ν.

Points represent data (281 pb−1) and stacked histograms are: Clear - Signal MC,

Gray - Summed Background MC, Black - Fakes from Data.
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Figure 6.14: Fit scaled pe (electron momentum) distributions for D0 → K−e+ν.

Points represent data (281 pb−1) and stacked histograms are: Clear - Signal MC,

Gray - Summed Background MC, Black - Fakes from Data.
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Figure 6.15: Fit scaled pe (electron momentum) distributions for D+ → π0e+ν.

Points represent data (281 pb−1) and stacked histograms are: Clear - Signal MC,

Gray - Summed Background MC, Black - Fakes from Data.



108

 2 All q  0.4 ≤  2 q

 0.8 ≤  2 0.4 < q  1.2 ≤  2 0.8 < q

 1.6 ≤  2 1.2 < q  2 1.6 < q

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

0

200

400

0

100

200

300

0

100

200

0.4 0.6 0.8 1
0

20

40

60

0.4 0.6 0.8 1

 (GeV/c)ep

E
ve

n
ts

/9
0 

M
eV

/c

Figure 6.16: Fit scaled pe (electron momentum) distributions for D+ →

KS(π
+π−)e+ν. Points represent data (281 pb−1) and stacked histograms are: Clear

- Signal MC, Gray - Summed Background MC, Black - Fakes from Data.
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Table 6.1: Results of fit to generic DD̄ MC sample with statistics of 40 ×Ldata.

We define Yinput = input yield, Yfit = efficiency corrected yield from the fit and

σYfit
= one sigma error on the efficiency corrected fit yield. The q2 bins are as given

in the text.

(Yinput − Yfit)/σYfit

True q2 interval (GeV)2

Decay Mode < 0.4 0.4− 0.8 0.8− 1.2 1.2− 1.6 ≥ 1.6 All q2

D0 → π−e+ν 0.55 −0.92 0.98 −0.33 1.16 0.51

D0 → K−e+ν −2.34 1.27 1.54 0.18 0.99 −0.14

D+ → π0e+ν −1.57 0.37 −0.55 0.85 0.98 −0.95

D+ → KSe
+ν −0.29 −0.49 1.77 1.14 0.54 0.76



Chapter 7

Systematic Uncertainties

To evaluate the systematic uncertainties for this analysis we take each source of

systematic error in turn and re-run the analysis with the error source modified

by approximately one standard deviation. The resulting central values are then

subtracted from the nominal central values to give the systematic errors. In this

chapter we examine each source of systematic uncertainty in turn and derive its

appropriate one standard deviation modification.

7.1 Hadronic Shower Addition

It is known that the modeling of hadronic showers in the MC is not always accurate

in every regard. For neutrino reconstruction we can be strongly affected by such a

discrepancy due to the fact that these showers are important in the reconstruction

of the missing four-momentum. In particular, we would like to know if the MC

has the correct number of hadronic splitoff showers (as described earlier), a factor

that affects the neutrino resolution.

To examine the hadronic showers we use the CLEO-c sample of D double tags,

that is events containing two hadronically decaying D mesons. The double tagged

modes used are: D0 → Kπ vs D0 → Kπ, D0 → Kπ vs D0 → Kππ0, D0 → Kππ0

vs D0 → Kππ0, D0 → Kπ vs D0 → Kπππ, D0 → Kππ0 vs D0 → Kπππ and

D0 → Kπππ vs D0 → Kπππ. Events containing these selected modes are required

to satisfy the following criteria:

• The reconstructed D tags do not overlap (i.e. no overlapping tracks or show-

110
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ers)

• Both tags satisfy |∆E| < 0.02 GeV

• Both tags satisfy |Mbc −MD| < 0.01 GeV.

With the double tag sample we may count the number of extra showers in each

event. In general a shower is considered to be an “extra” shower if it is not

proximity matched to any track and does not belong to any of the signal π0’s.

In this case we also require that the shower be Splitoff approved, since for this

systematic uncertainty we are concerned only with the extra showers that will add

to the missing four-momentum. Using this counting method we then compare

the number of extra showers per track in data and MC. Of course, in looking at

the number of extra showers per track we are assuming that the extra showers

in an event are in some way caused by charged hadrons. This idea is motivated

by the fact that the extra showers are most likely hadronic splitoffs: secondary

showers caused by energetic particles generated in charged-hadron showers. To

demonstrate that this is a valid assumption we study the distance from each shower

to the nearest track, as measured from the shower center to the projection of the

track into the calorimeter. The correlation between extra showers and tracks is

tested by comparing the distribution of these distances for extra showers with the

same distribution for showers from π0’s. The resulting spectra, given in Fig. 7.1,

clearly demonstrate that extra showers are associated with tracks.

Using the double tag method to count the extra showers, we find that overall the

data contains more extra showers per track than the MC. On average 11.28±0.21%

of data tracks are associated with an extra shower, while in MC the number is

significantly lower at 9.02± 0.03%, a difference of 2.26± 0.21%. In addition, it is
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(a) Extra Hadronic Showers (b) Photon from π0 Showers

Figure 7.1: Distance to the nearest track (measured from track projection into

the crystal calorimeter) for (a) Extra Hadronic Showers and (b) Photon from π0

Showers. Points show data and the open histogram shows D0D̄0 MC normalized

to the number of selected data double tag events. In this case the extra hadronic

showers are all extra showers in the event with energy greater than 25 MeV, i.e.,

we have not required that the showers be Splitoff approved.
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evident that the data MC discrepancy is not flat across the double tag modes, but

rather shows a clear dependence on the number of hadrons (charged and neutral)

per event, see Fig 7.2. The most obvious source of such a dependence is if the data
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Figure 7.2: The difference in the number of extra showers per track between data

and MC is plotted against the number of hadrons (charged + neutral) per event

(different for each of the five double tag modes). The line shows the linear best

fit to the data and clearly demonstrates the dependence of the difference on the

number of hadrons.

MC extra shower discrepancy were somehow dependent on the track momentum.

The difference as a function of track momentum is shown in Fig. 7.3. The resulting

distribution can be modeled with an exponential function, also shown in the figure.

We correct the MC by adding showers according to the measured discrepancy

between MC and data. Specifically, we loop over hadronic tracks and for each
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Figure 7.3: The difference in the number of extra showers per track between data

and MC is plotted against the momentum of the closest track. The curve shows

the best exponential fit to the data and clearly demonstrates the dependence of

the difference on the track momentum.
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one we compare a random number with that track’s probability of requiring an

associated extra shower. If a shower is added, we choose an energy and a distance

from the parent track at random from the MC distribution of these values, which

studies show to be reliable.1 Finally, the shower is appended to the total list of

showers and forced onto the list of showers to be used for neutrino reconstruction.

Our main concern in this endeavor therefore, is to define the probability with

which we should add the additional MC showers. In fact, from the preceding

discussion it can be seen that there are two possible ways to calculate this quantity.

The probability for a MC generated charged hadron to acquire an extra shower can

be extracted from either the momentum of the associated track and the exponential

distribution in Fig. 7.3, or from the total number of charged and neutral hadrons

in the event, Fig 7.2.

If we choose the second method, based on the total number of hadrons in the

event, there is one draw back: at the time of shower addition we don’t actually

know the number of neutral hadrons (essentially π0’s) in the event, only the number

of hadronic tracks. This is a result of a technical difficulty in analyzing the data:

we must add the extra MC showers before the total list of showers is used in

π0 reconstruction. Thus, rather than using Fig. 7.2, we are reduced to looking

at the dependence on the number of tracks per event (i.e, we can use only the

charged hadrons), as shown in Fig. 7.4. In this case we extract the probability

of an extra shower using a piece-wise linear fit to the three points in Fig 7.4.

There is a danger, however, that in events with few tracks this method will badly

overestimate the probability of adding a shower (i.e., because the total number of

1If the energy and distance fall into a category that would be excluded by
Splitoff we do not add this shower. To maintain the correct overall probability we
must correct our input probability for these dropped showers.
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Figure 7.4: The difference in the number of extra showers per track between data

and MC versus the number of tracks per event. The lines (solid and dashed) show

a piece-wise linear fit to the data.
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hadrons in the event could still be large). For this reason we prefer to take the

track momentum method as our nominal MC fix: using the exponential fit to the

data (Fig. 7.3) to calculate the rates with which extra hadronic showers should

be added. To calculate the one standard deviation systematic uncertainty on the

hadronic shower discrepancy, we compare the results of our nominal method to

those obtained using the linear method (or number of tracks per event method).

Since the results from the linear method are known to be an overestimate, this

difference gives us a good estimate of the uncertainty on our MC hadronic shower

correction.

7.2 Shower Smearing

There is a systematic uncertainty associated with the resolution of showers in the

CLEO-c crystal calorimeter. This uncertainty will once again affect the model-

ing of neutrino resolution via the neutral four-momentum sum. The calorimeter

resolution has been measured for single photon MC [36], along with the required

correction to this nominal resolution in order to match the data [39]. It is found

that in general the MC underestimates the shower resolution, requiring a relative

correction of 6± 3%. In other words, the MC resolution should be increased by a

factor of 1.06 to match the resolution found in data. Summing the central value

and error in quadrature we find an upper limit on the MC correction of ∼7%.

We therefore choose this as our “smear” value to obtain the associated systematic

uncertainty for our analysis.

Specifically, to estimate the systematic uncertainty we smear the momentum

of all MC showers tagged to true photons (i.e., degrade their resolution) using the
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formula

~p ′ = ~p+ s(~p− ~pγ). (7.1)

Here ~p is the original shower momentum, ~p ′ is the smeared shower momentum,

~pγ is the generated momentum of the photon causing the shower, and s is the

chosen smear value or fractional resolution adjustment (in our case s = 0.07). The

smeared shower energy is just the magnitude of the momentum, E ′ = |~p ′|.

7.3 Splitoff Smearing

As we described earlier, during the process of approving showers for neutrino recon-

struction the showers are passed through a neural net.2 The neural net selection

criteria depend on a shower’s energy, position in the detector and proximity to

tracks. If the neural net distributions differ in MC and data this will be another

source of systematic uncertainty affecting the neutrino resolution. To obtain a

quantitative estimate regarding the effect of this uncertainty on the analysis, we

need a way of examining the Splitoff neural net distributions for true photons and

hadronic splitoffs in both MC and data. Once again we turn to the CLEO-c D

double tags.

Using double tags, we follow the same procedure as for the hadronic shower

addition systematic (see Section 7.1) to find extra showers and true photon showers.

The resulting distributions of Splitoff neural net value for the two types of shower

are shown in Fig. 7.5. Since the neural net selection criteria are binned in shower

energy, we also compare the data and MC neural net distributions separately for

each energy bin. The eight energy bins, given in GeV are: < 0.05, 0.05 − 0.075,

2In fact, each shower is passed to one member of a set of neural nets, with each
neural net applying to a specific range of shower energies, track types, etc.
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Figure 7.5: Splitoff Neural Net output distributions for (a) Extra Hadronic Showers

and (b) Photon from π0 Showers. Points show data and the open histogram shows

D0D̄0 MC normalized to the number of data entries.

0.075 − 0.1, 0.1 − 0.2, 0.2 − 0.3, 0.3 − 0.4, 0.4 − 0.6 and ≥ 0.6. We choose a χ2

comparison test to determine the difference between the data and MC distributions.

The comparison test is performed on MC normalized to the number of data entries

so as to obtain the best shape comparison and exclude the effects of such things

as missing hadronic showers in the MC.

To evaluate the systematic uncertainty we use these χ2 differences to deter-

mine a 1σ smear for the Splitoff neural net distributions in MC. As we do not

have access to the total neural net distributions when the MC is being analyzed,

however, we must adjust the neural net value of each shower individually in such

a way as to produce the desired final result. This is achieved by selecting the

neural net adjustment for each shower at random from a Gaussian distribution,

the characteristics of which depend on the type of shower and its deviation from
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the expected value. For true photon showers we wish to smear the neural net value

toward the hadronic shower end of the spectrum (i.e., toward +1), and we thus add

an adjustment chosen at random from the Gaussian distribution characterized by

µ = 0 and σ = b|N + 1|, where N is the original neural net value and b is the bias

controlling the amount of smearing. Similarly for extra showers, or splitoffs, we

wish to smear in the opposite direction (i.e., toward −1), so we adjust the neural

net value by subtracting a random value chosen from the Gaussian distribution

given by µ = 0 and σ = b|N − 1|.

It is the value of the bias, b, giving the 1σ smear that needs to be determined

for the systematic uncertainty. In each energy bin and for the two distributions,

we choose this value to be that of the bias which gives a χ2 difference between the

data and MC distributions of ∼1 from the minimum.3 The resulting bias values

used to estimate the systematic error are given in Table 7.1.

7.4 KL Energy Deposition

To correctly model the process of neutrino reconstruction in the MC it is important

that the properties of KL’s are also modeled accurately. Any mismatches between

data and MC regarding KL’s will be a source of systematic uncertainty, affecting

the efficiency and resolution of neutrino reconstruction as discussed earlier. The

two most important KL properties to examine are energy deposition in the crystal

calorimeter and the momentum spectrum (in terms of both rate and shape), which

we will talk about in the next section. The first systematic uncertainty we focus

on is that relating to the showering properties of KL’s. These properties have been

3We note that the minimum is not necessarily the nominal value of the χ2

difference, as sometimes the initial smearing actually improves the agreement. For
the systematic error we go beyond this minimum to the next ∆χ2 = 1 bias value.
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Table 7.1: Final smear bias values for the Splitoff neural net systematic uncertainty.

Energy Bin True Photon Bias Extra Shower Bias

0.000 < E ≤ 0.050 0.01 0.2

0.050 < E ≤ 0.075 0.02 0.1

0.075 < E ≤ 0.100 0.02 0.075

0.100 < E ≤ 0.200 0.02 0.1

0.200 < E ≤ 0.300 0.02 0.2

0.300 < E ≤ 0.400 0.03 0.15

0.400 < E ≤ 0.600 0.03 0.3

E > 0.600 0.15 0.2

studied extensively in CLEO-c [35] and it is found that the data and MC differ

significantly in both the fraction of KL’s that deposit energy in the calorimeter

and in the distribution of the energy deposited. In data KL’s shower 52.2± 1.3%

of the time, whilst in MC they shower only 46.7±0.3% of the time. The difference

in the XE distributions, where XE is the fraction of the KL energy deposited as

showers, is shown in Fig. 7.6.

To fix this problem in our analysis we add KL showers to the MC in approx-

imately 10% of cases where the KL did not shower. We distribute the energy of

these showers in order to fill the gap in the MC XE distribution as compared to

data. We take the fixed case as our nominal value and use the original MC to

estimate the systematic error.
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Figure 7.6: XE distribution for events with missing energy consistent with a KL

(see [35] for details). Points show data and stacked histograms show Monte Carlo

samples normalized by luminosity (background) and number of decays (signal).

The colors represent: Clear - Signal, Grey - DD̄ background and Black - Contin-

uum.

7.5 KL Re-weight

As we mentioned above, the KL momentum spectrum can also affect neutrino

reconstruction. To find the systematic uncertainty associated with the modeling

of this spectrum in MC, we look at the KS momentum spectrum in both data and

MC. The KS sample is obtained from events containing a tagged D meson. We

look separately for D+D− events and D0D̄0 events using all available tag modes4.

In addition, since we are interested in the momentum spectra of KS’s coming

from generically decaying D’s, events containing electrons are vetoed to remove as

4The quality of the KS sample did not seem to be affected by the choice of tag,
so we use the largest sample possible.
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many KS’s from non-hadronic decays as possible. The tagged D is then required

to satisfy:

• |∆E| < 0.02 GeV

• |Mbc −MD| < 0.01 GeV.

We take any KS from the other side of the event (i.e., not part of the tagged D)

that satisfies:

• 0.491 < MKS
< 0.503 GeV

• KS passes clean vertex (vertex fit succeeded and flight significance ≥ 3).

The resulting momentum spectra for these KS’s are shown in Fig. 7.7.

These spectra show some differences in shape between data and MC, and also

some difference in the overall number of KS’s. We correct these differences by re-

weighting MC events containing a KL in order to match the data. The re-weighting

uses the momentum binning shown in Fig. 7.7. It is the re-weighted MC that we

use in our nominal fit. To estimate the systematic error associated with the KL

production spectra, we modify the weights by their one standard deviation errors

and then re-fit the data with these distorted spectra.

7.6 Pion Momentum Spectra Re-weight

The backgrounds in the two pion signal modes receive their major contributions

from cross-feed of the other signal modes. The cross-feed background is most

commonly caused by selecting, as the signal hadron, a pion from the generically

decaying side of the event. For this reason it is important that the charged and neu-

tral pion momentum spectra in these generic decays be corrected to the observed
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Figure 7.7: KS momentum distributions for (a)D0D̄0 events and (b)D+D− events.

Points show data and the stacked histograms show MC. The colors represent: Clear

- True KS, Dark Gray - Background from D0D̄0 MC, Light Gray - Background

from D+D− and Black - Background from continuum MC. The normalization is

absolute.
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data values when considering cross-feed backgrounds to the pion signal modes. To

make these corrections we follow the same D tagging procedure as outlined above

for the KS momentum spectra. The resulting momentum spectra in data and MC

for π0’s and π±’s are shown in Figs 7.8 and 7.9 respectively.
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Figure 7.8: Signal π0 momentum distributions for (a) D0D̄0 events and (b) D+D−

events. Points show data and the stacked histograms show MC. The colors rep-

resent: Clear - True π0, Dark Gray - Background from D0D̄0 MC, Light Gray -

Background from D+D− and Black - Background from continuum MC. The nor-

malization is absolute.

We correct the differences in shape and normalization by re-weighting MC

background events in D0 → π−e+ν or D+ → π0e+ν according to the momentum

of the falsely chosen signal pion. The re-weighting uses the momentum binning

shown in Figs. 7.8 and 7.9. In the charged pion case we re-weight only in the event

of a true pion to prevent the incorrect weighting of backgrounds from fakes, which

are dealt with separately. In both cases the nominal fit has the re-weight applied



126

0 0.2 0.4 0.6 0.8 1 1.2
0

20

40

60

80

100

310×

0 0.2 0.4 0.6 0.8 1 1.2
0

20

40

60

80

100

310×
0 Reweight: D±π

 Momentum (GeV/c)±π

E
ve

n
ts

/6
0 

M
eV

/c

0 0.2 0.4 0.6 0.8 1 1.2
0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 0.2 0.4 0.6 0.8 1 1.2
0

5000

10000

15000

20000

25000

30000

35000

40000

45000

+ Reweight: D±π

 Momentum (GeV/c)±π

E
ve

n
ts

/6
0 

M
eV

/c

(a) D0D̄0 π± Momentum Spectrum (b) D+D− π± Momentum Spectrum

Figure 7.9: Signal π± momentum distributions for (a) D0D̄0 events and (b) D+D−

events. Points show data and the stacked histograms show MC. The colors rep-

resent: Clear - True π±, Dark Gray - Background from D0D̄0 MC, Light Gray

- Background from D+D− and Black - Background from continuum MC. The

normalization is absolute.
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and we take the systematic uncertainty to be the resulting difference when the

re-weight is dropped.

7.7 Kaons Faking Pions

In the D0 → π−e+ν signal mode there is a sizeable background contribution from

D0 → K−e+ν cross-feed. Some of this background will be caused by the kaon

faking a signal pion and will be peaking in Mbc. It is thus important to know that

the rate of kaons faking pions is correctly estimated in the MC. To measure these

rates in data and MC we turn once again to the tagged sample. We take a D tag

and look on the other side of the event for a D0 → Kπ or D0 → Kππ0 decay if

the tag is neutral, or a D+ → Kππ decay if the tag is charged. We use the tag

modes: D0 → Kπ, D0 → Kππ0, D0 → Kππ0π0, D0 → Kπππ, D0 → Kππππ0,

D+ → Kππ, D+ → Kπππ0, D+ → KSπ, D+ → KSππ
0, D+ → KSπππ and

D+ → KKπ. The tag is required to satisfy:

• |∆E| < 0.02

• |Mbc −MD| < 0.01

On the signal side of the event we must find the correct number of tracks and

π0’s, and the kaon track is identified using the flavor of the tagged D. The charged

pions are required to pass signal pion criteria and the π0, if present, is required

to be from the best set of non-overlapping π0’s with a pull mass less than 2σ. In

addition, to remove background, we require |∆E| < 0.03. We then fit the Mbc

distributions in data using the MC signal and background histograms for each

mode. The signal histogram is defined to be the set of events where the track

identified as a kaon was a true kaon. The total number of events is constrained
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so that there is just one parameter in the fit: the fraction of signal events. In

each mode we fit the data histograms for both the whole sample and the subset of

events in which the kaon track passed our signal pion identification criteria. The

resulting fake rates in data and MC, and the required corrections to the MC, are

given in Table 7.2.

Table 7.2: Rates of K± faking π± in data and MC, where f gives the fake rate

and pK is the kaon momentum.

Method 1 - Signal Shape Fit

Momentum Bin fMC fdata MC Correction

pK < 0.6 GeV/c 0.0293± 0.0003 0.0578± 0.0035 1.9744± 0.1208

0.6 ≤ pK < 0.7 GeV/c 0.0248± 0.0005 0.0538± 0.0034 2.1674± 0.1826

0.7 ≤ pK < 0.8 GeV/c 0.0481± 0.0006 0.0619± 0.0039 1.2879± 0.0826

pK > 0.8 GeV/c 0.0764± 0.0009 0.0788± 0.0050 1.0306± 0.0661

We also consider the issue of kaons that decay in flight, K± → µ±νµ. At low

momentum (pK < 0.6 GeV/c) these events comprise the totality of the D0 →

K−e+ν contribution to the D0 → π−e+ν background and it is the muon, rather

than the kaon, that fakes the signal pion. We do not re-weight these events since

in our study they are flatly distributed in Mbc, whereas the fakes discrepancy

between data and MC clearly occurs as a peak in Mbc around the D mass. In

other words, the tails of the Mbc distribution from events where a kaon (or its

muon daughter) faked a pion are well matched between data and MC, and it is

only the peaking contribution that appears to be incorrectly modeled. Since the

fake pion contribution from muon daughters (i.e., K± → µ±νµ) does not peak in
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Mbc, the excess may therefore be assumed to be from real kaons faking pions, and

we may leave the decays in flight unaltered in the MC. This also means that we

will not be affected by fluctuations of the fake rate discrepancy within our broad

lowest momentum bin, pK < 0.6 GeV/c.

Therefore, to correct the MC we apply the measured corrections to D0 →

π−e+ν background events from D0 → K−e+ν cross-feed if the reconstructed signal

π± is MC truth matched to a generated K±. We use this correction for the nominal

fit and take the difference between corrected and uncorrected MC as the systematic

error.

7.8 Track Finding

For the track finding systematic we need to know how well the MC estimates the

track finding efficiency since this will affect the neutrino resolution through our

charged four-momentum sums. For this purpose we use ψ(2S) → J/ψπ+π− events

to study the charged pion track finding efficiency. To reconstruct these events we

look for a good J/ψ → e+e− or J/ψ → µ+µ− and one good pion track. Together

these particles form the recoil combination, R, with four-momentum,

PR = PJ/ψ + Pπ± . (7.2)

The recoil combination must satisfy,

• Both J/ψ tracks (j+ and j− where j = e or j = µ) pass simple electron id

or both have depth µ > 3.0.

• |Mj+j− −MJ/ψ| < 0.05 GeV

• Recoil pion track is Trkman approved.
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We then search the remaining Trkman approved tracks in the event for a second

pion track that would yield a fully reconstructed ψ(2S) candidate, i.e. ψ(2S) →

Rπ∓, via the criterion

|(MRπ −Mj+j−)− (Mψ(2S) −MJ/ψ)| < 0.05 GeV. (7.3)

The tracking efficiency is determined by looking at the two possible outcomes,

1. ψ(2S) is found (pion track found)

2. ψ(2S) not found (pion track not found).

The tracking efficiency for Trkman approved tracks is then

ε =
Nfound

Nfound +Nmiss

, (7.4)

where Nfound is the number of events with a found ψ(2S) candidate and Nmiss is

the number of events with a missing ψ(2S) candidate and thus a missing charged

pion track. The number of events in each category is determined by fitting the

missing mass squared, M2
miss, distributions, where the missing four-momentum is

given by,

Pmiss = Plab − PR, (7.5)

and

M2
miss = P 2

miss. (7.6)

In the case where the pion track is found, we fit the M2
miss distribution with a

double Gaussian peak. If the pion track is not found we fit with a double Gaussian

peak plus an exponential background. We follow this procedure separately for

both data and MC and compare the resulting efficiencies. The fits are performed

in two momentum bins, pmiss < 0.1 GeV/c and pmiss ≥ 0.1 GeV/c, since we want
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to be sure that the low momentum tracks, which may not exit the drift chamber,

are also well modeled. The fit results are shown in Figs. 7.10 - 7.13.
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Figure 7.10: Fits to MC M2
miss distributions for pmiss < 0.1 GeV/c. Points show

MC histograms, solid lines show double Gaussian signal fits and dashed line shows

exponential background fit.

The resulting efficiencies in these bins for MC and data are shown in Table 7.3.

To check the results of the fit for pmiss ≥ 0.1 GeV/c we fit for efficiencies in the pmiss

Table 7.3: Tracking efficiencies for Trkman approved tracks in data and MC. Errors

are statistical only.

Momentum Bin εMC εdata εdata − εMC

pmiss < 0.1 GeV/c 0.8326± 0.0027 0.8416± 0.0086 0.0090± 0.0090

pmiss ≥ 0.1 GeV/c 0.9734± 0.0003 0.9738± 0.0008 0.0004± 0.0008

bins: 0.1−0.13 GeV/c, 0.13−0.16 GeV/c, 0.16−0.25 GeV/c and 0.25−pmax
miss GeV/c,
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Figure 7.11: Fits to Data M2
miss distributions for pmiss < 0.1 GeV/c. Points show

Data histograms, solid lines show double Gaussian signal fits and dashed line shows

exponential background fit.
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exponential background fit.
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Figure 7.13: Fits to Data M2
miss distributions for pmiss ≥ 0.1 GeV/c. Points show

Data histograms, solid lines show double Gaussian signal fits and dashed line shows

exponential background fit.

and sum the results. Using this method the efficiency difference between data and

MC is found to be 0.0000±0.0008, consistent with the result in Table 7.3. Finally,

to evaluate the systematic error we drop the appropriate fraction of tracks from

the MC for the two momentum bins. The fraction to drop is taken as the efficiency

difference and its error summed in quadrature, thus for pmiss < 0.1 GeV/c we drop

1.27% of MC tracks and for pmiss ≥ 0.1 GeV/c we drop 0.09% of MC tracks.

7.9 Track Smearing

Another source of tracking systematic uncertainty comes from the modeling of

track momentum resolution in the MC. To evaluate the effects of mismodeling the

resolution we re-run the analysis, replacing the ~p of each tagged track with smeared
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momentum ~p ′ given by,

~p ′ = ~p+ s∆~p, (7.7)

where s is the chosen fractional smearing increase (resolution adjustment) and

∆~p = ~p − ~ptrue. For the CLEO-c systematic error we use a track smear derived

from the difference in ∆E resolutions of D → Kπ between data and MC. This

value is just under 6% so we set s = 0.06.

7.10 Trkman Fakes

In Section 7.8 we discussed the efficiency for finding good tracks that are Trkman

approved. In addition to these good tracks, however, the Trkman selection criteria

will also pass a certain number of “junk” or fake tracks. For example, these could

be back halves of curlers or false tracks made by connecting noise hits together with

segments of real tracks. If the number of extra tracks passing the Trkman selection

criteria differs between data and MC, our overall efficiency will be mis-measured

due to the net charge zero requirement.

To examine this possible source of discrepancy we again use the CLEO-c sample

of D double tag events. The double tagged modes used are: D0 → Kπ vs D0 →

Kπ, D0 → Kπ vs D0 → Kππ0, D0 → Kππ0 vs D0 → Kππ0, D0 → Kπ vs

D0 → Kπππ, D0 → Kππ0 vs D0 → Kπππ, D0 → Kπππ vs D0 → Kπππ,

D+ → Kππ vs D+ → Kππ, D+ → Kππ vs D+ → Kπππ0, D+ → Kπππ0 vs

D+ → Kπππ0, D+ → Kππ vs D+ → KSπππ, D+ → Kπππ0 vs D+ → KSπππ

and D+ → KSπππ vs D+ → KSπππ. Events containing these selected modes are

required to satisfy the following criteria:

• The reconstructed D tags do not overlap (i.e. no overlapping tracks or show-
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ers)

• Both tags satisfy |∆E| < 0.02 GeV

• Both tags satisfy |Mbc −MD| < 0.01 GeV.

We then look in each event and count the number of Trkman approved tracks not

appearing in either of the D tags. These are considered to be extra tracks. The

results, summed over all double tag modes, are given in Table 7.4.

It is clear from these numbers that there are more extra tracks in the data

than in the MC. We thus need to correct the efficiency for passing net charge zero

events in the MC; if left uncorrected this will be overestimated by approximately

1%. To make this correction to the MC we first note that the fraction of events

with extra tracks shows a clear dependence on the total number of particles in the

event, Fig 7.14. With an increasing number of particles in the event the average

track momentum decreases, so this dependence is most likely due to an increase

in the number of low momentum tracks. To correct the MC efficiency therefore,

we bin in terms of the number of tracks per event with pT < 0.15 GeV/c, where

pT ≤ 0.12 GeV/c is the transverse momentum required for a track to curl in the

drift chamber.

The correction itself is made by weighting the MC input to our nominal fit. The

input MC already has a net charge zero requirement applied, thus for each of these

events we wish to apply a weight representing the true (data measured) probability

that the event would not have contained a single extra track. We ignore events

with two or more extra tracks, since these make up only a very small fraction of

our sample, and calculate a weight for each bin. The weights are given by

w = 1− (Edata − Emc)

Ntotal

, (7.8)
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Table 7.4: Number of extra Trkman approved tracks per event in data (281 pb−1)

and MC (40 ×L ). The MC is normalized to have the same number of double tag

events as the data for each double tag mode.

D0D̄0

Extra Tracks per Event Data MC

0 13964± 118 14066± 22

1 351± 19 263± 3

2 43± 7 27± 1

3 3± 2 2.0± 0.2

4 1± 1 0.33± 0.11

Total Events 14362± 120 14359± 23

Total Extra 398± 20 293± 3

Fraction Extra 2.77± 0.14% 2.04± 0.02%

D+D−

Extra Tracks per Event Data MC

0 5432± 74 5490± 13

1 211± 15 164± 2

2 24± 5 18± 1

3 4± 2 1.21± 0.2

4 0± 0 0.18± 0.08

Total Events 5671± 75 5674± 13

Total Extra 239± 15 184± 2

Fraction Extra 4.21± 0.27% 3.24± 0.04%
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where Edata is the number of data events with one extra track, Emc is the number of

MC events with one extra track and Ntotal is the total number of events (normalized

to be the same for data and MC). The resulting weights used in the nominal

fit are given in Table 7.5. The systematic error for this correction is estimated

conservatively by taking the difference between corrected and uncorrected MC.

Table 7.5: Weights applied to MC in the nominal fit to correct the efficiency of

selecting net charge zero events.

Num Tracks: pT < 0.15 GeV/c Weight

0 0.992741

1 0.994730

2 0.988082

≥3 0.952252

7.11 π0 Finding

For the signal mode D+ → π0e+ν there is a systematic uncertainty associated

with the π0 finding efficiency. To probe for any efficiency difference between data

and MC we follow a procedure similar to that used in evaluation of the track-

finding efficiency, Section 7.8. In this case, however, it is important to establish

the efficiency difference for the entire signal π0 momentum range. We thus use

ψ(3770) events rather than trying to look at ψ(2S) → J/ψπ0π0 decays.

To determine the π0 finding efficiency we use events with a tagged D0 meson

on one side. The tag modes used are: D0 → Kπ, D0 → Kππ0, D0 → Kπππ,

D0 → Kππππ0, D0 → Kππ0π0 and D0 → Kπη. All are required to satisfy:
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• |∆E| < 0.025 GeV

• |Mbc −MD| < 0.005 GeV.

On the other side of the tagged events we look for D0 → Kππ0 decays. We require

there to be one good kaon track (using signalK± criteria listed in Section 5.1.3) and

one good, oppositely charged, pion track (signal π± criteria listed in Section 5.1.2).

The missing four-momentum is calculated as,

Pmiss = Pevent − Ptag − PK± − Pπ∓ , (7.9)

where Pevent is the event four-momentum from Eq. 4.3, Ptag is the tagged D four-

momentum, PK± is the charged kaon four-momentum and Pπ∓ is the charged pion

four-momentum. We now have two cases,

1. Signal π0 found

2. Signal π0 not found,

where the signal π0 criteria are as defined in Section 5.1.4 and we also require no

overlap with the tagged D particles. Once again the efficiency, ε, is then given by

Eq. 7.4.

For the π0 efficiencies we use five momentum (pmiss) bins: < 0.2 GeV/c, 0.2−0.4

GeV/c, 0.4 − 0.6 GeV/c, 0.6 − 0.8 GeV/c and ≥ 0.8 GeV/c. In each of the bins

there is a large background consisting almost purely of D0 → K±µν events. To

eliminate this background as much as possible we make the following requirements:

• There must be at least one Splitoff-approved shower, not in the tag and with

energy > 30 MeV

• 0 ≤ pmiss < 0.2 GeV/c
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– Maximum shower energy > 0.05 GeV

• 0.2 ≤ pmiss < 0.4 GeV/c

– Maximum shower energy > 0.15 GeV

– |MAX(cos θπ0π± , cos θπ0K±)| < 0.92

• 0.4 ≤ pmiss < 0.6 GeV/c

– Maximum shower energy > 0.35 GeV

– |MAX(cos θπ0π± , cos θπ0K±)| < 0.92

• 0.6 ≤ pmiss < 0.8 GeV/c

– Maximum shower energy > 0.275 GeV

• pmiss ≥ 0.8 GeV/c

– Maximum shower energy > 0.25 GeV.

The D0 → K−µ+ν background also makes the M2
miss distributions difficult

to fit. We accommodate this error by finding the efficiencies for data and MC

in two different ways and averaging the resulting MC corrections assuming fully

correlated errors. In the first method we fit for the yields of π0 found and π0 not

found events using the smoothed MC D0 → K−µ+ν histogram for the background

and a double Gaussian shape for the signal peak. The results of these fits for

data and MC are shown in Figs. 7.15 - 7.19. For the second method we calculate

the data efficiencies using a simple “cut and count” system. Here the data signal

yields are determined by subtracting the absolutely normalized MC background

from the total number of data entries in both the found and not found π0 cases.
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The D0 → K−µ+ν branching fraction is measured to 5% accuracy, so we add a

conservative 10% systematic uncertainty to the background subtraction.

Table 7.6: π0 finding efficiencies for signal π0’s in data and MC.

Method 1 - Signal Shape Fit

Momentum Bin εMC εdata MC Correction

pmiss < 0.2 GeV/c 0.3814± 0.0020 0.3894± 0.0136 1.0209± 0.0360

0.2 ≤ pmiss < 0.4 GeV/c 0.4457± 0.0016 0.4289± 0.0099 0.9623± 0.0224

0.4 ≤ pmiss < 0.6 GeV/c 0.4932± 0.0029 0.4768± 0.0173 0.9668± 0.0356

0.6 ≤ pmiss < 0.8 GeV/c 0.6040± 0.0012 0.5810± 0.0070 0.9619± 0.0117

pmiss ≥ 0.8 GeV/c 0.6632± 0.0019 0.6324± 0.0115 0.9535± 0.0175

Method 2 - Cut and Count

Momentum Bin εMC εdata MC Correction

pmiss < 0.2 GeV/c 0.3815± 0.0019 0.3928± 0.0133 1.0298± 0.0352

0.2 ≤ pmiss < 0.4 GeV/c 0.4456± 0.0015 0.4350± 0.0101 0.9763± 0.0228

0.4 ≤ pmiss < 0.6 GeV/c 0.4938± 0.0024 0.4812± 0.0170 0.9744± 0.0348

0.6 ≤ pmiss < 0.8 GeV/c 0.6040± 0.0011 0.5820± 0.0073 0.9636± 0.0122

pmiss ≥ 0.8 GeV/c 0.6641± 0.0018 0.6297± 0.0113 0.9483± 0.0171

The resulting efficiencies and MC correction factors for each method are given

in Table 7.6. The average corrections are plotted in Fig. 7.20 along with the linear

best fit. We use this fit to correct the MC π0 efficiencies in the nominal branching

fraction fit. The corrections are calculated from the signal π0 momentum as,

w = −0.0586pπ0 + 1.003, (7.10)

where w is the correcting weight given to signalD+ → π0e+ν MC events containing



142

2 (GeV)2
missM

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

2
E

ve
n

ts
/0

.0
02

 (
G

eV
)

0

10

20

30

40

50

60

70

80

90

 Efficiency MC0π
Entries: 638

Chi2/DOF: 2.74

Area: 494

Mean: 0.0179

B Width: 0.0037

G Sigma: 0.0204

MC Scale: 1.0000

 Efficiency MC0π

2 (GeV)2
missM

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

2
E

ve
n

ts
/0

.0
02

 (
G

eV
)

0

20

40

60

80

100

120

140

 Efficiency MC0π
Entries: 1045

Chi2/DOF: 2.31

Area: 206

Mean: 0.0178

SigmaB: 0.0038

SigmaG: 0.0204

MC Scale: 1.0000

 Efficiency MC0π

(a) π0 Found (b) π0 Not Found

2 (GeV)2
missM

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

2
E

ve
n

ts
/0

.0
02

 (
G

eV
)

0

10

20

30

40

50

60

70

80

 Efficiency Data0π
Entries: 559

Chi2/DOF: 1.07

Area: 412

Mean: 0.0179

B Width: 0.0037

G Sigma: 0.0204

MC Scale: 1.1000

 Efficiency Data0π

2 (GeV)2
missM

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

2
E

ve
n

ts
/0

.0
02

 (
G

eV
)

0

20

40

60

80

100

120

 Efficiency Data0π
Entries: 875

Chi2/DOF: 1.20

Area: 323

Mean: 0.0173

SigmaB: 0.0037

SigmaG: 0.0189

MC Scale: 0.9772

 Efficiency Data0π

(c) π0 Found (d) π0 Not Found

Figure 7.15: Signal π0 finding: fits to M2
miss distributions for pmiss < 0.2 GeV/c. In

(a) and (b) filled circles show the total MC histograms while open triangles repre-

sent background MC histograms. In (c) and (d) filled circles show data histograms.

In all cases solid lines show fit results.
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Figure 7.16: Signal π0 finding: fits to M2
miss distributions for 0.2 ≤ pmiss < 0.4

GeV/c. In (a) and (b) filled circles show the total MC histograms while open

triangles represent background MC histograms. In (c) and (d) filled circles show

data histograms. In all cases solid lines show fit results.
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Figure 7.17: Signal π0 finding: fits to M2
miss distributions for 0.4 ≤ pmiss < 0.6

GeV/c. In (a) and (b) filled circles show the total MC histograms while open

triangles represent background MC histograms. In (c) and (d) filled circles show

data histograms. In all cases solid lines show fit results.
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Figure 7.18: Signal π0 finding: fits to M2
miss distributions for 0.6 ≤ pmiss < 0.8

GeV/c. In (a) and (b) filled circles show the total MC histograms while open

triangles represent background MC histograms. In (c) and (d) filled circles show

data histograms. In all cases solid lines show fit results.
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Figure 7.19: Signal π0 finding: fits to M2
miss distributions for pmiss ≥ 0.8 GeV/c. In

(a) and (b) filled circles show the total MC histograms while open triangles repre-

sent background MC histograms. In (c) and (d) filled circles show data histograms.

In all cases solid lines show fit results.
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a π0 of momentum pπ0 GeV/c. To determine the systematic error we move around

the error ellipse of the linear fit in χ2 space. We look at the four fits that correspond

to the points on the semi-major and semi-minor axes of the ellipse, as shown in

Fig. 7.20. For branching fraction evaluation, the systematic error is taken to be

the fit that gives the largest correction to the signal D+ → π0e+ν yield (dashed

lines), while for form factor evaluation the systematic error is taken to be the fit

that gives the largest correction to the shape of the q2 distribution (dash-dot lines).
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Figure 7.20: The MC π0 efficiency corrections as determined using the methods

described in the text. The solid line shows the best linear fit to the data, it is

taken as the nominal correction. The dashed and dash-dot lines show the extreme

variations of the fit from the four points on the semi-major and semi-minor axes

of the error ellipse.
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7.12 KS Finding

To correct the KS → π+π− finding efficiency in the MC we use the results of an

external study [40]. The resulting efficiencies for finding KS’s in data and MC,

broken down into our signal momentum bins, are given in Table 7.7. An artifact

of the procedure used to calculate these efficiencies is that they can achieve values

greater than 100%. In these cases we set the efficiency to exactly 100% and leave

the error as it is. To get the MC correction and systematic errors from these results

we follow the procedures familiarized in Sections 7.11, 7.14 and 7.15.

An overall MC correction is obtained via a linear fit to the momentum depen-

dent corrections, Fig 7.21. The correction, w, obtained in this fashion and given

by,

w = 0.0302pKS
+ 1.001 (7.11)

is used to weight each MC event where a signal D+ → KSe
+ν decay is found

and the KS is tagged to a true KS. Once again for the systematic error we walk

around the one standard deviation error ellipse to the four points on the semi-

major and semi-minor axes, shown by the dash and dash-dot lines in Fig. 7.21.

The points giving the largest D+ → KSe
+ν yield deviations (dashed lines) are

used to obtain the branching fraction systematic errors, while the points giving

the largest deviation in the shape of the q2 distributions (dash-dot lines) are used

to obtain the form factor systematic errors.

7.13 PID for Neutrino Reconstruction

For neutrino reconstruction we assign each charged hadron in the event a particle

identification based on the associated track’s RICH and dE/dx measurements. To
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Table 7.7: Signal KS finding efficiencies in data and MC.

Momentum Bin εMC εdata MC Correction

pKS
< 0.3 GeV/c 0.9335± 0.0042 0.9335± 0.0121 1.0000± 0.0137

0.3 ≤ pKS
< 0.5 GeV/c 0.9707± 0.006 0.9714± 0.0163 1.0007± 0.0179

0.5 ≤ pKS
< 0.6 GeV/c 0.9861± 0.0109 0.9766± 0.0324 0.9904± 0.0346

0.6 ≤ pKS
< 0.7 GeV/c 0.9821± 0.0094 1.0000± 0.0383 1.0182± 0.0402

pKS
≥ 0.7 GeV/c 1.0000± 0.0078 1.0000± 0.0228 1.0000± 0.0241
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Figure 7.21: The MC KS finding efficiency corrections. The solid line shows the

best linear fit to the data, it is taken as the nominal correction. The dashed and

dash-dot lines show the extreme variations of the fit from the four points on the

semi-major and semi-minor axes of the error ellipse.
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determine the systematic error associated with these assignments we degrade the

RICH and dE/dx measurements by 30% of itself (i.e., a factor of 1.3). This number

is determined from the D meson mass resolution in CLEOIII data. For CLEO-c

we expect a better resolution, however, we retain the CLEOIII value as this is a

small systematic uncertainty.

7.14 Charged Kaon Signal PID

Identification of charged kaons for the signal decay mode D0 → K−e+ν relies on

dE/dx and RICH measurements as outlined in Section 5.1.3. If these measure-

ments are imperfectly modeled in the MC there will be an associated systematic

uncertainty affecting the finding efficiency of the signal kaons and thus the over-

all reconstruction efficiency of the signal decay mode. It is necessary therefore to

determine the K± signal PID efficiency in both the data and MC and correct any

discrepancies. To determine these differences, if any, between K± PID in the MC

and the data we once again use the CLEO-c tagged D meson sample.

We follow loosely the methods used to determine PID efficiencies for tagged

D particles, see [37] and [38]. Each of the tag modes used, namely D0 → Kπ,

D0 → Kππ0 and D+ → Kππ, is reconstructed with no particle identification

criteria applied to the kaons, although these tracks are still required to be Trk-

man approved. For the π± and π0’s the standard D tag identification criteria is

retained [31]. To find the K± PID efficiency we fit Mbc distributions both for

the totality of found D tags and for the subset where the K± passes signal PID

criteria. The efficiency is then given by

εPID =
Ysignal

Yall

, (7.12)
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where Ysignal is the yield of tags containing kaons that pass signal PID criteria and

Yall is the total number of tags.

To fit the Mbc distributions we apply the mode dependent ∆E requirements

as determined in [31]. For the selected modes these are given in Table. 7.8. The

fit range, divided into 28 bins of width 1.5 MeV, is given by 1.845 < Mbc < 1.887.

An inverted Crystal-Ball line shape is used for the signal while the background is

modeled by an Argus function.

Table 7.8: Mode dependent ∆E requirements for K± and π± signal PID fits.

Tag Mode ∆E Range (GeV)

D0 → Kπ |∆E| < 0.0294

D0 → Kππ0 −0.0583 < ∆E < 0.035

D0 → KSππ |∆E| < 0.0265

D± → Kππ |∆E| < 0.0218

For our purposes it is also important to determine any momentum dependence

associated with the data-MC PID difference. Specifically we would like to deter-

mine the dependence for each of our signal q2 bins, since this will affect the shape

of the dΓ/dq2 distributions. We therefore fit for yields and obtain efficiencies in the

five K± signal momentum bins: < 0.3 GeV/c, 0.3− 0.5 GeV/c, 0.5− 0.6 GeV/c,

0.6− 0.7 GeV/c and ≥ 0.7 GeV/c. The data and MC fits for the five momentum

bins in the tag mode D0 → Kππ0 are given in Figs 7.23 - 7.27. Fits for the tag

mode D0 → Kπ, which contributes only in the highest momentum bin, are shown

in Fig. 7.28 and fits for the tag mode D+ → Kππ are shown in Figs. 7.29 - 7.33.

The resulting combined efficiencies and MC corrections are given in Table 7.9.
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Table 7.9: Signal K± PID efficiencies in data and MC.

Momentum Bin εMC εdata MC Correction

pK± < 0.3 GeV/c 0.7854± 0.0035 0.7707± 0.0078 0.9814± 0.0108

0.3 ≤ pK± < 0.5 GeV/c 0.9307± 0.0034 0.9204± 0.0073 0.9890± 0.0086

0.5 ≤ pK± < 0.6 GeV/c 0.9387± 0.0029 0.9208± 0.0079 0.9809± 0.0090

0.6 ≤ pK± < 0.7 GeV/c 0.9534± 0.0022 0.9392± 0.0063 0.9851± 0.0070

pK± ≥ 0.7 GeV/c 0.9820± 0.0014 0.9690± 0.0038 0.9868± 0.0041

An overall signal K± PID correction for the MC is obtained by making a linear

fit to the correction in each momentum bin, Fig 7.22. The correction, w, obtained

in this fashion and given by

w = 0.0048pK± + 0.982, (7.13)

is used to weight each MC event where a signal D0 → K−e+ν decay is found and

the K− is a true kaon. For the systematic error we walk around the one standard

deviation error ellipse of the linear fit parameters to the four points on the semi-

major and semi-minor axes, shown by the dash and dash-dot lines in Fig. 7.22.

The points giving the largest yield deviations (dashed lines) are used to obtain the

branching fraction systematic errors, while the points giving the largest deviation

in the shape of the q2 distributions (dash-dot lines) are used to obtain the form

factor systematic errors.
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Figure 7.22: The MC K± PID efficiency corrections as determined using the meth-

ods described in the text. The solid line shows the best linear fit to the data, it is

taken as the nominal correction. The dashed and dash-dot lines show the extreme

variations of the fit from the four points on the semi-major and semi-minor axes

of the error ellipse.
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Figure 7.23: Signal K± PID: fits to D0 → Kππ0 Mbc distributions for 0.0 ≤

pK± < 0.3 GeV/c. In (a) and (b) filled circles show MC histograms and open

triangles show MC background histograms. In (c) and (d) filled circles show data

histograms. In all cases solid lines show CB line shape fits and dashed lines show

Argus background fits.
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Figure 7.24: Signal K± PID: fits to D0 → Kππ0 Mbc distributions for 0.3 ≤

pK± < 0.5 GeV/c. In (a) and (b) filled circles show MC histograms and open

triangles show MC background histograms. In (c) and (d) filled circles show data

histograms. In all cases solid lines show CB line shape fits and dashed lines show

Argus background fits.



156

 GeVbcM

1.845 1.85 1.855 1.86 1.865 1.87 1.875 1.88 1.885

E
ve

n
ts

/1
.5

 M
eV

0

500

1000

1500

2000

2500

3000

3500

4000

 PID Eff MC - Signal Kaon Found±K
Entries: 17140

Chi2/DOF: 39.42

Yield: 13612 +/- 300

Mean: 1.8651

Sigma: 0.0019

: -1.0855α

N: 34.3977

 GeVbcM

1.845 1.85 1.855 1.86 1.865 1.87 1.875 1.88 1.885

E
ve

n
ts

/1
.5

 M
eV

0

500

1000

1500

2000

2500

3000

3500

4000

 PID Eff MC - Signal Kaon Found±K

 GeVbcM

1.845 1.85 1.855 1.86 1.865 1.87 1.875 1.88 1.885

E
ve

n
ts

/1
.5

 M
eV

0

1000

2000

3000

4000

5000

 PID Eff MC - All±K
Entries: 39963

Chi2/DOF: 11.35

Yield: 14874 +/- 47

Mean: 1.8651

Sigma: 0.0019

: -1.0613α

N: 12.2404

 GeVbcM

1.845 1.85 1.855 1.86 1.865 1.87 1.875 1.88 1.885

E
ve

n
ts

/1
.5

 M
eV

0

1000

2000

3000

4000

5000

 PID Eff MC - All±K

(a) Signal K± Found (b) All

 GeVbcM

1.845 1.85 1.855 1.86 1.865 1.87 1.875 1.88 1.885

E
ve

n
ts

/1
.5

 M
eV

0

500

1000

1500

2000

2500

3000

3500

4000

 PID Eff Data - Signal Kaon Found±K
Entries: 18756

Chi2/DOF: 11.41

Yield: 14915 +/- 211

Mean: 1.8645

Sigma: 0.0020

: -1.0889α

N: 21.3042

 GeVbcM

1.845 1.85 1.855 1.86 1.865 1.87 1.875 1.88 1.885

E
ve

n
ts

/1
.5

 M
eV

0

500

1000

1500

2000

2500

3000

3500

4000

 PID Eff Data - Signal Kaon Found±K

 GeVbcM

1.845 1.85 1.855 1.86 1.865 1.87 1.875 1.88 1.885

E
ve

n
ts

/1
.5

 M
eV

0

1000

2000

3000

4000

5000

 PID Eff Data - All±K
Entries: 43863

Chi2/DOF: 5.54

Yield: 16561 +/- 129

Mean: 1.8645

Sigma: 0.0020

: -1.0893α

N: 7.8565

 GeVbcM

1.845 1.85 1.855 1.86 1.865 1.87 1.875 1.88 1.885

E
ve

n
ts

/1
.5

 M
eV

0

1000

2000

3000

4000

5000

 PID Eff Data - All±K

(c) Signal K± Found (d) All

Figure 7.25: Signal K± PID: fits to D0 → Kππ0 Mbc distributions for 0.5 ≤

pK± < 0.6 GeV/c. In (a) and (b) filled circles show MC histograms and open

triangles show MC background histograms. In (c) and (d) filled circles show data

histograms. In all cases solid lines show CB line shape fits and dashed lines show

Argus background fits.
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Figure 7.26: Signal K± PID: fits to D0 → Kππ0 Mbc distributions for 0.6 ≤

pK± < 0.7 GeV/c. In (a) and (b) filled circles show MC histograms and open

triangles show MC background histograms. In (c) and (d) filled circles show data

histograms. In all cases solid lines show CB line shape fits and dashed lines show

Argus background fits.
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Figure 7.27: Signal K± PID: fits to D0 → Kππ0 Mbc distributions for pK± ≥ 0.7

GeV/c. In (a) and (b) filled circles show MC histograms and open triangles show

MC background histograms. In (c) and (d) filled circles show data histograms. In

all cases solid lines show CB line shape fits and dashed lines show Argus background

fits.
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Figure 7.28: Signal K± PID: fits to D0 → Kπ Mbc distributions for pK± ≥ 0.7

GeV/c. In (a) and (b) filled circles show MC histograms and open triangles show

MC background histograms. In (c) and (d) filled circles show data histograms. In

all cases solid lines show CB line shape fits and dashed lines show Argus background

fits.
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Figure 7.29: Signal K± PID: fits to D0 → Kπ Mbc distributions for 0.0 ≤ pK± <

0.3 GeV/c. In (a) and (b) filled circles show MC histograms and open triangles

show MC background histograms. In (c) and (d) filled circles show data his-

tograms. In all cases solid lines show CB line shape fits and dashed lines show

Argus background fits.
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Figure 7.30: Signal K± PID: fits to D0 → Kπ Mbc distributions for 0.3 ≤ pK± <

0.5 GeV/c. In (a) and (b) filled circles show MC histograms and open triangles

show MC background histograms. In (c) and (d) filled circles show data his-

tograms. In all cases solid lines show CB line shape fits and dashed lines show

Argus background fits.
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Figure 7.31: Signal K± PID: fits to D0 → Kπ Mbc distributions for 0.5 ≤ pK± <

0.6 GeV/c. In (a) and (b) filled circles show MC histograms and open triangles

show MC background histograms. In (c) and (d) filled circles show data his-

tograms. In all cases solid lines show CB line shape fits and dashed lines show

Argus background fits.
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Figure 7.32: Signal K± PID: fits to D0 → Kπ Mbc distributions for 0.6 ≤ pK± <

0.7 GeV/c. In (a) and (b) filled circles show MC histograms and open triangles

show MC background histograms. In (c) and (d) filled circles show data his-

tograms. In all cases solid lines show CB line shape fits and dashed lines show

Argus background fits.
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Figure 7.33: Signal K± PID: fits to D0 → Kπ Mbc distributions for pK± ≥ 0.7

GeV/c. In (a) and (b) filled circles show MC histograms and open triangles show

MC background histograms. In (c) and (d) filled circles show data histograms. In

all cases solid lines show CB line shape fits and dashed lines show Argus background

fits.



165

7.15 Charged Pion Signal PID

Just as for the signal K± particles in the previous section, there is also a systematic

uncertainty associated with the signal π± PID efficiency. To determine any data-

MC discrepancies for π± PID we follow a similar procedure to that outlined above.

There are two main differences in the case of charged pion PID. In the first case,

we use the tag mode D0 → KSππ in place of D0 → Kπ. Secondly, we must also

account for the fact that it is now possible for a tag mode to contain two signal π±

particles. Since we are only interested in the efficiency of detecting one of these

particles, we require in these cases that one of the pions in the tag satisfy the usual

D tag particle identification. The other pion, treated as our signal pion, has no

PID applied to it, but just as for the K± case, is required to be Trkman approved.

Fits are performed exactly as previously using a Crystal Ball line shape and an

Argus background, with the mode dependent ∆E requirements given once again

in Table 7.8. The signal momentum bins for the π± (as corresponding to the signal

q2 bins) are: < 0.5 GeV/c, 0.5 − 0.6 GeV/c, 0.6 − 0.7 GeV/c, 0.7 − 0.8 GeV/c

and ≥ 0.8 GeV/c. The fits for each tag mode and each momentum bin are shown

in Figs. 7.35 to 7.49. The resulting efficiencies and MC corrections are given in

Table. 7.10.

Once again the the overall PID efficiency correction to the MC is obtained via

a linear fit to the momentum dependent corrections, Fig 7.34. The correction, w,

obtained in this fashion and given by,

w = 0.0198pπ± + 0.979, (7.14)

is used to weight each MC event where a signal D0 → π−e+ν decay is found and

the π− is a true pion. For the systematic error we again walk around the one sigma
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Table 7.10: Signal π± PID efficiencies in data and MC.

Momentum Bin εMC εdata MC Correction

pπ± < 0.5 GeV/c 0.9627± 0.0017 0.9460± 0.0047 0.9826± 0.0052

0.5 ≤ pπ± < 0.6 GeV/c 0.9793± 0.0028 0.9781± 0.0082 0.9988± 0.0089

0.6 ≤ pπ± < 0.7 GeV/c 0.9780± 0.0023 0.9689± 0.0067 0.9907± 0.0072

0.7 ≤ pπ± < 0.8 GeV/c 0.9310± 0.0024 0.9253± 0.0069 0.9938± 0.0078

pπ± ≥ 0.8 GeV/c 0.9210± 0.0033 0.9140± 0.0096 0.9925± 0.0110

error ellipse to the four points on the semi-major and semi-minor axes, shown by

the dash and dash-dot lines in Fig. 7.34. Once again, the points giving the largest

yield deviations are used to obtain the branching fraction systematic errors, while

the points giving the largest deviation in the shape of the q2 distributions are used

to obtain the form factor systematic errors. The dashed lines give the branching

fraction variations and the dash-dot lines give the form factor variations.
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Figure 7.34: The MC π± PID efficiency corrections as determined using the meth-

ods described in the text. The solid line shows the best linear fit to the data, it is

taken as the nominal correction. The dashed and dash-dot lines show the extreme

variations of the fit from the four points on the semi-major and semi-minor axes

of the error ellipse.



168

 GeVbcM

1.845 1.85 1.855 1.86 1.865 1.87 1.875 1.88 1.885

E
ve

n
ts

/1
.5

 M
eV

0

2000

4000

6000

8000

10000

12000

±π PID Eff MC - Signal ±π
Entries: 53025

Chi2/DOF: 59.75

Yield: 44818 +/- 72

Mean: 1.8651

Sigma: 0.0020

: -1.2601α

N: 7.0429

 GeVbcM

1.845 1.85 1.855 1.86 1.865 1.87 1.875 1.88 1.885

E
ve

n
ts

/1
.5

 M
eV

0

2000

4000

6000

8000

10000

12000

±π PID Eff MC - Signal ±π

 GeVbcM

1.845 1.85 1.855 1.86 1.865 1.87 1.875 1.88 1.885

E
ve

n
ts

/1
.5

 M
eV

0

2000

4000

6000

8000

10000

12000

 PID Eff MC - All±π
Entries: 57562

Chi2/DOF: 61.81

Yield: 46317 +/- 73

Mean: 1.8651

Sigma: 0.0020

: -1.2489α

N: 7.1749

 GeVbcM

1.845 1.85 1.855 1.86 1.865 1.87 1.875 1.88 1.885

E
ve

n
ts

/1
.5

 M
eV

0

2000

4000

6000

8000

10000

12000

 PID Eff MC - All±π

(a) Signal π± Found (b) All

 GeVbcM

1.845 1.85 1.855 1.86 1.865 1.87 1.875 1.88 1.885

E
ve

n
ts

/1
.5

 M
eV

0

2000

4000

6000

8000

10000

12000

±π PID Eff Data - Signal ±π
Entries: 53794

Chi2/DOF: 12.67

Yield: 44812 +/- 212

Mean: 1.8645

Sigma: 0.0020

: -1.2239α

N: 6.0871

 GeVbcM

1.845 1.85 1.855 1.86 1.865 1.87 1.875 1.88 1.885

E
ve

n
ts

/1
.5

 M
eV

0

2000

4000

6000

8000

10000

12000

±π PID Eff Data - Signal ±π

 GeVbcM

1.845 1.85 1.855 1.86 1.865 1.87 1.875 1.88 1.885

E
ve

n
ts

/1
.5

 M
eV

0

2000

4000

6000

8000

10000

12000

 PID Eff Data - All±π
Entries: 58949

Chi2/DOF: 13.89

Yield: 46983 +/- 217

Mean: 1.8645

Sigma: 0.0020

: -1.2001α

N: 6.4486

 GeVbcM

1.845 1.85 1.855 1.86 1.865 1.87 1.875 1.88 1.885

E
ve

n
ts

/1
.5

 M
eV

0

2000

4000

6000

8000

10000

12000

 PID Eff Data - All±π

(c) Signal π± Found (d) All

Figure 7.35: Signal π± PID: fits to D0 → Kππ0 Mbc distributions for 0.0 ≤

pπ± < 0.5 GeV/c. In (a) and (b) filled circles show MC histograms and open

triangles show MC background histograms. In (c) and (d) filled circles show data

histograms. In all cases solid lines show CB line shape fits and dashed lines show

Argus background fits.
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Figure 7.36: Signal π± PID: fits to D0 → Kππ0 Mbc distributions for 0.5 ≤

pπ± < 0.6 GeV/c. In (a) and (b) filled circles show MC histograms and open

triangles show MC background histograms. In (c) and (d) filled circles show data

histograms. In all cases solid lines show CB line shape fits and dashed lines show

Argus background fits.
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Figure 7.37: Signal π± PID: fits to D0 → Kππ0 Mbc distributions for 0.6 ≤

pπ± < 0.7 GeV/c. In (a) and (b) filled circles show MC histograms and open

triangles show MC background histograms. In (c) and (d) filled circles show data

histograms. In all cases solid lines show CB line shape fits and dashed lines show

Argus background fits.
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Figure 7.38: Signal π± PID: fits to D0 → Kππ0 Mbc distributions for 0.7 ≤

pπ± < 0.8 GeV/c. In (a) and (b) filled circles show MC histograms and open

triangles show MC background histograms. In (c) and (d) filled circles show data

histograms. In all cases solid lines show CB line shape fits and dashed lines show

Argus background fits.
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Figure 7.39: Signal π± PID: fits to D0 → Kππ0 Mbc distributions for pπ± ≥ 0.8

GeV/c. In (a) and (b) filled circles show MC histograms and open triangles show

MC background histograms. In (c) and (d) filled circles show data histograms. In

all cases solid lines show CB line shape fits and dashed lines show Argus background

fits.
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Figure 7.40: Signal π± PID: fits to D0 → KSππ Mbc distributions for 0.0 ≤

pπ± < 0.5 GeV/c. In (a) and (b) filled circles show MC histograms and open

triangles show MC background histograms. In (c) and (d) filled circles show data

histograms. In all cases solid lines show CB line shape fits and dashed lines show

Argus background fits.
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Figure 7.41: Signal π± PID: fits to D0 → KSππ Mbc distributions for 0.5 ≤

pπ± < 0.6 GeV/c. In (a) and (b) filled circles show MC histograms and open

triangles show MC background histograms. In (c) and (d) filled circles show data

histograms. In all cases solid lines show CB line shape fits and dashed lines show

Argus background fits.
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Figure 7.42: Signal π± PID: fits to D0 → KSππ Mbc distributions for 0.6 ≤

pπ± < 0.7 GeV/c. In (a) and (b) filled circles show MC histograms and open

triangles show MC background histograms. In (c) and (d) filled circles show data

histograms. In all cases solid lines show CB line shape fits and dashed lines show

Argus background fits.
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Figure 7.43: Signal π± PID: fits to D0 → KSππ Mbc distributions for 0.7 ≤

pπ± < 0.8 GeV/c. In (a) and (b) filled circles show MC histograms and open

triangles show MC background histograms. In (c) and (d) filled circles show data

histograms. In all cases solid lines show CB line shape fits and dashed lines show

Argus background fits.
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Figure 7.44: Signal π± PID: fits to D0 → KSππ Mbc distributions for pπ± ≥ 0.8

GeV/c. In (a) and (b) filled circles show MC histograms and open triangles show

MC background histograms. In (c) and (d) filled circles show data histograms. In

all cases solid lines show CB line shape fits and dashed lines show Argus background

fits.
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Figure 7.45: Signal π± PID: fits to D± → Kππ Mbc distributions for 0.0 ≤

pπ± < 0.5 GeV/c. In (a) and (b) filled circles show MC histograms and open

triangles show MC background histograms. In (c) and (d) filled circles show data

histograms. In all cases solid lines show CB line shape fits and dashed lines show

Argus background fits.
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Figure 7.46: Signal π± PID: fits to D± → Kππ Mbc distributions for 0.5 ≤

pπ± < 0.6 GeV/c. In (a) and (b) filled circles show MC histograms and open

triangles show MC background histograms. In (c) and (d) filled circles show data

histograms. In all cases solid lines show CB line shape fits and dashed lines show

Argus background fits.
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Figure 7.47: Signal π± PID: fits to D± → Kππ Mbc distributions for 0.6 ≤

pπ± < 0.7 GeV/c. In (a) and (b) filled circles show MC histograms and open

triangles show MC background histograms. In (c) and (d) filled circles show data

histograms. In all cases solid lines show CB line shape fits and dashed lines show

Argus background fits.
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Figure 7.48: Signal π± PID: fits to D± → Kππ Mbc distributions for 0.7 ≤

pπ± < 0.8 GeV/c. In (a) and (b) filled circles show MC histograms and open

triangles show MC background histograms. In (c) and (d) filled circles show data

histograms. In all cases solid lines show CB line shape fits and dashed lines show

Argus background fits.
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Figure 7.49: Signal π± PID: fits to D± → Kππ Mbc distributions for pπ± ≥ 0.8

GeV/c. In (a) and (b) filled circles show MC histograms and open triangles show

MC background histograms. In (c) and (d) filled circles show data histograms. In

all cases solid lines show CB line shape fits and dashed lines show Argus background

fits.
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7.16 Electron ID and Fakes

The procedures used in this analysis to identify electrons have already been dis-

cussed in some detail, see Section 5.1.1. In brief, for the MC we use only true

electrons with data measured efficiencies and add events with fake electrons to the

fit using data. There are two associated systematic uncertainties: the error on the

measured electron identification efficiencies and the error on the measured fake

rates. To assess these uncertainties we follow the same procedure in each case.

Namely, we add the measured one standard deviation errors on the efficiencies or

fake rates to their central values and re-fit the data. The resulting deviation from

the nominal fit in each case is taken as the systematic error.

7.17 Multiple Electron Veto

The methods of electron identification have been discussed extensively in the pre-

vious sections. We now focus on the systematic uncertainty associated with the

multiple electron veto, that is how well the number of true electrons per event is

modeled in the MC.5 To estimate this uncertainty this we follow a similar method

to that used in the KL re-weight systematic. We take events containing a tagged

D meson and look for electrons on the other side of the event. The tags used

and their quality criteria are the same as in Section 7.5. The same procedure is

followed in both data and MC and we compare the resulting number of electrons

per event. The MC is normalized absolutely and then the semileptonic events are

re-scaled so that the number of data events matches the number of MC events.

5We remind the reader that multiple electrons due to the presence of fakes in
the MC are handled using a separate procedure that relies on our knowledge of
the data measured fake rates.
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We do this to compensate for the known discrepancies in semileptonic branching

fractions between data and MC.

The resulting electrons per event counts are given in Table 7.11. For the MC

we break down the contributions into the three main types of decays that pro-

duce the electron: semileptonic decays, photon conversions and fakes. Looking at

these results we see that, within error, the MC correctly models the number of

electrons per event. Furthermore, we believe that the source of any discrepancy

within the error margins is mostly likely to result from the MC modeling of photon

conversions. There are several reasons for this deduction.

The number of semileptonic decays results simply from the input branching

fractions to the MC and we believe these to be correctly accounted for in our anal-

ysis. Likewise the fake electron veto probability in MC is believed to be accurate,

being taken from data measured fake rates. Photon conversions on the other hand,

which result from material interactions, rely on accurate detector modeling in the

MC. Since this is the most likely place for imperfect replication of the data we are

left with photon conversions as the best candidate for evaluation of the electron

veto systematic. The D0 results show us that we know the photon conversion rate

to within ∼8%, a value obtained simply from the error margin on the data. For

the multiple electron veto systematic error therefore we drop 8% of electrons from

photon conversions in the MC, where by drop we mean that the electron does not

get called an electron, although the track is still present in the event.

7.18 Mbc Smearing

The smearing corrections to the Mbc distributions for the D0 → K−e+ν, D0 →

π−e+ν and D+ → π0e+ν signal modes were described in Section 6.2. For the



185

Table 7.11: Number of electrons per event in data and MC for D0D̄0 and D+D−

events. MC is normalized absolutely and then semileptonic events are scaled so

that the number of MC events equals the number of data events. The abbreviations

used in the MC break down are: PC - photon conversion, SL - semileptonic and

FK - fake.

D0D̄0

Number of Electrons per Event 1 2 3
Data Event Count Total 18913± 138 284± 17 3± 2
MC Event Count Total 18930± 51 268± 7 2± 1

Break Down of MC Events
PC Event Count 1819± 22 142± 6 2± 1
SL Event Count 15702± 42 63± 3 0± 0
FK Event Count 0± 0 30± 2 0± 0

PC and SL Event Count 0± 0 14± 1 0± 0
SL and FK Event Count 0± 0 26± 2 0± 0
FK and PC Event Count 0± 0 3± 1 0± 0

D+D−

Number of Electrons per Event 1 2 3
Data Event Count Total 19508± 140 141± 12 3± 2
MC Event Count Total 19517± 53 132± 5 4± 1

Break Down of MC Events
PC Event Count 626± 12 62± 3 2± 0
SL Event Count 18296± 50 71± 3 3± 1
FK Event Count 0± 0 30± 2 0± 0

PC and SL Event Count 0± 0 10± 1 0± 0
SL and FK Event Count 0± 0 26± 2 1± 0
FK and PC Event Count 0± 0 10± 1 0± 0
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systematic uncertainties associated with these smears we fix all the smears to their

central values as determined by the fit (given above) and one by one turn the

smears up and down by their one standard deviation errors and re-fit. In general

the results of smearing up and smearing down are very symmetric about the central

value; we take the largest deviation (smear up or smear down) to be the systematic

error.

7.19 Final State Radiation

The default final state radiation (FSR) generator in the CLEO MC is PHO-

TOS [41]. In PHOTOS, generation of FSR is accomplished using a leading-

logarithm approximation and in semileptonic decays radiation from the final state

pion (or kaon) and electron is treated independently. This treatment should ap-

proximate the FSR energy spectrum well, but the angular separation of the photon

and electron will require corrections. This is verified by a comparison with the

more sophisticated KLOR generator [42], written for the generation of radiative

K0 → π−e+ν decays. To correct PHOTOS we modify the KLOR generator to pro-

duce radiative D semileptonic decays.6 For our nominal results we take the cosθeγ

and Eγ distributions from the PHOTOS generated radiative events and re-weight

them to match the KLOR generated distributions. A comparison of the PHOTOS

and KLOR photon energy and angular distributions is shown for each of the signal

modes in Figures 7.50 - 7.53. In addition we re-weight the overall number of PHO-

TOS radiative decays to agree with the radiative branching fractions predicted by

KLOR. In all cases KLOR predicts slightly higher radiative branching fractions

6This is a simple matter for the D0 decays, but for the D+ decays we have to
modify the matrix element, switching radiation and interference from the daughter
meson to the parent meson.
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than PHOTOS, Table 7.12. For the systematic error on FSR production we take

the difference between the branching fraction fits for PHOTOS and KLOR. This

should be an overestimate of the error, however, this allows us to account for the

unknown structure-dependent FSR contributions.

Table 7.12: Predicted fraction of radiative events (with photon energies greater

than ∼0.9MeV) for each signal mode in PHOTOS and KLOR.

Radiative Fraction
Decay Mode PHOTOS KLOR
D0 → π−e+ν 0.183 0.217
D0 → K−e+ν 0.163 0.179
D+ → π0e+ν 0.162 0.184
D+ → K̄0e+ν 0.154 0.167

7.20 Form Factor Dependence

To determine the dependence of our results on our input form factors,7 we re-weight

our signal MC with a different form factor model and determine the branching

fraction differences. For each of our signal modes the partial width is given by

the pseudo-scalar decay rate, Eq. 2.51. Thus to re-shape the q2 distribution of our

MC with input form factor f+
input, to a new model with form factor f+

model, without

changing the overall branching fraction, we re-weight each signal MC event with

weight w, where w is given by

w =
|f+

model(q
2)|2

|f+
input(q

2)|2

∫ q2max
0 p3

X(q′2)|f+
input(q

′2)|2dq′2∫ q2max
0 p3

X(q′2)|f+
model(q

′2)|2dq′2
. (7.15)

We choose to re-weight our signal MC with the form factor obtained using the

ISGW2 model [30], which is known to be inaccurate and also differs significantly

7Recall that we use a modified pole (BK) parameterization [29] with values
from LQCD calculations [14] as our nominal form factor input.
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Figure 7.50: Signal D0 → π−e+ν mode comparison of PHOTOS (filled circles)

and KLOR (open triangles) generated radiative photon distributions. In (a) we

show the comparison for the photon angle to the electron and in (b) we show the

comparison of the photon energy distributions.
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Figure 7.51: Signal D0 → K−e+ν mode comparison of PHOTOS (filled circles)

and KLOR (open triangles) generated radiative photon distributions. In (a) we

show the comparison for the photon angle to the electron and in (b) we show the

comparison of the photon energy distributions.
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Figure 7.52: Signal D+ → π0e+ν mode comparison of PHOTOS (filled circles)

and KLOR (open triangles) generated radiative photon distributions. In (a) we

show the comparison for the photon angle to the electron and in (b) we show the

comparison of the photon energy distributions.
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Figure 7.53: Signal D+ → KSe
+ν mode comparison of PHOTOS (filled circles)

and KLOR (open triangles) generated radiative photon distributions. In (a) we

show the comparison for the photon angle to the electron and in (b) we show the

comparison of the photon energy distributions.
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from the q2 spectrum of our nominal signal MC, Fig 7.54. The ISGW2 form factor

is given by,

f+(q2) =
f+(q2

max)

(1 + r2

12
(q2

max − q2))2
, (7.16)

where r is a constant determined by the parent and daughter mesons (see [30] for

details).
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Figure 7.54: The q2 spectra from D0 → K−e+ν signal MC generated with ISGW2

form factors (open triangles) and modified pole model (BK) [29] form factors with

LQCD calculated parameters [14] (filled circles).

7.21 Systematic Uncertainty Results

Here we list the resulting percent changes in the branching fractions for each of

the signal modes and each of the systematic uncertainties described above. These

are given for the full range of q2 bins in Tables 7.13 - 7.16.
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Table 7.13: Summary of full and partial branching fraction (B) systematic errors

(%) for the D0 → π−e+ν signal decay mode.

D0 → π−e+ν
q2 interval (GeV)2

Systematic < 0.4 0.4− 0.8 0.8− 1.2 1.2− 1.6 ≥ 1.6 Btotal

Hadronic Showers 0.58 0.90 1.92 2.58 0.48 1.17
KL Showers 0.15 0.13 0.11 0.06 0.60 0.04
KL Re-weight 0.67 0.66 0.66 0.67 0.65 0.66

Track Eff. 0.60 0.56 0.50 0.63 0.45 0.54
Track Res. 0.00 1.02 0.01 0.46 0.85 0.46

Splitoff Smear 0.58 0.02 0.16 0.04 0.22 0.12
Degrade PID 0.01 0.02 0.08 0.02 0.09 0.04
Shower Res. 0.03 0.09 0.06 0.01 0.11 0.06

Trkman Fakes 0.76 0.72 0.71 0.71 0.72 0.72
π0 Eff. 0.01 0.01 0.01 0.00 0.03 0.00
KS Eff. 0.01 0.01 0.02 0.04 0.08 0.03
π− PID 0.44 0.41 0.39 0.39 0.40 0.41
K− PID 0.05 0.02 0.02 0.01 0.02 0.03
e+ PID 0.76 0.40 0.75 0.36 0.44 0.56
e+ Fakes 2.50 0.45 0.01 0.05 0.92 0.88

π0 Re-weight 0.01 0.02 0.03 0.01 0.06 0.03
π− Re-weight 0.07 0.42 0.44 0.10 1.96 0.24
K− Fakes 0.67 1.01 0.93 0.35 0.08 0.58
π− Smear 0.93 1.06 0.85 0.83 1.05 0.95
K− Smear 0.07 0.04 0.02 0.01 0.01 0.03
π0 Smear 0.01 0.02 0.00 0.01 0.13 0.02
e+ Veto 0.05 0.04 0.01 0.14 0.01 0.00

FSR 0.85 1.53 0.97 0.91 0.75 0.99
Form Factor Dep. 0.50 0.01 0.09 0.43 1.55 0.19

Number DD̄ 1.26 1.26 1.26 1.26 1.26 1.26
Total 3.61 3.14 3.15 3.46 3.59 2.83
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Table 7.14: Summary of full and partial branching fraction (B) systematic errors

(%) for the D0 → K−e+ν signal decay mode.

D0 → K−e+ν
q2 interval (GeV)2

Systematic < 0.4 0.4− 0.8 0.8− 1.2 1.2− 1.6 ≥ 1.6 Btotal

Hadronic Showers 0.89 1.54 1.49 2.00 0.67 1.29
KL Showers 0.01 0.02 0.04 0.05 0.06 0.01
KL Re-weight 0.66 0.65 0.66 0.67 0.69 0.66

Track Eff. 0.37 0.39 0.44 0.44 0.21 0.39
Track Res. 0.28 0.43 0.50 0.60 0.34 0.39

Splitoff Smear 0.59 0.56 0.48 0.43 0.21 0.54
Degrade PID 0.06 0.04 0.05 0.03 0.04 0.05
Shower Res. 0.00 0.00 0.00 0.00 0.01 0.00

Trkman Fakes 0.72 0.72 0.71 0.71 0.71 0.72
π0 Eff. 0.00 0.00 0.00 0.00 0.00 0.01
KS Eff. 0.01 0.00 0.00 0.00 0.07 0.01
π− PID 0.00 0.00 0.00 0.00 0.00 0.00
K− PID 0.32 0.30 0.28 0.26 0.26 0.30
e+ PID 0.65 0.58 0.60 0.52 0.46 0.61
e+ Fakes 0.57 0.07 0.04 0.01 0.39 0.25

π0 Re-weight 0.00 0.00 0.01 0.00 0.01 0.00
π− Re-weight 0.00 0.00 0.00 0.05 0.23 0.01
K− Fakes 0.00 0.00 0.01 0.01 0.02 0.00
π− Smear 0.02 0.01 0.01 0.01 0.06 0.01
K− Smear 0.09 0.08 0.07 0.09 0.16 0.09
π0 Smear 0.00 0.00 0.00 0.00 0.00 0.00
e+ Veto 0.08 0.07 0.00 0.02 0.03 0.05

FSR 0.63 0.61 0.56 0.48 0.47 0.59
Form Factor Dep. 0.33 0.11 0.16 0.41 1.29 0.02

Number DD̄ 1.26 1.26 1.26 1.26 1.26 1.26
Total 2.29 2.52 2.49 2.83 2.37 2.39
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Table 7.15: Summary of full and partial branching fraction (B) systematic errors

(%) for the D+ → π0e+ν signal decay mode.

D+ → π0e+ν
q2 interval (GeV)2

Systematic < 0.4 0.4− 0.8 0.8− 1.2 1.2− 1.6 ≥ 1.6 Btotal

Hadronic Showers 0.62 2.94 2.11 1.30 1.68 1.14
KL Showers 0.19 0.17 0.08 0.13 0.83 0.03
KL Re-weight 1.10 1.07 1.07 1.08 1.13 1.09

Track Eff. 0.51 0.37 0.18 0.14 0.13 0.24
Track Res. 1.08 0.05 0.09 0.90 0.13 0.12

Splitoff Smear 1.66 1.08 0.68 1.45 0.81 0.86
Degrade PID 0.09 0.02 0.04 0.07 0.03 0.03
Shower Res. 0.00 0.01 0.18 0.30 0.04 0.08

Trkman Fakes 0.76 0.71 0.69 0.70 0.71 0.71
π0 Eff. 0.87 0.56 0.77 1.07 1.07 0.85
KS Eff. 0.02 0.02 0.08 0.11 0.18 0.07
π− PID 0.17 0.37 0.13 0.24 0.29 0.06
K− PID 0.17 0.37 0.12 0.24 0.29 0.06
e+ PID 1.13 0.53 0.33 0.98 0.01 0.62
e+ Fakes 1.52 0.14 0.29 0.07 0.64 0.44

π0 Re-weight 0.43 0.81 0.76 0.73 1.87 0.04
π− Re-weight 0.07 0.02 0.03 0.02 1.46 0.29
K− Fakes 0.01 0.01 0.04 0.07 0.20 0.05
π− Smear 0.00 0.00 0.01 0.05 0.29 0.05
K− Smear 0.00 0.01 0.00 0.00 0.01 0.00
π0 Smear 2.62 1.27 3.77 1.17 1.97 2.09
e+ Veto 0.26 0.01 0.20 0.03 0.14 0.07

FSR 0.26 0.48 0.47 0.68 0.65 0.49
Form Factor Dep. 0.56 0.08 0.08 0.76 0.08 0.28

Number DD̄ 1.34 1.34 1.34 1.34 1.34 1.34
Total 4.49 4.10 4.92 3.66 4.43 3.42
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Table 7.16: Summary of full and partial branching fraction (B) systematic errors

(%) for the D+ → K̄0e+ν signal decay mode.

D+ → K̄0e+ν
q2 interval (GeV)2

Systematic < 0.4 0.4− 0.8 0.8− 1.2 1.2− 1.6 ≥ 1.6 Btotal

Hadronic Showers 0.17 0.37 0.21 0.13 1.36 0.18
KL Showers 0.01 0.06 0.08 0.15 0.46 0.02
KL Re-weight 1.07 1.07 1.09 1.10 1.09 1.08

Track Eff. 0.62 0.57 0.70 0.66 0.39 0.62
Track Res. 0.43 0.45 0.64 0.49 0.92 0.49

Splitoff Smear 0.81 0.88 0.84 0.99 0.21 0.84
Degrade PID 0.01 0.02 0.00 0.01 0.08 0.01
Shower Res. 0.00 0.02 0.03 0.01 0.09 0.00

Trkman Fakes 0.72 0.70 0.70 0.69 0.70 0.71
π0 Eff. 0.00 0.01 0.01 0.02 0.09 0.00
KS Eff. 1.05 1.00 0.94 0.88 0.81 1.00
π− PID 0.01 0.01 0.00 0.03 0.02 0.00
K− PID 0.01 0.01 0.00 0.02 0.00 0.00
e+ PID 0.62 0.65 0.52 0.59 0.76 0.61
e+ Fakes 0.38 0.03 0.17 0.09 1.00 0.14

π0 Re-weight 0.02 0.01 0.00 0.11 0.14 0.01
π− Re-weight 0.02 0.01 0.00 0.19 1.12 0.04
K− Fakes 0.01 0.01 0.03 0.07 0.16 0.01
π− Smear 0.01 0.01 0.00 0.04 0.09 0.01
K− Smear 0.02 0.01 0.00 0.00 0.02 0.01
π0 Smear 0.01 0.01 0.01 0.05 0.08 0.01
e+ Veto 0.02 0.09 0.02 0.12 0.30 0.04

FSR 0.25 0.46 0.55 0.64 0.60 0.41
Form Factor Dep. 0.35 0.16 0.28 0.83 1.51 0.06

Number DD̄ 1.34 1.34 1.34 1.34 1.34 1.34
Total 2.56 2.56 2.59 2.73 3.58 2.53



Chapter 8

Results and Conclusions

In this chapter we give the final results for all branching fractions and branching

fraction ratios. In addition, we use these results to extract measurements of the

semileptonic form factors and the relevant CKM matrix elements.

8.1 Branching Fraction Results

Combining the results of the fit and the systematic errors gives us the final yield

for each mode. From the yield we obtain the branching fraction using

B =
Y

2NDD̄

, (8.1)

where Y is the fit yield (i.e., the efficiency corrected yield) and NDD̄ is the number

of DD̄ pairs of the appropriate charge. We use the CLEO-c measured numbers of

DD̄ pairs in our data sample [31].1 For the neutral D signal modes we have

ND0D̄0 = (1.032± 0.013)× 106, (8.2)

and for the charged D signal modes we have

ND+D− = (0.822± 0.011)× 106. (8.3)

The resulting fit yields, efficiencies, and branching fractions for each mode, in each

q2 bin, are given in Table 8.1. The total branching fractions for each mode (also

1In this thesis we use preliminary NDD̄ numbers that have been updated from
those quoted in the given reference. The updated numbers are based on the same
281 pb−1 of data that has been used for this analysis, and are expected to change
very little for the final result.
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listed in Table 8.1) are

B(D0 → π−e+ν) = 0.299± 0.011± 0.008 %, (8.4)

B(D0 → K−e+ν) = 3.55± 0.03± 0.08 %, (8.5)

B(D+ → π0e+ν) = 0.371± 0.022± 0.013 %, (8.6)

and,

B(D+ → K̄0e+ν) = 8.53± 0.13± 0.22 %. (8.7)

A comparison of these results with the recently updated Particle Data Group

(PDG) 2006 values [3] and with the results from other measurements is shown

in Fig. 8.1.2 It is evident that our results are all in good to excellent agreement

with the PDG values, while also having significantly improved errors. In addition,

our total branching fraction values are generally in good agreement with recent

measurements from other experiments and with the CLEO-c results from the com-

plementary D tagging analysis (see Chapter 4).

We also measure the branching fraction and partial width ratios in each q2 bin,

the full results are given in Table 8.2. For all q2 the branching fraction ratios are

found to be,

R0 ≡
B(D0 → π−e+ν)

B(D0 → K−e+ν)
= 0.084± 0.003± 0.001 (8.8)

and

R+ ≡
B(D+ → π0e+ν)

B(D+ → K̄0e+ν)
= 0.044± 0.003± 0.001, (8.9)

while the partial width ratios, giving the isospin relations, are measured as,

Iπ ≡
Γ(D0 → π−e+ν)

Γ(D+ → π0e+ν)
= 2.04± 0.14± 0.08 (8.10)

2The most recent PDG values cited here have been updated with the first
CLEO-c measurements using 56 pb−1 of data.
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Table 8.1: Efficiencies (ε), yields and branching fractions (B) for all q2 bins and

all modes. We note that for the neutral kaon mode, D+ → K̄0e+ν, the efficiencies

and yields are for the reconstructed sub-mode D+ → KS(π
+π−)e+ν, whilst the

branching fraction results are for the full mode.

D0 → π−e+ν
q2 Interval < 0.4 0.4− 0.8 0.8− 1.2

ε (%) 19.4 21.0 22.4
Yield 1452± 113± 49 1208± 102± 35 1242± 99± 36
B (%) 0.070± 0.006± 0.003 0.059± 0.005± 0.002 0.060± 0.005± 0.002

q2 Interval 1.2− 1.6 ≥ 1.6 All q2

ε (%) 22.8 22.4 21.5
Yield 906± 85± 29 1357± 103± 46 6165± 228± 157
B (%) 0.044± 0.004± 0.002 0.066± 0.005± 0.002 0.299± 0.011± 0.008

D0 → K−e+ν
q2 Interval < 0.4 0.4− 0.8 0.8− 1.2

ε (%) 19.2 20.5 20.0
Yield 29701± 441± 569 21600± 377± 473 14032± 304± 301
B (%) 1.439± 0.021± 0.033 1.047± 0.018± 0.026 0.680± 0.015± 0.017

q2 Interval 1.2− 1.6 ≥ 1.6 All q2

ε (%) 18.3 13.9 19.6
Yield 7001± 225± 178 991± 112± 20 73325± 676± 1486
B (%) 0.339± 0.011± 0.010 0.048± 0.005± 0.001 3.553± 0.033± 0.085

D+ → π0e+ν
q2 Interval < 0.4 0.4− 0.8 0.8− 1.2

ε (%) 7.5 8.0 7.9
Yield 1379± 168± 59 1584± 180± 61 1012± 154± 48
B (%) 0.084± 0.010± 0.004 0.096± 0.011± 0.004 0.062± 0.009± 0.003

q2 Interval 1.2− 1.6 ≥ 1.6 All q2

ε (%) 7.2 5.7 7.3
Yield 1028± 158± 35 1102± 174± 47 6105± 360± 192
B (%) 0.063± 0.010± 0.002 0.067± 0.011± 0.003 0.371± 0.022± 0.013

D+ → K̄0e+ν
q2 Interval < 0.4 0.4− 0.8 0.8− 1.2

ε (%) 11.7 12.3 12.5
Yield 19480± 466± 418 14422± 415± 306 9009± 327± 194
B (%) 3.437± 0.082± 0.088 2.545± 0.073± 0.065 1.590± 0.058± 0.041

q2 Interval 1.2− 1.6 ≥ 1.6 All q2

ε (%) 12.2 12.5 12.1
Yield 4656± 236± 108 789± 104± 26 48356± 725± 1013
B (%) 0.822± 0.042± 0.022 0.139± 0.018± 0.005 8.532± 0.128± 0.216
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0.5 1 1.5

ν + e-π → 0D

ν + e- K→ 0D

ν + e0π → +D

ν + e
0

K → +D

PDG (2006)

CLEO-c No Tag (2006)

CLEO-c Tag (2006)

Belle (2006)

BES (2004/2005)

Figure 8.1: Branching fraction measurements from various experiments for our

four signal modes. All measurements are normalized to the updated PDG 2006

values [3]. Solid black circles show the results from this analysis (CLEO-c No

Tag 2006), open circles show the preliminary 281 pb−1 results for the CLEO-c

tagged analysis [61] (CLEO-c Tag 2006), solid black squares show the recent Belle

results [57] (Belle 2006) and open squares show the BES results [53, 54] (BES

2004/2005).
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and

IK ≡ Γ(D0 → K−e+ν)

Γ(D+ → K̄0e+ν)
= 1.06± 0.02± 0.03. (8.11)

We find that the partial width ratios obey the expected isospin symmetry relations,

Iπ = 2 and IK = 1, within our experimental precision. Our branching fraction

ratios are also in good agreement with both other measurements and the updated

PDG values, Table 8.3.

Table 8.2: Branching fraction and partial width ratios for all q2 bins. To calculate

the partial width ratios we use the D lifetimes τD0 = (410.3 ± 1.5) × 10−15s and

τD+ = (1040± 7)× 10−15s [2]. R gives the appropriate ratio in each case.

B(D0 → π−e+ν)/B(D0 → K−e+ν)
q2 Interval < 0.4 0.4− 0.8 0.8− 1.2
R (×10−2) 4.89± 0.39± 0.12 5.59± 0.48± 0.12 8.85± 0.74± 0.15
q2 Interval 1.2− 1.6 ≥ 1.6 All q2

R (×10−2) 12.94± 1.29± 0.21 137.0± 19.0± 3.3 8.41± 0.32± 0.13
B(D+ → π0e+ν)/B(D+ → K̄0e+ν)

q2 Interval < 0.4 0.4− 0.8 0.8− 1.2
R (×10−2) 2.44± 0.30± 0.09 3.79± 0.45± 0.13 3.87± 0.61± 0.17
q2 Interval 1.2− 1.6 ≥ 1.6 All q2

R (×10−2) 7.61± 1.24± 0.25 48.14± 10.13± 1.91 4.35± 0.27± 0.12
Γ(D0 → π−e+ν)/Γ(D+ → π0e+ν)

q2 Interval < 0.4 0.4− 0.8 0.8− 1.2
R 2.125± 0.308± 0.096 1.540± 0.219± 0.069 2.478± 0.427± 0.131

q2 Interval 1.2− 1.6 ≥ 1.6 All q2

R 1.779± 0.324± 0.070 2.487± 0.455± 0.130 2.039± 0.143± 0.081
Γ(D0 → K−e+ν)/Γ(D+ → K̄0e+ν)

q2 Interval < 0.4 0.4− 0.8 0.8− 1.2
R 1.061± 0.030± 0.032 1.043± 0.035± 0.032 1.084± 0.046± 0.034

q2 Interval 1.2− 1.6 ≥ 1.6 All q2

R 1.047± 0.064± 0.038 0.874± 0.152± 0.033 1.055± 0.019± 0.033
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Table 8.3: Experimental measurements of the branching fraction ratios R0 and R+.

In the case where the PDG result is derived from several different measurements,

we quote their fit value rather than the average. The CLEO-c No Tag 2006 results

are from this analysis.

Measurement R0 R+

PDG 2006 [3] 0.080± 0.005 0.046± 0.014± 0.017

CLEOIII 2005 [55] 0.082± 0.006± 0.005 -

Belle 2006 [57] 0.081± 0.008± 0.003 -

CLEO-c No Tag 2006 0.084± 0.003± 0.001 0.044± 0.003± 0.001

8.2 Form Factors

The relationship between the form factor, f+(q2), and the branching fraction for

each mode can be derived from the partial decay width, Eq. 2.51. For the total

branching fraction the result is

B =
G2
F |Vcq|2

24π3Γtotal

∫ q2max

0
p3|f+(q2)|2dq2, (8.12)

where Γtotal is the total decay width of the parent D meson. However, we fit for

branching fraction results in five q2 bins, thus in the ith q2 bin we have

Bi =
G2
F |Vcq|2

24π3Γtotal

∫ q2max(i)

q2min(i)
p3|f+(q2)|2dq2. (8.13)

To fit for the form factor therefore we choose a functional form for f+(q2) and

perform a χ2 fit to the branching fraction in each q2 bin, via Eq. 8.13. The χ2 fit

takes into account the correlations between the branching fractions in each q2 bin

as given by the branching fraction fit. We thus minimize the expression

χ2 =
∑
ij

(Bi − yi)C
−1
ij (Bj − yj) , (8.14)
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where yi is the fit to the branching fraction in the ith q2 bin and C−1
ij is the inverse

of the covariance matrix. The integration in each bin is performed numerically

using the trapezoidal rule method.

The systematic errors for the form factor parameters are evaluated using the

same method as for the branching fraction analysis, that is we take the resulting

branching fractions for each systematic error modification, fit for the form factors

and find the difference from the nominal results. In addition, the specific systematic

errors evaluated are also the same as in the branching fraction analysis and a full

discussion of each source of error may be found in Chapter 7. There is only one

small caveat to this claim. For the systematic errors that are found by taking the

one sigma ellipse variations giving the largest deviation from the nominal result (π−

PID, K− PID, π0 finding and KS finding), the specific variation can differ between

the form factors and the branching fractions. This is simply the difference between

variations that make more difference to the shape of the q2 distribution and those

that make more difference to the overall yields.

For the functional form of f+(q2) we use the series parameterization as described

in the introduction (Section 2.4). For comparative purposes we also provide results

based on the two pole parameterizations described in Section 2.4. The parame-

terizations are fit to our measured rates from the five q2 regions. For the series

parameterization we perform fits using both the first two (Table 8.4) and the first

three (Table 8.5) expansion parameters ak. This tests both our sensitivity to the

number of parameters in the expansion and the convergence of the series. In both

cases we express our results in terms of the physical observables, the intercept

|Vcq|f+(0) and 1 + 1/β − δ, as well as giving the expansion parameters. For the

simple pole parameterization we fit for the intercept and the pole mass mpole, while
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for the modified pole parameterization we fit for the intercept and the shape pa-

rameter α, which summarizes the effective pole contribution. These results are also

given in Table 8.4. Plots of the various fits are shown for each mode in Figs 8.2

- 8.5. In order to elucidate the shape differences between the various parameteri-

zations it is convenient to normalize to the three parameter series result. The plots

for all fits and all modes with this normalization are given in Fig 8.6.

Table 8.4: Form factor parameters resulting from two parameter fits to the mea-

sured branching fractions, for the three models outlined in the text. In addition,

for each set of fit parameters we give the correlation coefficient ρ and the χ2/d.o.f.

of the fit.

Series Parameterization - Expansion Parameters
Decay a0 a1 ρ χ2/d.o.f.
π−e+ν 0.044(2)(1) −0.174(19)(7) 0.75 1.99/3
K−e+ν 0.0229(2)(3) −0.047(6)(3) 0.81 3.75/3
π0e+ν 0.046(2)(1) −0.12(3)(1) 0.73 3.96/3
K̄0e+ν 0.0218(3)(3) −0.046(9)(4) 0.80 4.89/3

Series Parameterization - Physical Parameters
Decay |Vcx|f+(0) 1 + 1/β − δ ρ
π−e+ν 0.140(5)(3) 1.27(11)(4) 0.86
K−e+ν 0.733(6)(8) 0.86(4)(2) 0.83
π0e+ν 0.146(7)(4) 1.01(16)(5) 0.81
K̄0e+ν 0.714(9)(11) 0.87(6)(3) 0.82

Simple Pole Model
Decay |Vcx|f+(0) mpole ρ χ2/d.o.f.
π−e+ν 0.145(4)(3) 1.87(3)(1) 0.78 3.19/3
K−e+ν 0.734(5)(8) 1.97(3)(2) 0.78 2.69/3
π0e+ν 0.149(6)(4) 1.96(7)(2) 0.68 4.4/3
K̄0e+ν 0.710(8)(10) 1.96(4)(2) 0.78 4.08/3

Modified Pole Model
Decay |Vcx|f+(0) α ρ χ2/d.o.f.
π−e+ν 0.141(4)(3) 0.37(8)(3) -0.80 2.08/3
K−e+ν 0.732(6)(8) 0.21(5)(3) -0.83 4.34/3
π0e+ν 0.147(7)(4) 0.14(16)(5) -0.79 4.05/3
K̄0e+ν 0.708(9)(10) 0.22(8)(4) -0.82 5.26/3
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Table 8.5: Three parameter series expansion fit results, where ρij is the correlation

coefficient for ai and aj.

Series Parameterization - Expansion Parameters
Decay a0 a1 a2 ρ01 ρ02 ρ12

π−e+νe 0.044(2)(1) -0.18(7)(2) -0.02(35)(12) 0.85 0.74 0.96
K−e+νe 0.0234(3)(3) -0.009(21)(7) 0.52(28)(6) 0.88 0.76 0.96
π0e+νe 0.043(2)(1) -0.23(11)(2) -0.60(56)(15) 0.84 0.72 0.96
K̄0e+νe 0.0224(4)(3) 0.009(32)(7) 0.76(42)(8) 0.87 0.76 0.96

Series Parameterization - Physical Parameters
Decay |Vcq|f+(0) 1 + 1/β − δ ρ χ2/d.o.f.
π−e+νe 0.139(7)(3) 1.30(37)(12) 0.87 1.98/2
K−e+νe 0.746(9)(9) 0.62(13)(4) 0.88 0.24/2
π0e+νe 0.138(11)(3) 1.59(60)(12) 0.88 2.81/2
K̄0e+νe 0.733(14)(11) 0.51(20)(4) 0.87 1.66/2

For the series expansion, comparison of the two and three parameter fits shows

that our kaon data prefers a nonzero quadratic z term. The probability of χ2

improves from 29% (18%) to 89% (44%) going from two to three terms in the

series for the K− (K0) fit. The pion measurements currently lack sensitivity to

probe this term, and two and three parameter fits yield similar results for the first

two parameters. Since a quadratic term appears preferred for the kaons, however,

we include that term in our series fits to the pion data to improve the probability

that our shape uncertainties bracket the true form factor shape. While the central

value for a2 is an order of magnitude larger than the other terms, we stress that

regions of parameter space with a2 of similar magnitude to a0 and a1 fall will within

the 90% hypercontour for the fit, so no strong statements can be made about the

size of a2 or about the convergence (or potential lack thereof) of the series from

these data.

We also observe that our data do not support the physical basis for the pole

parameterizations. The poles masses do not agree with the MD∗s (MD∗) masses
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Figure 8.2: Fits of the various form factor models to the measured branching frac-

tions of D0 → π−e+ν in five q2 bins. The solid line shows the series expansion three

parameter fit (Series(3)), the gray line shows the series expansion two parameter

fit (Series(2)), the dashed line shows the modified pole model fit and the dash-dot

line shows the simple pole model fit.
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Figure 8.3: Fits of the various form factor models to the measured branching frac-

tions of D0 → K−e+ν in five q2 bins. The solid line shows the series expansion

three parameter fit (Series(3)), the gray line shows the series expansion two pa-

rameter fit (Series(2)), the dashed line shows the modified pole model fit and the

dash-dot line shows the simple pole model fit.
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fit (Series(2)), the dashed line shows the modified pole model fit and the dash-dot

line shows the simple pole model fit.
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Figure 8.5: Fits of the various form factor models to the measured branching frac-

tions of D+ → K̄0e+ν in five q2 bins. The solid line shows the series expansion

three parameter fit (Series(3)), the gray line shows the series expansion two pa-

rameter fit (Series(2)), the dashed line shows the modified pole model fit and the

dash-dot line shows the simple pole model fit.
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two parameter fit (Series(2)), the dashed line shows the modified pole model fit

and the dash-dot line shows the simple pole model fit.
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expected for the kaon (pion) modes by over three standard deviations for the most

precise fits. The 1+1/β− δ results from the K− series expansion fit are over three

standard deviations from the value of ∼2 necessary for physical validity of the

BK parameterization, while those derived from our α values for the kaon modes

are tens of standard deviations away. In addition, a comparison of our results

for the shape parameters with those of other experimental measurements can be

found in Tables 8.6 and 8.7. With the exception of the Babar preliminary result for

D0 → K−e+ν, our results are in very good agreement with previous measurements.

It is also interesting to compare the shape of our q2 distributions to those

predicted using different theoretical methods. To make such a comparison we plot

the fraction of events in each q2 bin. In the ith bin the fraction is given by

Ni

Ntotal

=

∫ q2max(i)

q2min(i)
p3|f+(q2)|2dq2∫ q2max

0 p3|f+(q2)|2dq2
, (8.15)

where Ni is the number of events in bin i and Ntotal =
∑
Ni. Taking this ratio

ensures that we are completely independent of the normalization, f+(0), and there-

fore gives us a pure comparison of the shape parameters. We compare our data

results to four different theoretical shape predictions: recent LQCD results [14],

a LCSR calculation [17], a constituent quark model (CQM) result [19] and the

simple pole model. The predicted shape parameters for each of the models are

given in Table 8.8 for the D → K decays and Table 8.9 for the D → π decays.

Plots of the data theory comparisons for each mode are shown in Figs 8.7 - 8.10.

Our results for the kaon modes disagree with the LQCD prediction by about three

standard deviations. The pion modes, with larger errors, are in good agreement.
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Table 8.6: Experimental measurements of the D → K form factor shape param-

eters. Here α is the shape parameter for the modified pole model (Eq. 2.72) and

mpole is the pole mass of the simple pole model (Eq. 2.71). The first errors are

statistical and the second systematic. If only one error is given, it is the combined

statistical and systematic error. The CLEO-c tag results are preliminary numbers

and the CLEO-c No Tag 2006 results are the ones from this analysis.

Shape Parameter

Measurement α mpole GeV

E691 1989 [48] - 2.1+0.4
−0.2 ± 0.2

CLEO 1991 [49] - 2.0+0.4+0.3
−0.2−0.2

MarkIII 1991 [50] - 1.8+0.5+0.3
−0.2−0.2

CLEOII 1993 [51] - 2.00± 0.12± 0.18

E687 1995 [52] - 1.87+0.11+0.07
−0.08−0.06

CLEOIII 2005 [55] 0.36± 0.10+0.03
−0.07 1.89± 0.05+0.04

−0.02

FOCUS 2005 [56] 0.28± 0.08± 0.07 1.93± 0.05± 0.03

Belle 2006 [57] 0.40± 0.12± 0.09 -

Babar 2006 [58] 0.43± 0.03± 0.04 1.854± 0.016± 0.020

CLEO-c Tag 2006 D0 [61] 0.26± 0.06 1.94± 0.04

CLEO-c Tag 2006 D+ [61] 0.13± 0.10 2.02± 0.06

CLEO-c No Tag 2006 D0 0.21± 0.05± 0.03 1.97± 0.03± 0.02

CLEO-c No Tag 2006 D+ 0.22± 0.08± 0.04 1.96± 0.04± 0.02
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Table 8.7: Experimental measurements of the D → π form factor shape parame-

ters. Here α is the shape parameter for the modified pole model (Eq. 2.72) and

mpole is the pole mass of the simple pole model (Eq. 2.71). The first errors are

statistical and the second systematic. If only one error is given, it is the combined

statistical and systematic error. The CLEO-c tag results are preliminary numbers

and the CLEO-c No Tag 2006 results are the ones from this analysis.

Shape Parameter

Measurement α mpole GeV

CLEOIII 2005 [55] 0.37+0.20
−0.31 ± 0.15 1.86+0.10+0.07

−0.06−0.03

FOCUS 2005 [56] - 1.91+0.30
−0.15 ± 0.07

Belle 2006 [57] 0.03± 0.27± 0.13 -

CLEO-c Tag 2006 D0 [61] 0.20± 0.11 1.94± 0.04

CLEO-c Tag 2006 D+ [61] 0.04± 0.21 1.99± 0.10

CLEO-c No Tag 2006 D0 0.37± 0.08± 0.03 1.87± 0.03± 0.01

CLEO-c No Tag 2006 D+ 0.14± 0.16± 0.05 1.96± 0.07± 0.02
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Table 8.8: D → K form factor shape parameters from four different theoretical

predictions. Here α is the shape parameter for the modified pole model (Eq. 2.72)

and mpole is the pole mass of the simple pole model (Eq. 2.71). For the LQCD

results we have combined the statistical and systematic uncertainties.

Shape Parameter

Form Factor Calculation α mpole GeV

Simple Pole - 2.112

LQCD [14] 0.50± 0.06 -

LCSR [17] −0.07+0.15
−0.07 -

CQM [19] 0.24 -

Table 8.9: D → π form factor shape parameters from four different theoretical

predictions. Here α is the shape parameter for the modified pole model (Eq. 2.72)

and mpole is the pole mass of the simple pole model (Eq. 2.71). For the LQCD

results we have combined the statistical and systematic uncertainties.

Shape Parameter

Form Factor Calculation α mpole GeV

Simple Pole - 2.01

LQCD [14] 0.44± 0.06 -

LCSR [17] 0.01+0.11
−0.07 -

CQM [19] 0.30 -
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Figure 8.7: Fraction of events in each q2 bin for the decay mode D0 → π−e+ν. The

event fraction in the highest q2 bin is scaled to the same q2 range (0.4 GeV2) as

the other four bins. We compare our data results with four theoretical predictions:

LQCD [14], LCSR [17], CQM [19] and the simple pole model. The data errors

represent combined statistical and systematic uncertainties.
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Figure 8.8: Fraction of events in each q2 bin for the decay mode D0 → K−e+ν.

The event fraction in the highest q2 bin is scaled to the same q2 range (0.4 GeV2) as

the other four bins. We compare our data results with four theoretical predictions:

LQCD [14], LCSR [17], CQM [19] and the simple pole model. The data errors

represent combined statistical and systematic uncertainties.
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Figure 8.9: Fraction of events in each q2 bin for the decay mode D+ → π0e+ν. The

event fraction in the highest q2 bin is scaled to the same q2 range (0.4 GeV2) as

the other four bins. We compare our data results with four theoretical predictions:

LQCD [14], LCSR [17], CQM [19] and the simple pole model. The data errors

represent combined statistical and systematic uncertainties.



218

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.80

0.05

0.1

0.15

0.2
0.25

0.3

0.35

0.4

0.45

0.5

Data
LQCD
LCSR
CQM
Simple Pole

ν + e
0

K → +D

2 (GeV)2q

2
F

ra
ct

io
n

 o
f 

E
ve

n
ts

 p
er

 0
.4

 G
eV

Figure 8.10: Fraction of events in each q2 bin for the decay mode D+ → K̄0e+ν.

The event fraction in the highest q2 bin is scaled to the same q2 range (0.4 GeV2) as

the other four bins. We compare our data results with four theoretical predictions:

LQCD [14], LCSR [17], CQM [19] and the simple pole model. The data errors

represent combined statistical and systematic uncertainties.
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8.3 CKM Matrix Elements: Vcs and Vcd

We extract |Vcd| and |Vcs| by combining our |Vcq|f+(0)| results from the three

parameter series expansion fit with the unquenched LQCD results f+(0)(D0→π+) =

0.64(3)(6) and f+(0)(D0→K+) = 0.73(3)(7) [14]. For the D0 signal decay modes we

obtain

|Vcs| = 1.02± 0.01± 0.01± 0.11 (8.16)

and

|Vcd| = 0.218± 0.011± 0.005± 0.023, (8.17)

where the errors are statistical, systematic and theoretical respectively. For the

D+ signal decay modes we obtain

|Vcs| = 1.00± 0.02± 0.01± 0.10 (8.18)

and

|Vcd| = 0.216± 0.017± 0.005± 0.023, (8.19)

with the errors as for the D0 modes. Averaging the D0 and D+ results (taking

into account correlated and uncorrelated systematic uncertainties) we find

|Vcs| = 1.01± 0.01± 0.01± 0.11. (8.20)

and

|Vcd| = 0.217± 0.010± 0.004± 0.023 (8.21)

The uncertainties are dominated by the discretization uncertainty in the LQCD

charm quark action, which should be improved in the near future.3

3Here we refer specifically to the charm quark action used by the FNAL LQCD
group [14]. Other calculations, which should be available in the near future, e.g.,
those of the UKQCD group will not suffer from this problem.
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8.4 Conclusion

We have studied the four semileptonic charm decays D0 → π−e+ν, D0 → K−e+ν,

D+ → π0e+ν, and D+ → K̄0e+ν. These modes result from the decay of the

heavy charm quark to the lighter strange and down quarks and our measurements

provide information about their form factors and normalizations. For each mode

we have measured branching fractions and the appropriate branching fraction and

partial width ratios in five q2 ranges. For the total branching fractions we find

B(D0 → π−e+ν) = 0.299 ± 0.011 ± 0.008 %, B(D0 → K−e+ν) = 3.55 ± 0.03 ±

0.08 %, B(D+ → π0e+ν) = 0.371 ± 0.022 ± 0.013 %, and B(D+ → K̄0e+ν) =

8.53± 0.13± 0.22 %. While for the ratios we measure R0 = 0.084± 0.003± 0.001,

R+ = 0.044±0.003±0.001, Iπ = 2.04±0.14±0.08, and IK = 1.06±0.02±0.03. Our

results are based on total raw yields of 1325±49 D0 → π−e+ν events, 14352±132

D0 → K−e+ν events, 446 ± 26 D+ → π0e+ν events, and 5844 ± 88 D+ →

KS e
+ν events, where the errors are statistical only. These measurements are

about factor of two more precise than the previous CLEOIII measurements [55]

and are comparable in accuracy to the CLEO-c tagged D measurements.4 They

are all in good agreement with the updated PDG 2006 values [3].

In addition, our extraction of the branching fractions in five q2 ranges allows us

to study the properties of the q2 spectrum for each decay mode. In particular, we

have fit our results with three different parameterizations of the form factor: the

series parameterization, as well as the simple and modified pole parameterizations

for comparative purposes. For the Cabibbo favored modes we find that we are

4For all modes we have better or comparable statistical errors and slightly higher
systematic errors than in the tagged analysis. We expect our systematic errors to
be higher due to the neutrino reconstruction and our reliance on the measured
number of DD̄ pairs in our data sample.
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sensitive to the first three parameters in the series expansion. The accuracy of our

results also allows for an informative comparison of the shape of our spectra with

various theoretically predicted shapes. Such a comparison gives us an idea of how

well these methods can model form factors for the semileptonic B decays, which

are important for measuring the small CKM matrix element |Vub|.

Finally, using our results in combination with recent unquenched LQCD cal-

culations, we have made the most precise CKM determinations from D semilep-

tonic decays to date. We find |Vcd| = 0.217 ± 0.010 ± 0.004 ± 0.023 and |Vcs| =

1.01±0.01±0.01±0.11: results that agree very well with neutrino based determi-

nations of |Vcd| and charmed tagged W decay measurements of |Vcs| [2]. Overall,

these measurements represent a marked improvement in our knowledge concerning

D semileptonic decay.
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