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The recent discovery of dark energy has prompted an investigation of ways in which the

accelerated expansion of the universe can be realized. In this dissertation, we present two

separate projects related to dark energy. The first project analyzes a class of braneworld

models in which multiple branes float in a five-dimensional anti-de Sitter bulk, while the

second investigates a class of dark energy models from an effective field theory perspective.

Investigations of models including extra dimensions have led to modifications of gravity

involving a number of interesting features. In particular, the Randall-Sundrum model is

well-known for achieving an amelioration of the hierarchy problem. However, the basic model

relies on Minkowski branes and is subject to solar system constraints in the absence of a

radion stabilization mechanism. We present a method by which a four-dimensional low-energy

description can be obtained for braneworld scenarios, allowing for a number of generalizations

to the original models. This method is applied to orbifolded and uncompactified N -brane

models, deriving an effective four-dimensional action. The parameter space of this theory

is constrained using observational evidence, and it is found that the generalizations do not

weaken solar system constraints on the original model. Furthermore, we find that general

N -brane systems are qualitatively similar to the two-brane case, and do not naturally lead to

a viable dark energy model.

We next investigate dark energy models using effective field theory techniques. We describe

dark energy through a quintessence field, employing a derivative expansion. To the accuracy of

the model, we find transformations to write the description in a form involving no higher-order

derivatives in the equations of motion. We use a pseudo-Nambu-Goldstone boson construction



to motivate the theory, and find the regime of validity and scaling of the operators using

this. The regime of validity is restricted to a class of models for which both the derivative

expansion and EFT construction is valid, which forces the quintessence potential to be the

dominant source of energy-density in this class of model. The resulting effective theory is

described by nine free functions.
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Braneworld Models

These conventions are specific to Chapters 2 and 3, which investigate braneworld models.

• The metric g refers to a five-dimensional metric, while the metric h refers to a four-
dimensional metric.

• Many functions, coordinates and parameters will be indexed by some index n in this
work. For coordinates and parameters, the index will always be in the lower right, e.g,
xn. For functions, the index will be in the upper left, e.g, gn αβ.

• We use capital Greek letters (Γ,Σ,Θ) to index five-dimensional tensors in arbitrary
coordinate systems. When we specialize our coordinate system, we will use lowercase
Greek letters (α, β, γ) to index five-dimensional tensors. We use Roman letters (a, b, c)
for four-dimensional tensors.

• The stress-energy tensor for matter on a brane is defined as the following.

Sn m[ hn ab + δ hn ab, φ
n ] = Sn m[ hn ab, φ

n ]− 1

2

∫
d4wn

√
− hn Tn abδ h

n ab (0.0.1)

Dark Energy Models

These conventions are specific to Chapter 4, which investigates dark energy models.

• We use lowercase Greek letters (α, β, γ) to index all four-dimensional tensors.

• The Einstein and Jordan frame metrics are gµν and ḡµν respectively, and the correspond-
ing derivative operators are ∇µ and ∇̄µ.

• We use the usual abbreviations (∇φ)2 = gµν∇µφ∇νφ and �φ = ∇µ∇µφ.

• Primes denote derivatives with respect to the appropriate scalar field (almost always φ),
as in U ′(φ).

• We take εµνλρ to be the antisymmetric tensor with ε0123 = 1/
√
−g.

• We define the (Jordan-frame) stress-energy tensor T ν
µ in the usual way in terms of the

Jordan-frame metric ḡµν that appears in the matter action Sm:

Sm[ḡµν + δḡµν , ψm]− Sm[ḡµν , ψm] =
1

2

∫
d4x
√
−ḡT ν

µ ḡµλδḡλν +O(δḡ2). (0.0.2)

Note that this definition differs from the definition used in the braneworld project.

We then define T = T µ
µ , and define the quantities Tµν and T µν by raising and lowering

indices with the Einstein-frame metric gµν , which is related to ḡµν via Eq. (4.2.4). To
zeroth-order in ε this stress energy tensor obeys the conservation law

e−2α∇λ(e
2αT λσ) =

1

2
α′T∇σφ+O(ε). (0.0.3)
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Chapter 1

Introduction

Contents

1.1 Theoretical Underpinnings of Cosmology . . . . . . . . . . . . . 1

1.2 Experimental Evidence for Dark Energy . . . . . . . . . . . . . 3

1.3 Theory Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Other Issues in Theoretical Physics . . . . . . . . . . . . . . . . 10

1.5 Structure of this Dissertation . . . . . . . . . . . . . . . . . . . . 11

The recent discovery of the accelerating expansion of the Universe [9, 10] has prompted

many theoretical speculations about the underlying mechanism. The most likely mechanism

is a cosmological constant, which is the simplest model and is in good agreement with

observational data. More complicated models involve new dynamical sources of gravity that

act as dark energy, and/or modifications to general relativity on large scales.

1.1 Theoretical Underpinnings of Cosmology

We begin with a very brief review of ΛCDM cosmology (see, e.g., [11]). On the largest scales,

the universe appears to be very homogeneous and isotropic. Modelling the universe as a

homogeneous and isotropic background with perturbations, it is straightforward to show that

the background metric must be that of a Friedmann-Robertson-Walker (FRW) universe.

ds2 = −dt2 + a(t)2

(
dr2

1− kr2
+ r2dΩ2

)
(1.1.1)

1



Here, a(t) is known as the scale factor of the universe scaled such that a(t) = 1 today, and k

describes the curvature of the universe. Current observations suggest that the universe is

very close to flat, corresponding to k ∼ 0.

The Einstein equations, using this metric and the assumptions of homogeneity and isotropy

lead to the Friedmann equations.

H2 =
8πG

3
ρ− k

a2
(1.1.2)

ä

a
= −4πG

3
(ρ+ 3P ) +

Λ

3
(1.1.3)

Here, H = ȧ/a is the Hubble factor, ρ and P are the average energy density and pressure of

everything in the universe (excluding curvature), and Λ represents the cosmological constant.

The statement that the universe’s expansion is accelerating corresponds to ä/a in Eq.

(1.1.3) being positive. Evidently, this requires either the existence of a (positive) cosmological

constant, or a dominant form of matter with equation of state w = P/ρ < −1/3.

From Eq. (1.1.2), we can define a critical density today for which there is no curvature

ρc =
8πGρ

3H2
0

(1.1.4)

where H0 is the Hubble factor today, also known as the “Hubble constant”. Dividing the

Friedmann equation by H2
0 , splitting the energy density into a cosmological constant, matter

(scaling as a(t)−3) and photons (scaling as a(t)−4), and writing these densities in terms of the

density fractions ΩX = ρX/ρc, we have(
H

H0

)2

= Ωmattera
−3 + Ωγa

−4 + ΩΛ + Ωka
−2 (1.1.5)

where Ωk = −3k/8πGρc. Evaluating this equation today yields

1 = Ωmatter + Ωγ + ΩΛ + Ωk, (1.1.6)

and so we may think of ΩX as the fraction of the universe made up of X today. WMAP 7

year results [12] indicate that Ωmatter ∼ 0.27, Ωγ ∼ 0, ΩΛ ∼ 0.73, and Ωk ∼ 0. The universe
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is thus presently dominated by the presence of dark energy, which will continue to become

more important in the future. It can be seen that the large scale future of the universe is

intimately related to the behavior of dark energy.

1.2 Experimental Evidence for Dark Energy

Following the initial announcements of the accelerating expansion of the universe in 1998, a

number of separate experimental signatures of dark energy have been discovered. We briefly

review the different experimental evidence for dark energy to date. Figure 1 shows how

different methods combine to produce strong evidence for the phenomenon.

I Type 1a Supernovae

Supernovae are very bright explosions of stars, and have been classified into different classes

depending on their properties, which in turn correspond to the original composition of the

star. Type Ia supernovae occur when white dwarfs accrete matter beyond the Chandrasekhar

mass and explode. Because the mass of all such objects is the same when it explodes, Type Ia

supernovae are expected to explode with almost identical signatures, leading them to be called

“standard candles”. In particular, the luminosity L is constant between such events1, and

so measuring the flux from the supernova allows the calculation of the luminosity distance

from f = L/4πd2
L. Because the luminosity distance relation depends on the integrated

cosmological history, measurements of Type 1a supernovae at different redshifts allow for

the recent cosmological history to be ascertained. Figure 2 presents early evidence of the

accelerated expansion of the universe.

3



Figure 1: Constraints on the ΩΛ vs Ωmatter plot, showing contributions from the cosmic
microwave background, Type Ia supernovae, and baryon acoustic oscillations (ex-
cluding systematic errors). Note that the three methods are highly complementary.
Figure from Ref. [13]. Reproduced by permission of the AAS.
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lowed up. This approach also made it possible to use the
Hubble Space Telescope for follow-up light-curve observa-
tions, because we could specify in advance the one-square-
degree patch of sky in which our wide-field imager would
find its catch of supernovae. Such specificity is a require-
ment for advance scheduling of the HST. By now, the
Berkeley team, had grown to include some dozen collabo-
rators around the world, and was called Supernova Cos-
mology Project (SCP). 

A community effort
Meanwhile, the whole supernova community was making
progress with the understanding of relatively nearby su-
pernovae. Mario Hamuy and coworkers at Cerro Tololo
took a major step forward by finding and studying many
nearby (low-redshift) type Ia supernovae.7 The resulting
beautiful data set of 38 supernova light curves (some
shown in figure 1) made it possible to check and improve
on the results of Branch and Phillips, showing  that type
Ia peak brightness could be standardized.6,7

The new supernovae-on-demand techniques that per-
mitted systematic study of distant supernovae and the im-
proved understanding of brightness variations among
nearby type Ia’s spurred the community to redouble its ef-
forts. A second collaboration, called the High-Z Supernova
Search and led by Brian Schmidt of Australia’s Mount
Stromlo Observatory, was formed at the end of 1994. The
team includes many veteran supernova experts. The two
rival teams raced each other over the next few years—oc-
casionally covering for each other with observations when
one of us had bad weather—as we all worked feverishly to
find and study the guaranteed on-demand batches of 
supernovae.

At the beginning of 1997, the SCP team presented the
results for our first seven high-redshift supernovae.8 These
first results demonstrated the cosmological analysis tech-
niques from beginning to end. They were suggestive of an
expansion slowing down at about the rate expected for the
simplest inflationary Big Bang models, but with error bars
still too large to permit definite conclusions.

By the end of the year, the error bars began to tighten,
as both groups now submitted papers with a few more su-
pernovae, showing evidence for much less than the ex-
pected slowing of the cosmic expansion.9–11 This was be-
ginning to be a problem for the simplest inflationary
models with a universe dominated by its mass content.

Finally, at the beginning of 1998, the two groups pre-
sented the results shown in figure 3.12,13

What’s wrong with faint supernovae? 
The faintness—or distance—of the high-redshift super-
novae in figure 3 was a dramatic surprise. In the simplest
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Exploding White Dwarfs

Aplausible, though unconfirmed, scenario would explain
how all type Ia supernovae come to be so much alike,

given the varied range of stars they start from. A lightweight
star like the Sun uses up its nuclear fuel in 5 or 10 billion
years. It then shrinks to an Earth-sized ember, a white dwarf,
with its mass (mostly carbon and oxygen) supported against
further collapse by electron degeneracy pressure. Then it
begins to quietly fade away.

But the story can have a more dramatic finale if the white
dwarf is in a close binary orbit with a large star that is still
actively burning its nuclear fuel. If conditions of proximity
and relative mass are right, there will be a steady stream of
material from the active star slowly accreting onto the white
dwarf. Over millions of years, the dwarf’s mass builds up
until it reaches the critical mass (near the Chandrasekhar
limit, about 1.4 solar masses) that triggers a runaway ther-
monuclear explosion—a type Ia supernova.

This slow, relentless approach to a sudden cataclysmic
conclusion at a characteristic mass erases most of the orig-
inal differences among the progenitor stars. Thus the light
curves (see figure 1) and spectra of all type Ia supernovae
are remarkably similar. The differences we do occasionally
see presumably reflect variations on the common theme—
including differences, from one progenitor star to the next,
of accretion and rotation rates, or different carbon-to-oxy-
gen ratios.

Figure 3. Observed magnitude
versus redshift is plotted for

well-measures distant12,13 and
(in the inset) nearby7 type Ia su-
pernovae. For clarity, measure-
ments at the same redshift are

combined. At redshifts beyond
z = 0.1 (distances greater than
about 109 light-years), the cos-

mological predictions (indi-
cated by the curves) begin to

diverge, depending on the as-
sumed cosmic densities of

mass and vacuum energy. The
red curves represent models

with zero vacuum energy and
mass densities ranging from the
critical density rc down to zero
(an empty cosmos). The best fit

(blue line) assumes a mass 
density of about rc /3 plus a

vacuum energy density twice
that large—implying an accel-

erating cosmic expansion.

the

d

d

Figure 2: Luminosity of observed Type Ia supernovae plotted against redshift, including a
comparison to dependence on expansion history of the universe. Figure from Ref.
[14]. Reprinted by permission of the AIP.

II Baryon Acoustic Oscillations

In the early hot universe, pressure waves from density fluctuations were able to travel

through the primordial medium only a certain distance before decoupling, at which point

photons decoupled from the newly-formed neutral hydrogen. This sound horizon imprints a

characteristic scale on the matter distribution, and can be measured from perturbations in the

cosmic microwave background (CMB) radiation. Assuming that these initial perturbations

seed galaxy formation, this characteristic scale can then be inferred today from a statistical

analysis of galaxy surveys. Identifying the sound horizon scale as a function of redshift of

the galaxies allows the identification of the expansion history of that scale, and therefore

the expansion history of H as a function of redshift. This method is particularly useful as a

complementary probe to supernova measurements, as can be seen in Fig. 3.

1Or at least, is standardizable between such events.
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Fig. 3.— Contour plots of ΩΛ vs. ΩM for 1 + w = 0 for SALT, with no assumptions

about flatness. The concordance cosmology (ΩΛ= 0.73, ΩM= 0.27) is shown as a dot. The

top panel shows how adding the CfA3 sample considerably narrows the contours along the

ΩΛ axis. The bottom panel shows the combination of the SN contours with the BAO prior,

with the flat-universe straight line overplotted for reference.

Figure 3: Recent constraints on the ΩΛ vs Ωmatter plot, comparing results from Type Ia
supernovae and baryon acoustic oscillations. Figure from Ref. [15]. Reproduced
by permission of the AAS.

III Weak Lensing Surveys

When light from a distant galaxy passes a large mass, such as a galaxy cluster, the light

is deflected. This phenomenon is known as gravitational lensing (see Fig. 4). The angle

of deflection depends on the mass of the cluster, and the ratios of distances between the

observer, lens and source. While the deflection angle cannot be inferred directly, such lensing

tends to distort the picture of a galaxy, shearing its image by ∼ 2%. When large numbers of

galaxies are observed, a bias in nearby galaxies to have aligned shapes leads to a statistical

picture of the deflection angle. Knowledge of how the deflection angle behaves leads to a

probe of the expansion history from its dependence on proper distances.
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Figure 4: Diagrammatic overview of weak lensing phenomenon. Figure from Ref. [16].
Reproduced by permission of authors.

IV Cluster Surveys

The largest structures in the universe are galaxy clusters. It is possible to predict a mass

function dN/(dMdV ) for the abundance of such clusters, particularly with the aid of N -body

simulations. These predictions can be compared to observations from galaxy surveys. The

dependence on dark energy can be extracted from the comoving volume element, which

depends on the scale factor, which thus traces the cosmological history. A further dependence

on the expansion rate comes from the way the mass function depends on the growth of

perturbations, which is in turn sensitive to the Hubble factor. Comparisons to the size

of perturbations in the CMB allow this dependency to be accounted for in predicting the

expected mass function.

V Current Constraints on Dark Energy

The most current constraints on dark energy come from the WiggleZ survey [17]. For the

equation of state parameter w = P/ρ for dark energy, they find w = −1.03± 0.08, consistent

with a cosmological constant (wΛ = −1). Allowing for an equation of state that varies with

7



18 Blake et al.

Figure 17. The joint probability for parameters Ωk and w fitted
to various combinations of WMAP, BAO and SNe distance data,
marginalized over Ωm and Ωmh2. The two contour levels in each
case enclose regions containing 68.27% and 95.45% of the total
likelihood.

Figure 18. The joint probability for parameters w0 and wa de-
scribing an evolving equation-of-state for dark energy, fitted to
various combinations of WMAP, BAO and SNe distance data,
marginalized over Ωm and Ωmh2 and assuming Ωk = 0. The two
contour levels in each case enclose regions containing 68.27% and
95.45% of the total likelihood.

the parameters for the various models, for the fits using all
three datasets, are listed in Table 4.

8 CONCLUSIONS

We summarize the results of our study as follows:

• The final dataset of the WiggleZ Dark Energy Survey
allows the imprint of the baryon acoustic peak to be detected
in the galaxy correlation function for independent redshift
slices of width ∆z = 0.4. A simple quasi-linear acoustic peak
model provides a good fit to the correlation functions over
a range of separations 10 < s < 180 h−1 Mpc. The result-
ing distance-scale measurements are determined by both the
acoustic peak position and the overall shape of the clus-
tering pattern, such that the whole correlation function is

being used as a standard ruler. As such, the acoustic param-
eter A(z) introduced by Eisenstein et al. (2005) represents
the most appropriate distilled parameter for quantifying the
WiggleZ BAO measurements, and we present in Table 2 a
3×3 covariance matrix describing the determination of A(z)
from WiggleZ data at the three redshifts z = 0.44, 0.6 and
0.73. We test for systematics in this measurement by vary-
ing the fitting range and implementation of the quasi-linear
model, and also by repeating our fits for a dark matter halo
subset of the Gigaparsec WiggleZ simulation. In no case do
we find evidence for significant systematic error.

• We present a new measurement of the baryon acoustic
feature in the correlation function of the Sloan Digital Sky
Survey Luminous Red Galaxy (SDSS-LRG) sample, finding
that the feature is detected within a subset spanning the
redshift range 0.16 < z < 0.44 with a statistical significance
of 3.4-σ. We derive a measurement of the distilled parameter
dz=0.314 = 0.1239 ± 0.0033 that is consistent with previous
analyses of the LRG power spectrum.

• We combine the galaxy correlation functions measured
from the WiggleZ, 6-degree Field Galaxy Survey and SDSS-
LRG samples. Each of these datasets shows independent ev-
idence for the baryon acoustic peak, and the combined cor-
relation function contains a BAO detection with a statistical
significance of 4.9-σ relative to a zero-baryon model with no
peak.

• We fit cosmological models to the combined 6dFGS,
SDSS and WiggleZ BAO dataset, now comprising six
distance-redshift data points, and compare the results to
similar fits to the latest compilation of supernovae (SNe)
and Cosmic Microwave Background (CMB) data. The BAO
and SNe datasets produce consistent measurements of the
equation-of-state w of dark energy, when separately com-
bined with the CMB, providing a powerful check for sys-
tematic errors in either of these distance probes. Combining
all datasets, we determine w = −1.034±0.080 for a flat Uni-
verse, and Ωk = −0.0040±0.0062 for a curved, cosmological-
constant Universe.

• Adding extra degrees of freedom always produces best-
fitting parameters consistent with a cosmological constant
dark-energy model within a spatially-flat Universe. Vary-
ing both curvature and w, we find marginalized errors
w = −1.063 ± 0.094 and Ωk = −0.0061 ± 0.0070. For a
dark-energy model evolving with scale factor a such that
w(a) = w0 + (1− a)wa, we find that w0 = −1.09± 0.17 and
wa = 0.19 ± 0.69.

In conclusion, we have presented and analyzed the most
comprehensive baryon acoustic oscillation dataset assembled
to date. Results from the WiggleZ Dark Energy Survey have
allowed us to extend this dataset up to redshift z = 0.73,
thereby spanning the whole redshift range for which dark en-
ergy is hypothesized to govern the cosmic expansion history.
By fitting cosmological models to this dataset we have es-
tablished that a flat ΛCDM cosmological model continues to
provide a good and self-consistent description of CMB, BAO
and SNe data. In particular, the BAO and SNe yield con-
sistent measurements of the distance-redshift relation across
the common redshift interval probed. Our results serve as a
baseline for the analysis of future CMB datasets provided
by the Planck satellite (Ade et al. 2011) and BAO mea-

Figure 5: Current constraints on the equation of state of dynamical dark energy, using
the parametrization given in Eq. 1.2.1. Figure rom Ref. [17]. Reproduced by
permission of John Wiley and Sons.

redshift as2

w(a) = w0 + (1− a)wa, (1.2.1)

they find w0 = −1.09 ± 0.17 and wa = 0.19 ± 0.69, also consistent with a cosmological

constant. Their fitting curves are shown in Fig. 5.

1.3 Theory Space

Since the discovery of the accelerated expansion of the universe, a large number of models

have been proposed to give rise to this phenomenon.

The simplest model is a cosmological constant, with an energy density ρ ∼ (10−3 eV)4.

While all current data is satisfied by a cosmological constant, the value it appears to take is

in gross conflict with theoretical estimates. Assuming that the cosmological constant is the

2Note that redshift z is related to the scale factor by 1 + z = 1/a.
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vacuum energy density of spacetime, this corresponds to ρ ∼ m4
P , 120 orders of magnitude

away from its measured value. This is known as the “cosmological constant problem”.

A number of other models have been proposed, which typically attempt to avoid the

cosmological constant problem by assuming that the vacuum energy of spacetime doesn’t

gravitate (i.e., Λ = 0), and searching for a dynamical field to emulate the desired behavior.

The next simplest model, dubbed “quintessence”, involves a minimally coupled scalar

field rolling in a potential. The present energy density of the universe is then dominated

by energy stored in the scalar field potential. It can be shown that such a model can yield

any desired cosmological evolution through fine-tuning the quintessence potential. Various

quintessence potentials have been shown to be attractor solutions, so that models can be

relatively agnostic with regards to the initial conditions in the universe. Quintessence models

suffer from two major problems. Firstly, it is often difficult to protect the quintessence

potential from quantum loop corrections. To be effective, the quintessence mass must be on

the order of the Hubble scale (∼ 10−33 eV), which is difficult to protect without invoking a

broken symmetry, such as for pseudo-Nambu-Goldstone bosons (pNGBs). Secondly, the light

mass of quintessence fields mean that any coupling to standard model fields will give rise to

a long range force, which has not been observed in nature.

A variation on quintessence called k-essence [18, 19] is based on using functions of (∇φ)2

in the action to generate the desired energy density based on kinetic energy rather than

potential energy.

Further afield, modifications to gravity such as extra dimensions, Ghost Condensates [20],

DGP gravity [5], and f(R) gravity, to name but a few, have been proposed over the past

decade. See Refs. [21, 22, 23, 24, 25, 26, 27] for detailed reviews of these and other models.

While many models of dark energy have been shown to produce an acceptable cosmological

history, the greatest discriminating factor for such models will come from understanding the

perturbative behavior of the model. For this reason, it is of great interest to construct a
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generic manner in which dark energy models may be tested against observations. We begin

to address this question in Chapter 4, and discuss future work in Chapter 5.

1.4 Other Issues in Theoretical Physics

There are a number of other issues in theoretical physics which motivate the exploration of

modified gravity models.

It turns out that constructing a consistent modification to gravity is surprisingly difficult.

In the low-energy limit, a theorem due to Weinberg [28] requires that the behavior of massless

spin-two fields is that of general relativity, which entails that any modification is equivalent

to the introduction of new fields. For such fields to be observationally consistent often

requires that they are either too weakly-coupled or too massive to mimic dark energy. A few

exceptions exist (e.g. Galileon [29, 30, 31], but are plagued with issues such as superluminal

propagation.

Circumventing Weinberg’s theorem by looking at massive gravity has historically suffered

from the infamous vDVZ discontinuity [32, 33] and the Boulware-Deser ghost [34], although

recent attempts at constructing a consistent bimetric massive gravity theory have been able

to overcome this issue [35]. However, they in turn suffer from arbitrariness of the background

metric.

On the high-energy side, it is universally accepted that gravity must become modified at

energies approaching the Planck scale, as näıve scattering amplitudes diverge. However, there

are numerous difficulties involved in constructing a consistent theory of quantum gravity.

The current leading candidate is string theory, although there is a long way to go to connect

the ideas of string theory to our present universe.

Related to the high energy scale is the hierarchy problem of particle physics. In a quantum

field theory, the mass of a scalar field is not protected by a symmetry, and typically receives
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loop corrections, driving it up to the cutoff scale of the theory. Given a cutoff scale of the

Planck mass, it is an unsolved question as to why the recently-discovered Higgs boson [36, 37]

has a mass ∼ 125 GeV. The presently favoured mechanism for doing so is supersymmetry at

a TeV scale. However, it is possible that the four-dimensional gravitational constant is only

an effective scale derived from some more fundamental scale, such as in the RS-I model [6].

The issue of scalar field masses particularly plagues quintessence models, which require a

mass to be protected at around the present-day Hubble scale (10−33 eV).

The final issue we discuss is that of dark matter. One possibility for the weakness of

the interaction strength between normal matter and dark matter comes from the idea of

sequestration, or physically removing the standard model and dark matter fields. This idea

has been of particular interest in braneworld models.

Along with dark energy, these issues provide a number of reasons to investigate various

modifications to gravity.

1.5 Structure of this Dissertation

This dissertation is a combination of two separate investigations. The first looks at a class of

braneworld models, with interest in fields that may give rise to dark energy-like behavior.

The second investigates a broad class of dark energy models, using the tools of effective

field theory to construct a generic model of dark energy that can describe a large amount of

theory-space.

In Chapter 2, we introduce the idea of extra-dimensional models of the universe. We begin

by reviewing the historical evolution of ideas in this field, and describe the significant results.

One of the most important aspects of a model involving extra dimensions is the manner

in which those extra dimensions are hidden from us. The mechanism used to do so will

inevitably leave an imprint on the resulting four-dimensional universe that we observe, and it
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is thus of great interest to understand the four-dimensional universe that one would expect

to observe, given a model involving extra dimensions. This chapter focuses on extensions

to the Randall-Sundrum (RS) braneworld models, and the task of calculating an effective

four-dimensional description for them. A computational method is proposed and described

in detail through the implementation of the method for an uncompactified N -brane model in

five dimensions.

Chapter 3 builds upon the results of the previous chapter. Having derived a four-

dimensional effective description for a class of braneworld models, it is of interest to understand

the physics of those models. We begin by investigating the conditions under which no ghosts

appear in the theory, and focus our attention on the subclass of theories that satisfy this

condition. We then investigate gravitational interactions between different branes, and

identify the behavior of the Parameterized Post-Newtonian (PPN) γ parameter. Next, we

look at the possibility of using the discussed models to sequester dark matter on a separate

physical brane from standard model fields, in order to give a physical reason for the weak

interaction strength between standard model and dark matter fields. Unfortunately, the

models we investigated did not give rise to dark energy behavior, and we discuss this in

conclusion.

We then turn to a very different approach. Rather than investigating specific models or

classes of models, we develop an inclusive approach to investigating dark energy models in

Chapter 4, where we employ an effective field theory approach to quintessence. Such an

approach is of particular interest in putting observational constraints on possible terms in

the lagrangian for dynamical dark energy. An appropriate expansion method is identified,

and the operators in the action are written down. Next, a number of field redefinitions

are employed to simplify the action. We then investigate a possible UV motivation for the

resulting theory using a pseudo-Nambu-Goldstone boson construction. This construction

allows us to determine the scaling of each of the operators in our effective action, and also to

identify the regime of validity of the description.
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In Chapter 5, we conclude by describing the overlap between these two approaches. We

demonstrate the “middle ground” in which our four-dimensional effective description of a

braneworld model is described in the more general approach of an effective field theory

construction. We discuss possibilities for future theoretical work, and briefly describe

upcoming experiments and the scientific impact that these experiments are expected to have

on the field of dark energy.

A number of appendices are included. Appendix A describes the exact five-dimensional

equations of motion for the braneworld models of Chapter 2, which are used to motivate the

approximation scheme. Appendix B briefly outlines the application of our method for finding

the four-dimensional effective description to orbifolded models. Appendix C describes the

Kaluza-Klein (KK) modes of our braneworld models, complementing the analysis included in

Chapter 3.

One of the requirements we impose on our effective field theory of dark energy is that it

must maintain the weak equivalence principle (WEP). In Appendix D, we describe various

aspects of the WEP, and show how it is obeyed within the regime of validity of our analysis.

The reduction of order technique used in our EFT is described in detail in Appendix E. The

work described in Chapter 4 builds on previous work; Appendix F provides a comparison

between this and the work presented here. The full equations of motion for our effective theory

are presented in Appendix G. Finally, we provide details on how the scaling of operators in

the EFT is derived from the pNGB perspective in Appendix H.
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Chapter 2

The Low-Energy Effective Scalar

Sector of Multibrane-Worlds
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The idea of extra-dimensional models of the universe dates back to at least Kaluza and

Klein in the 1920’s [38, 39]. Due to issues with the basic model presented there, the idea

was largely ignored until its revival with string theory, which depending upon the field

content, requires anywhere from 10 to 26 dimensions. In the late 1990’s, motivated by ideas

from string theory, the notion of constraining matter fields to a membrane (“brane”) in a

higher-dimensional spacetime was used to resurrect the ideas of Kaluza and Klein. This led

to a series of models designed to address a variety of theoretical issues, in particular, the

hierarchy problem, the cosmological constant problem, and dark matter. Braneworld models

have become a very active field of research with many papers investigating extensions to the
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basic ideas (see, e.g., [40, 41, 42] and citations therein).

In this chapter, we develop a method to acquire a low-energy effective description of a

five-dimensional braneworld model which contains an arbitrary (but finite) number of branes.

Our goal is to devise a simple method that yields a four-dimensional action which captures

the leading-order effects of braneworld models. This chapter is based on work presented in

[1].

2.1 Braneworld Models

We begin with a brief overview of the features of significant extra-dimensional models which

are relevant to this work.

I Kaluza-Klein Model

The first important extra-dimensional model is that of Kaluza and Klein [38, 39], dating back

to the 1920s. They had noticed that if a five-dimensional metric ansatz is decomposed into a

four-dimensional metric, a four-vector, and a scalar, one recovers a four-dimensional Ricci

scalar, and a Maxwell-like term for the four-vector. Based on this observation, they proposed

a mechanism to unify electromagnetism with gravity based on a fifth dimension.

The first step in any extra-dimensional model is to hide the fifth dimension from current

observations. They proposed doing so by having the fifth dimension curled up on itself so

tightly that it is effectively invisible at low energies. To do so, they introduced a circular

compactification with periodic boundary conditions, and proposed the radius L of this circle

to be sufficiently small.

Assuming the extra dimension is flat, one can then decompose a field into Fourier modes

over the extra dimension. We demonstrate with a massive scalar field. Call the dimensions
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xa and y. The scalar field then obeys a wave equation

�(5)φ = m2φ. (2.1.1)

Identifying y ⇔ y + 2πnL, n ∈ Z, we can then decompose the field into a fourier expansion

over the fifth dimension,

φ(xa, y) =
∑
n

eiyn/Lφn(xa). (2.1.2)

Looking at an individual mode φn, we find from the scalar equation of motion

�(4)φn(xa) =

(
m2 +

n2

L2

)
φn(xa). (2.1.3)

These mode functions φn(xa) are called “Kaluza-Klein” (KK) modes, formed from a decom-

position of the field over the extra dimension, and collectively form the “Kaluza-Klein tower”.

The four dimensional modes have a modified mass, given by

m2
n = m2 +

n2

L2
. (2.1.4)

The spacing of these modes is characteristic of compactification over a flat extra dimension.

The idea of Kaluza and Klein suffered from a number of drawbacks. Firstly, it proposed

the existence of a Kaluza-Klein tower of modes for each known particle, such as the electron,

and nobody had ever observed a “heavy” electron. Secondly, it is difficult to include fermions

in such a model, because of the different types of fermions which exist in different dimensions.

Thirdly, the scalar mode, now called the “radion” mode, which governs the size of the extra

dimension, needs be fixed in some manner. Näıve estimates for the size of the extra dimension

suggest L ∼ m−1
P . Finally, the strength with which the electromagnetic field couples to matter

was the same as the gravitational coupling, in stark contrast to experiment. The inability to

change this final problem led to the idea being dropped for seventy years.

Nevertheless, the Kaluza-Klein model remains an important model, as it introduces the

basic ideas of compactification, Kaluza-Klein modes, radion modes and the need for radion

stabilization, which are all important in recent investigations of extra-dimensional models.
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II ADD Model

In 1998, Arkani-Hamed, Dvali and Dimopoulos resurrected the Kaluza-Klein model, by

borrowing the idea of a brane from string theory. They suggested that if standard model

fields were constrained to live on a brane in some number of extra dimensions, then only

gravity would develop Kaluza-Klein modes. Estimates for the effect of the gravitational

coupling of such modes suggested that extra dimensions as large as one millimetre might be

feasible. This model became known as the ADD model [4, 43].

The important aspect of the ADD model is that four-dimensional observers experience

an effective Planck scale that is derived from a more fundamental, higher-dimensional

gravitational scale, based on the size of the extra dimensions. For simple estimates, the

effective Planck scale is given by

m2
P ∼M2+n

? V(n) (2.1.5)

where mP is the four-dimensional Planck mass, M? is the fundamental gravitational scale,

n is the number of extra dimensions, and V(n) is the volume of the extra dimensions. This

implies that it may be possible to significantly alleviate the hierarchy problem of particle

physics through the use of extra-dimensional models.

One of the more exciting predictions from this model is that a reduced fundamental

gravitational scale would make the production of black holes in collider experiments possible

upon reaching energies ∼M?. This in turn led to fears that the LHC would produce a black

hole that would destroy the world.

III Randall-Sundrum Model

Following the ADD model, Randall and Sundrum proposed that it is possible to give rise

to the desired hierarchy without small compactification of the extra dimension, by using

warping in the extra dimension from a bulk cosmological constant. Using two branes at the
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fixed points of an orbifold with a negative bulk cosmological constant was shown to provide

exponential enhancement of the effective Planck scale on the brane with the smaller warp

factor (called the TeV brane). Furthermore, hints that four-dimensional gravity was shown

to be recovered on the brane were shown, and the KK modes were shown to be sufficiently

weakly coupled that they did not change the 1/r2 force law within the regime in which gravity

has been experimentally tested. This model is known as the Randall-Sundrum model, or

RS-I [6].

A second model, involving only one brane in an infinite five-dimensional anti de-Sitter

(AdS) bulk, was shown to be able to do away with compactification entirely, relying on the

curvature of AdS space to confine gravity to the brane. While this model did not give rise to

a useful hierarchy, it did demonstrate a mechanism for infinite extra dimensions. This model

is known as the RS-II model [7].

Building on the success of the Randall-Sundrum model, many papers have considered

various extensions to it, including bulk fields [44], radion stabilization mechanisms [45, 46],

and models including more than one or two branes [47, 48, 49, 50, 51, 52]. A wealth of

knowledge of the phenomenology of these models has been accumulated (see [40, 41, 42, 53, 54]

and citations therein, for example).

2.2 Previous Work

Having discussed historical developments in this field, we now move on to detail previous

work pertinent to the results that will be presented here.

I Four-Dimensional Effective Descriptions

Several different approximation and computational methods have been used to extract physical

predictions from extra-dimensional models. In particular, many models have an effective
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four-dimensional regime at low energies, where the radius of curvature of spacetime measured

by four-dimensional observers is much larger than a certain microphysical lengthscale. We

review some of the computational methods that have been used to obtain a four-dimensional

description of five-dimensional braneworld models, in order to place our results in context.

One method is to linearize the higher dimensional equations of motion about simple

background solutions, then specialize to the long-lengthscale limit in order to obtain the

linearized four-dimensional effective theory (which roughly corresponds to discarding the

Kaluza-Klein modes). This method was used by Garriga and Tanaka [55] in their analysis of

the RS-I model [6], who showed that linearized Einstein gravity is recovered on one of the

branes in a particular regime. Further analyses to quadratic order and analyses on other

backgrounds have also been performed; see, for example, Refs. [56, 57, 58, 59]. Linearized

analyses have many advantages: they are quick and simple, and serve to identify all of the

dynamical degrees of freedom in the theory, particularly the Kaluza-Klein modes. However,

the linearized method is inherently limited and cannot describe strong field phenomena such

as cosmology and black holes.

A second method is to project the five-dimensional equations of motion onto a brane;

see, for example, Ref. [60]. This “covariant curvature” formalism fully incorporates the

nonlinearities of the theory. However, the projected description includes nonlocal terms, and

the truncation to a low-energy effective theory is nontrivial, except in cases with high degrees

of symmetry.

In order to overcome some of these shortcomings, Kanno and Soda [61, 62, 63] suggested a

perturbation expansion of the covariant curvature formalism known as the “gradient expansion

method”, which involves expanding the theory in powers of the ratio between a microphysical

scale and the four-dimensional curvature lengthscale. This approach allows a low-energy

description of the model to be found, while retaining the nonlinearities of the theory. This

method has been particularly successful in investigating the cosmology of braneworld models
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[61, 63, 47, 64] and has the benefit of providing an explicit calculation of the five-dimensional

metric, but is algebraically complex and requires assumptions on the form of the metric.

An alternative approach to obtaining a four-dimensional effective action, discussed by

Wiseman [65], focusses on the radion mode of the RS-I model. Treating the radion mode as

a deflection of the branes, the approach uses a derivative expansion to calculate its nonlinear

behavior. Although this method nicely captures the nonlinearities of the theory, it is highly

nontrivial, and guesses the four-dimensional effective action, based on the first-order equations

of motion the method finds.

A final method involves making an ansatz for the form of the five-dimensional metric in

terms of four-dimensional fields and integrating over the fifth dimension to obtain a four-

dimensional action. Examples of this method in the literature include Refs. [64, 66, 46, 48, 67].

The benefits of this method are the automatic truncation of the massive Kaluza-Klein modes,

and the computational efficiency in dealing strictly at the level of the action. The main

drawback is that the five-dimensional metric ansatz must usually be found (or guessed) using

another method.

II Extensions to Multiple Branes

One common extension of the RS models is to consider models with more than one or two

branes. A variety of papers have considered three-brane models, usually on an orbifold (see,

e.g., [47, 48, 49, 50, 51]). Some special cases have been considered for arbitrary N -brane

models, mostly to investigate their cosmological properties [50, 52]. A few papers comment

that their methods should extend to arbitrary N -brane situations (e.g., [68]), but little

analysis has actually been performed in this regard.

Four-dimensional effective descriptions typically contain moduli fields (radion modes)

which describe the distances between branes. Often, such modes appear as massless scalar

fields which couple to gravity in a Brans-Dicke like manner (see, e.g., Ref. [66]). This occurs
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in the RS-I model of two branes in a compactified bulk with orbifold symmetry, for example.

In this model, the radion mode must be stabilized by some mechanism (for example, by using

a bulk scalar field as in the Goldberger-Wise mechanism [45]), or else the theory is ruled

out for observers on the TeV brane (see, e.g., Refs. [55, 69]). In theories including multiple

branes, one expects several radion modes which may have nontrivial couplings to one another

and to the four-dimensional metric at the nonlinear level.

2.3 Construction of the Model

In this chapter, we present a new method to obtain a four-dimensional effective theory from

an N -brane model in five dimensions. We assume that matter is confined to branes with the

only bulk field being gravity, and we do not invoke mechanisms to stabilize the radion modes.

The method utilizes a two-lengthscale expansion to find solutions to the five-dimensional

equations of motion in a low-energy regime. We do not require assumptions about the form of

the metric, or the existence of Gaussian normal coordinates. The method is computationally

efficient and does not require the explicit use of the five-dimensional Einstein equations or the

Israel junction conditions. Instead, one always works at the level of the action. Furthermore,

our method is very general and can be applied to various models. The method has similarities

to the gradient expansion method (see especially [67]), but is computationally much simpler,

and can deal with multiple branes in a straightforward manner. A particular strength of

the method is that it performs a rigorous treatment of all radion modes, and automatically

truncates massive modes. We present a brief example of the method for the case of the RS-I

model [6], before illustrating the method in detail for the case of N four-dimensional branes

in an uncompactified extra dimension, deriving the four-dimensional effective action for a

general configuration.
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I Applicable Models

We begin by defining the model we use to illustrate our method, and introduce the parameters,

metrics, and coordinate systems used to describe it. The most basic model assumes that

the extra dimension is infinite and not compactified, but the generalization to circularly

compactified and orbifolded systems is straightforward, and is described briefly in Section 2.4

and in more detail in Appendix B.

We consider a system of N four-dimensional branes in a five-dimensional universe with

one temporal dimension, with coordinates xΓ = (x0, . . . , x4). We denote the bulk metric by

gΓΣ(xΘ) and the associated five-dimensional Ricci scalar by R(5). For simplicity, we assume

that there are no physical singularities in the spacetime.

The N branes are labeled by an index n = 0, 1, . . . , N − 1, so that adjacent branes are

labeled by successive values of n. We assume that the branes are nonintersecting. Denote the

nth brane by Bn. On Bn, we introduce a coordinate system wan = (w0
n, . . . , w

3
n). The location of

the branes in the five-dimensional spacetime is described by N embedding functions xn Γ(wan).

From these embedding functions, we can calculate the induced metric hn ab on Bn,

hn ab(w
c
n) =

∂ xn Γ

∂wan

∂ xn Σ

∂wbn
gΓΣ

[
xn Θ
]∣∣∣∣
wc

n

. (2.3.1)

We associate a nonzero brane tension σn with each brane Bn, and we also take there to be

matter fields φn (wan) which live on Bn, with their own matter action Sn m[ hn ab, φ
n ].

In between each brane there exists a bulk region of spacetime, which we denote R0, . . . ,RN ,

with Rn lying between branes n− 1 and n. The first (last) bulk region describes the region

between the first (last) brane and spatial infinity in the bulk. In each bulk region Rn we

allow for a bulk cosmological constant Λn (see Ref. [52] for a possible microphysical origin

for such piecewise constant cosmological constants).

22



Finally, the action for the model is

S
[
gΓΣ, x

n Γ, φn
]

=

∫
d5x
√
−g
(
R(5)

2κ2
5

− Λ(xΓ)

)
−

N−1∑
n=0

σn

∫
Bn
d4wn

√
− hn

+
N−1∑
n=0

Sn m[ hn ab, φ
n ], (2.3.2)

where κ2
5 is the five-dimensional Newton’s constant, and Λ(xΓ) takes the value Λn in Rn.

II Overview of the Method and Results

Our method works in five steps.

Step 1: Gauge specialize. From the general action (Eq. (2.3.2) in the model we discuss

here), we perform a gauge transformation to specialize the metric to the straight gauge [58],

illustrated in Fig. 6.

Step 2: Separate lengthscales in the action. There are two characteristic lengthscales

in the model. The first, which we call the microphysical lengthscale, is the lengthscale

associated with the bulk cosmological constants, which is typically assumed to be on the

order of the micron scale or smaller. The second lengthscale is the four-dimensional radius

of curvature felt on the branes. When the ratio of the microphysical lengthscale to the

four-dimensional radius of curvature is small (the low-energy limit), the dynamics of the

extra dimension effectively decouples from the four-dimensional dynamics, leading to a

four-dimensional effective theory. We introduce a small parameter to tune this ratio, and use

this parameter to perform a two-lengthscale expansion of the action.

Step 3: Solve equations of motion. The equations of motion at zeroth-order in this

small parameter are calculated and explicitly solved. As expected in this type of model, all

of the bulk cosmological constants must be negative, and at this order, the brane tensions

are required to be tuned to a specific value1 [6] in order to avoid an effective cosmological

1We consider small deviations from this value in Section 2.10.II.
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g αβ
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Λ
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0 Λ1 Λ2 Λ3 Λ4

Figure 6: An illustration of the model a) before and b) after gauge fixing. The bulk
cosmological constants, brane tensions, and metrics are labeled.

constant on the branes. The solution to the zeroth-order equations of motion provides a

background metric solution, which is perturbed at the next order in our small parameter (the

metric is an exact solution if the four-dimensional space is flat).

Step 4: Integrate five-dimensional dynamics. The five-dimensional dynamics of the

theory are integrated out by substituting the metric into the action, and integrating over

the extra dimension. The action to zeroth order in the small parameter is minimized by the

ansatz, leaving only the four-dimensional terms in the action.

Step 5: Redefine fields. The final step is to redefine fields in order to cast the four-

dimensional effective action in the form of a four-dimensional multiscalar-tensor theory

in a nonlinear sigma model. In the Einstein conformal frame, the general form of the

four-dimensional effective action is given by

S[gab,Φ
A, φn ] =

∫
d4x
√
−g
{

1

2κ2
4

R[gab]−
1

2
gabγAB

(
ΦC
)
∇aΦ

A∇bΦ
B

}
+

N−1∑
n=0

Sn m

[
e2αn(ΦC)gab, φ

n
]

(2.3.3)

where ΦA, 1 ≤ A ≤ N − 1, are massless scalar fields (radion modes), which encode the

interbrane distances. Also, κ2
4 (= 8πGN ) is the effective four-dimensional Newton’s constant,

which is a function of κ2
5 and the bulk cosmological constants. Finally, γAB(ΦC) is the field

space metric of the nonlinear sigma model, and αn(ΦC) are the brane coupling functions.

The functional form of both of these depends on the specifics of the model.
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One of the features of the method used here is that five-dimensional gravitational pertur-

bations, which give rise to massive four-dimensional fields, are automatically truncated. The

mass scales of these fields are typically of order ~/L, where L is the microphysical lengthscale

of the theory. However, Damour and Kogan [49, 50, 68] have shown that it is possible to

have graviton Kaluza-Klein modes where masses are of order ~/L exp(−l/L), where l is an

interbrane separation. Because of the exponential factor, these second graviton modes can

be ultralight and observationally relevant. Although the models we consider are likely to

contain such ultralight graviton modes, our method excludes their possible contributions to a

four-dimensional effective theory.

Our method has similarities to the gradient expansion method of Kanno and Soda

[61, 62, 63]. Our small expansion parameter coincides with theirs, and the zeroth-order

solutions from both methods agree in cases where both methods are applicable. However,

beyond this point, the methods diverge. Our method Taylor expands the action, but not

the metric as in the covariant curvature formalism. Although higher-order corrections to the

metric do exist, they are intrinsically five-dimensional interactions that are unnecessary for the

construction of a four-dimensional effective theory; their contributions to the effective theory

are exponentially suppressed within the low-energy regime. Furthermore, our method arrives

at a four-dimensional effective action, rather than working only at the level of the equations

of motion. This provides for computational efficiency and a more intuitive understanding of

the final result.

2.4 Application of the Method to the Randall Sundrum Model

To briefly illustrate an application of our method, we apply it to the well-known case of

the Randall Sundrum (RS-I) model with a general background. The derivation of results in

this section follows the details on the uncompactified model treated in the remainder of this

chapter closely.
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Many papers have used a metric ansatz for the RS-I model (e.g. [6, 66]), guessing at the

form of the five-dimensional metric, and using this to compute the four-dimensional effective

action. Such metrics are typically of the form

ds2 = eχ(xc,y)γab(x
c)dxadxb +

(
χ,y(x

c, y)

2k

)2

dy2 (2.4.1)

where k =
√
−κ2

5Λ/6. Rather than guessing at the form of the five-dimensional metric, our

method derives a five-dimensional metric solution, from which the four-dimensional action is

calculated.

The RS-I model contains two branes on a circular orbifold. We consider the circle of

circumference 2L, with the branes at y = 0 and y = L, with −L < y < L. We let the y = 0

brane be the Planck brane and the y = L brane be the TeV brane. The points y and −y are

identified. To write this in the language of regions described previously, we treat the regions

−L < y < 0 and 0 < y < L as two distinct regions, but identify fields by using φ(−y) = φ(y),

where φ is representative of an arbitrary field.

We now follow the computational steps outlined in Section 2.3.II.

Step 1. Write the action in the straight gauge [58]. In this gauge, the general metric is

given by

ds2 = eχ(xc,y)γab(x
c, y)dxadxb + Φ2(xc, y)dy2 (2.4.2)

where det γ = −1, and we take Φ to be positive. For this model, the general action (2.3.2)

specializes to

S =

∫
d4x

(∫ L−

0+
dy +

∫ 0−

−L+

dy

)
√
−g
(
R(5)

2κ2
5

− Λ

)
− σ0

∫
B0
d4x
√
− h0 − σL

∫
BL
d4x
√
− hL

+
1

κ2
5

∫
B0
d4x
√
− h0

(
K0 + + K0 −)+

1

κ2
5

∫
BL
d4x
√
− hL

(
KL + + KL −)

+ S0 m

[
h0 ab, φ

0
]

+ SL m

[
hL ab, φL

]
. (2.4.3)
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The indices 0 and L refer to the Planck and TeV branes, respectively. hab is the four-

dimensional induced metric on a brane, and σ is the brane tension. K+ and K− are the

extrinsic curvature tensors on either side of the branes, and Sm is the matter action on each

brane.

Step 2. Now, expand the action (2.4.3) to lowest order in the two-lengthscale expansion

detailed in Section 2.6. The action to lowest order in this model is given by

S =

∫
d4x

(∫ L−

0+
dy +

∫ 0−

−L+

dy

)
√
−γ e2χ

2κ2
5Φ

(
−1

4
γabγbc,yγ

cdγda,y − 5 (χ,y)
2

− 4χ,yy +4
Φ,y

Φ
χ,y − 2κ2

5Φ2Λ

)
+

∫
d4x

(∫ L−

0+
dy +

∫ 0−

−L+

dy

)
λ(xa, y)

(√
−γ − 1

)
+

∫
B0
d4x
√
−γe2χ(0)

[
2

κ2
5

(
χ,y
Φ

∣∣∣
y=0−

− χ,y
Φ

∣∣∣
y=0+

)
− σ0

]
+

∫
BL
d4x
√
−γe2χ(L)

[
2

κ2
5

(
χ,y
Φ

∣∣∣
y=L−

− χ,y
Φ

∣∣∣
y=−L+

)
− σL

]
(2.4.4)

Here, χ(0) denotes χ(xa, 0), and similarly for χ(L). The third line in this action includes a

Lagrange multiplier (λ) to enforce the condition det γ = −1.

Step 3. Varying the action (2.4.4) with respect to the three fields χ, γ, and Φ, the

following equations of motion are obtained.

0 =
1

4
γabγbc,yγ

cdγda,y − 3χ2
,y − 2κ2

5Φ2Λ (2.4.5)

γad,yy = γab,yγ
bcγcd,y − γad,y

(
2χ,y −

Φ,y

Φ

)
(2.4.6)

0 =
1

12
γabγbc,yγ

cdγda,y + χ2
,y + χ,yy −

Φ,y

Φ
χ,y +

2

3
κ2

5Φ2Λ (2.4.7)

The following boundary conditions at the branes are also obtained.

γab,y(y = 0, L) = 0 (2.4.8)

χ,y(y = 0+) = − 1

3
κ2

5σ0Φ (2.4.9)

χ,y(y = L−) =
1

3
κ2

5σLΦ (2.4.10)
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We now solve the equations of motion. The solution to (2.4.6) is given by (in matrix

notation)

γ(xa, y) = A(xa) exp

(
B(xa)

∫ y

0

Φ(xa, y′)e−2χ(xa,y′)dy′
)

(2.4.11)

where A and B are arbitrary 4 × 4 real matrix functions of xa, subject to the constraint

that γ is a metric. This can be combined with (2.4.8) to yield B = 0, and so γ is a function

of xa only. The only remaining equation of motion is then χ2
,y = −2κ2

5Φ
2Λ/3. Defining

k =
√
−κ2

5Λ/6, this gives χ,y = ±2kΦ. Choose the negative solution, so that the brane at

y = 0 corresponds to the Planck brane. The other boundary conditions (2.4.9) and (2.4.10)

yield

σ0 =
6k

κ2
5

and σL = −6k

κ2
5

(2.4.12)

which are the well-known brane-tuning conditions. Combining these solutions, the metric

solution is then

ds2 = eχ(xc,y)γab(x
c)dxadxb +

(
−χ,y(x

c, y)

2k

)2

dy2. (2.4.13)

Step 4. We now have the zeroth-order metric solution, which has solved the five-

dimensional dynamics. The next step is to use this metric in the original action and integrate

over the fifth dimension (c.f. [66]). The zeroth-order part of the action integrates to exactly

zero, while the remainder of the action (the original second-order terms) yields the following

four-dimensional effective action.

S =

∫
d4x

√
−γ

2kκ2
5

[(
1− eχ(L)

)
R(4) − 3

2
eχ(L)(∇aχ(L))(∇aχ(L))

]
+ S0 m

[
γab, φ

0
]

+ SL m

[
eχ(L)γab, φL

]
(2.4.14)

The constraint det γ = −1 has been relaxed, instead choosing χ(0) = 0.

Step 5. Transforming to the Einstein frame, let gab =
(
1− eχ(L)

)
γab, and define

exp(χ(xa, L)/2) = tanh
(
κ4ϕ(xa)/

√
6
)
. Let κ2

4 = kκ2
5 be the four-dimensional gravitational
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scale. The action in the Einstein frame is then given by

S =

∫
d4x
√
−g
[
R(4)

2κ2
4

− 1

2
(∇aϕ)(∇aϕ)

]
+ S0 m

[
cosh2

(
κ4ϕ√

6

)
gab, φ

0

]
+ SL m

[
sinh2

(
κ4ϕ√

6

)
gab, φL

]
. (2.4.15)

This action corresponds to the four-dimensional effective action arrived at by other means,

such as the covariant curvature formalism [62, 66].

For the rest of this chapter, we confine our discussions to uncompactified N -brane models.

In Appendix B, we revisit orbifold models in more detail.

2.5 The Five-Dimensional Action in a Convenient Gauge

We now begin to derive the result (2.3.3), starting from the action (2.3.2). We start by

making coordinate choices to simplify the expression, and separate out contributions due

to discontinuities in the connection across branes. We specialize the coordinate system to

that of the straight gauge [58] and give the action corresponding to (2.3.2) in this gauge.

Again, while the details presented here are specific to an uncompactified extra dimension,

they generalize straightforwardly to the other situations described previously.

In general, the five-dimensional Ricci scalar can have distributional components at the

branes, as the metric will have a discontinuous first derivative due to the brane tensions. It

is convenient to separate these distributional components from the continuous parts. It is

further convenient to use separate bulk coordinates xΓ
n in each bulk region Rn, rather than

using a single global coordinate system. We will therefore have a bulk metric in each region

Rn, rather than one global metric. We note that the nth brane will then have two embedding

functions: xn Γ
n(wan) in the coordinates xΓ

n of Rn, and xn Γ
n+1(w

a
n) in the coordinates xΓ

n+1 of

Rn+1.
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Combining these modifications, we can write Eq. (2.3.2) as

S
[
gΓΣ, x

n Γ, φn
]

=
N∑
n=0

∫
Rn

d5xn
√
− gn

(
Rn (5)

2κ2
5

− Λn

)

+
N−1∑
n=0

1

κ2
5

∫
Bn
d4wn

√
− hn

(
Kn + + Kn −)

−
N−1∑
n=0

σn

∫
Bn
d4wn

√
− hn +

N−1∑
n=0

Sn m[ hn ab, φ
n ] (2.5.1)

where Kn + is the trace of the extrinsic curvature tensor of the nth brane in the bulk region

Rn+1, and Kn − is the trace of the extrinsic curvature tensor of the nth brane in the bulk

region Rn, where the normals are always defined to be pointing away from the bulk region

and towards the brane [see Eqs. (2.5.13) and (2.5.14) below]. These terms are just the usual

Gibbons-Hawking terms [70].

I Specializing the Coordinate System

We begin by specializing the coordinate systems in each bulk region. Denote the coordinates

by xΓ
n = (xan, yn), where a indicates one temporal and three spatial dimensions. Without

loss of generality, we can choose the coordinates such that the branes bounding the region

are located at fixed yn. Next, choose the yn coordinates such that the branes are located at

yn = n− 1 and yn = n. In other words, in the brane embedding functions xn Γ
n(wan),

yn−1
n(wan−1) = n− 1, (2.5.2)

yn n(wan) = n. (2.5.3)

In this way, the first brane will be located at y0 = y1 = 0, and the last brane located at

yN−1 = yN = N − 1. The nth bulk region Rn then extends from yn = n− 1 to yn = n, with

the exceptions of the first and last bulk regions, which extend away from the branes to ∓∞

respectively.

Next, we use some of the available gauge freedom to remove off-diagonal elements of

the metrics. Carena et al. [58] have shown that it is always possible to find a coordinate
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transformation in Rn of the form xan → fan(xbn, yn) to make gn ya = 0 while simultaneously

maintaining that the branes be located at yn = n−1 and yn = n. After such a transformation,

the metric in Rn can be written as

dsn 2 = γn ab(x
c
n, yn)dxandx

b
n + Φn 2(xcn, yn)dy2

n (2.5.4)

where the sign of gn yy is known from the signature of the metric. We choose the sign of Φn

to be positive.

The brane positions are now hyperplanes located at yn = integer. It is obvious that only

coordinate transformations for which y → g(y) (with no xa dependence) can preserve this

form for the hyperplanes. With this condition, only coordinate transformations for which

xa → fa(xb) will preserve the form of the metric. Thus, the remaining gauge freedom lies in

coordinate transformations of the form xa → fa(xb) and y → g(y) such that the positions of

the branes are preserved.

For later simplicity, we choose the following parameterization of the four-dimensional

metric γn ab. In each bulk region, let

γn ab(x
c
n, yn) = e χn (xcn,yn) γ̂n ab(x

c
n, yn) (2.5.5)

such that the determinant of γ̂n ab is constrained to be −1. The function exp( χn ) is sometimes

called the warp factor. The metric in Rn is then

dsn 2 = e χn (xcn,yn) γ̂n ab(x
c
n, yn)dxandx

b
n + Φn 2(xcn, yn)dy2

n. (2.5.6)

II Embedding Functions, Coordinate Systems on the Branes, and Induced Met-

rics

We now specialize the coordinate system wan on the nth brane Bn. We choose the coordinate

system on B0 to coincide with the first four coordinates of the bulk coordinate system of R0,
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evaluated on the brane. Thus,

x0 Γ
0 (wa0) = ( x0 a

0(wa0), y0 0(wa0)) (2.5.7a)

= (wa0 , 0). (2.5.7b)

Now, transform the coordinates in the second bulk region by transforming xa1 such that

x0 Γ
1 (wa0) = (wa0 , 0). (2.5.7c)

Such a transformation only requires a mapping of the form xa1 → fa(xb1), and so the locations

of the branes are preserved. Next, choose a coordinate system wa1 on B1 such that

x1 Γ
1 (wa1) = (wa1 , 1) (2.5.7d)

and continue this process until all branes and bulk regions have related coordinate systems.

The coordinate systems we acquire have the property that for a point P on Bn, we have

xn Γ
n(P) = xn Γ

n+1(P). (2.5.7e)

Note that while the condition (2.5.7e) implies that the coordinate patches can be joined

continuously from one region to another in a straightforward manner, they need not form a

global coordinate system because they may not join smoothly across the branes.

From the embedding functions in these coordinate systems we can calculate the induced

metric on the branes, using Eq. (2.3.1). As each brane is adjacent to two bulk regions, there

will be two induced metrics, one from each bulk region. For Bn, the induced metric from Rn

is

hn −ab(w
c
n) = e χn (wc

n,n) γ̂n ab(w
c
n, n) (2.5.8)

while the induced metric from Rn+1 is

hn +
ab(w

c
n) = e χn+1 (wc

n,n) γ̂n+1
ab(w

c
n, n) (2.5.9)
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We will restrict attention to configurations where the two induced metrics coincide (as would

be enforced by the first Israel junction condition [71]). We then have

hn ab(w
c
n) = hn −ab(w

c
n) = hn +

ab(w
c
n) (2.5.10a)

hn ab(w
c
n) = e χn (wc

n,n) γ̂n ab(w
c
n, n) = e χn+1 (wc

n,n) γ̂n+1
ab(w

c
n, n). (2.5.10b)

Taking the determinant of this expression and using the fact that the determinants of γ̂ab are

constrained to be −1, we find that

χn (wcn, n) = χn+1 (wcn, n). (2.5.11)

Then by Eqs. (2.5.10), it follows that

γ̂n ab(w
c
n, n) = γ̂n+1

ab(w
c
n, n). (2.5.12)

III The Action

Now that we have specialized the coordinate systems for every region and brane in our model,

we can rewrite our action (2.5.1) in terms of these coordinates.

We can evaluate the extrinsic curvature tensor terms as follows. Each brane has two

normal vectors, one each from the two adjacent bulk regions. We define the normal vectors

~nn ± at Bn to be the inward pointing normals from Rn+1 and Rn. Since the branes are at

fixed values of the coordinates yn, this gives

~nn −(wan) =
1

Φn (wan, n)
∂yn (2.5.13)

as the normal vector from Rn and

~nn +(wan) = − 1

Φn+1 (wan, n)
∂yn+1

(2.5.14)

as the normal vector from Rn+1. The vector ~nn − points to the right of bulk region n towards

brane n, while ~nn + points to the left of region n + 1 towards brane n, using the layout

illustrated in Fig. 6.

33



For the extrinsic curvature tensors, we have by definition

Kn −
ab(w

c
n) =

∂( xn α)

∂wan

∂( xn β)

∂wbn
∇β nn −

α

∣∣∣∣
xcn=wc

n,yn=n

, (2.5.15)

Kn +
ab(w

c
n) =

∂( xn+1 α)

∂wan

∂( xn+1 β)

∂wbn
∇β nn +

α

∣∣∣∣
xcn+1=wc

n,yn+1=n

. (2.5.16)

Evaluating these using the explicit form of the normals, we have

Kn −
ab(w

c
n) =

1

2

1

Φn
(
χn ,ye

χn γ̂n ab + e χn γ̂n ab,y

)
(wcn, n), (2.5.17)

Kn +
ab(w

c
n) = − 1

2

1

Φn+1

(
χn+1
,ye

χn+1

γ̂n+1
ab + e χn+1

γ̂n+1
ab,y

)
(wcn, n). (2.5.18)

To take the trace of the extrinsic curvature tensor, we contract with the inverse induced

metric

hn ab = e− χn γ̂n ab = e− χn+1

γ̂n+1 ab. (2.5.19)

We find

Kn +(wcn) = −
2 χn+1

,y

Φn+1

∣∣∣∣
wc

n,n

, (2.5.20)

Kn −(wcn) =
2 χn ,y

Φn

∣∣∣∣
wc

n,n

. (2.5.21)

In deriving these equations, we used the fact that γ̂n ab γ̂n ab,y = 0, which follows from

det( γ̂n ab) = −1.

From Eq. (2.5.6), the determinant of the five-dimensional metric can be written as

√
− gn = Φn e2 χn

√
− γ̂n . (2.5.22)

We do not substitute
√
− γ̂n = 1 at this stage; instead we choose to enforce this at the level

of the action by a Lagrange multiplier (see Appendix A). Using Eqs. (2.5.20), (2.5.21), and
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(2.5.22), the action (2.5.1) can be written as

S [ γ̂n ab , Φn , χn , φn ] =
N∑
n=0

∫
Rn

d5xn Φn e2 χn
√
− γ̂n

(
Rn (5)

2κ2
5

− Λn

)

+
N−1∑
n=0

2

κ2
5

∫
Bn
d4wne

2 χn (n)
√
− γ̂n

(
χn ,y

Φn

∣∣∣∣
yn=n

−
χn+1
,y

Φn+1

∣∣∣∣
yn+1=n

)

−
N−1∑
n=0

σn

∫
Bn
d4wne

2 χn (n)
√
− γ̂n +

N−1∑
n=0

Sn m[ hn ab, φ
n ]. (2.5.23)

2.6 Separation of Lengthscales

We now describe the approximation method, based on a two-lengthscale expansion, which

we use to obtain a four-dimensional description of the system. We begin by defining the

appropriate lengthscales, and then detail how the theory simplifies in the regime where the

ratio of lengthscales is small.

I Two Lengthscales

There are three groups of parameters in our model: the five-dimensional gravitational scale

κ2
5, the brane tensions {σn}, and the bulk cosmological constants {Λn}. We assume that

all parameters in a group are of the same order of magnitude, and so will just consider

typical parameters σ and Λ. Working with units in which c = 1, the dimensionality of these

parameters in terms of mass units M and length units L are [κ2
5] = L2/M , [σ] = M/L3, and

[Λ] = M/L4.

We assume that the dimensionless combination σ2κ2
5/Λ is approximately of order unity;

this will be enforced by the brane-tuning conditions we derive below [see Eq. (2.7.17)].

Eliminating κ2
5, we can then define a lengthscale by

L = σ/Λ (2.6.1)
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and a mass scale by

M = σ4/Λ3. (2.6.2)

For a given configuration, we also define a four-dimensional curvature lengthscale Lc(y)

on each slice of constant y, as follows. We take the minimum of the transverse lengthscale

over which the induced metric varies, and the transverse lengthscale over which the metric

coefficient Φ varies. In other words,

Lc(y) ∼ min


∣∣∣R(4)

âb̂ĉd̂

∣∣∣−1/2

,
∣∣∣∇âR

(4)

b̂ĉd̂ê

∣∣∣−1/3

, . . . ,
|Φ|
|∇âΦ|

,
|Φ|1/2∣∣∣∇â∇b̂

Φ
∣∣∣1/2 , . . .

 (2.6.3)

where â, b̂, . . . denotes an orthonormal basis of the induced metric, Râb̂ĉd̂ is the Riemann

tensor of the induced metric, and dots denote similar terms with more derivatives.

Thus, for a given configuration, we have two natural lengthscales: the microphysical

lengthscale L = σ/Λ (the same for all configurations), and the macrophysical curvature

lengthscale Lc (where the c is intended to denote “curvature”).

II Separating the Lengthscales

We now evaluate the action (2.5.23) in the low-energy regime Lc � L, in which the theory

admits a four-dimensional description. We will find that there is a leading order term of order

∼ML, and a subleading term of order ∼ML(L/Lc)2. Our strategy will be to separate the

contributions to the action at each order, minimize the leading order piece of the action, and

then substitute the general solutions obtained from that minimization into the subleading

piece of the action. The result will be a four-dimensional action that gives the effective

description of the system in the low-energy regime.

We write the action (2.5.23) as a sum S = Sg +Sm of a gravitational part Sg and a matter

part Sm, where the matter part is the last term in Eq. (2.5.23) and the gravitational part

comprises the remaining terms.
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We first discuss the expansion of the gravitational action Sg, which is a functional of a

bulk metric gαβ and brane embedding functions xn Γ. We define a mapping Tε that acts on

these variables

Tε : (gαβ , x
n Γ)→ (gεαβ, x

n Γ
ε ), (2.6.4)

where ε > 0 is a dimensionless parameter, as follows: (i) We specialize to our chosen gauge,

(ii) replace the metric (2.5.6) with the rescaled version

ds2
ε =

1

ε2
eχ(xc,y)γ̂ab(x

c, y)dxadxb + Φ2(xc, y)dy2, (2.6.5)

where indices indicating regions have been suppressed, and (iii) leave the embedding functions

in our chosen gauge unaltered. We may think of ε as a parameter that tunes the ratio of the

microphysical lengthscale to the macrophysical lengthscale. As ε is decreased, lengthscales

on the brane are inflated, and so Lc increases. Thus, as ε decreases, so does the ratio L/Lc.

In particular, we have (
L
Lc

)
ε

= ε
L
Lc
. (2.6.6)

It is important to note that this ε scaling does not map solutions to solutions, but just

provides a means of keeping track of the dependence on the various lengthscales.

We can construct a one-parameter family of action functionals by using these rescaled

metrics in our original action (2.5.23)2:

Sg,ε
[
gαβ, x

n Γ
]
≡ ε4Sg

[
gεαβ, x

n Γ
ε

]
. (2.6.7)

We can expand this action in powers of ε by

Sg,ε
[
gαβ, x

n Γ
]

= Sg,0
[
gαβ
]

+ ε2Sg,2
[
gαβ
]
, (2.6.8)

where on the right hand side we omit the dependence on the embedding functions since we

have used the gauge freedom to fix those. The expansion (2.6.8) truncates after two terms;

2The factor of ε4 in Eq. (2.6.7) is for convenience, so that Eq. (2.6.8) contains terms of
O(1) and O(ε2). This is explicitly shown in Section 2.7.
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there are no higher-order terms in ε. Note that there is no O(ε) term, as when the action

(2.6.7) is evaluated, terms of O(ε2) arise from contractions in the Ricci scalar using gab (O(1)

terms arise from gyy contractions). Terms of order O(ε) would arise from contractions using

gay, but as these components of the metric have been gauge-fixed to zero, they are not present.

This can be seen explicitly in the expansion of the Ricci scalar (A.3). As we tune ε→ 0, we

move further into the low-energy regime, and so we identify the zeroth-order term as the

dominant contribution to the action, and the second-order term as the subleading term. This

provides the separation of lengthscales we desire.

Let us now turn to the matter contribution to the action, Sm. We expect the matter

action to contribute at O(ε2), the same order as the subleading gravitational term. To see

this, note that the brane tensions scales as σ ∼ M/L3, where the scales M and L were

defined in Eqs. (2.6.1) and (2.6.2). The matter action will be roughly Sm ∼
∫
ρ d4x, where ρ

is a four-dimensional energy density. The four-dimensional Newton constant κ2
4 = 8πG is of

order κ2
4 ∼ L/M by dimensional analysis [c.f. Eq. (2.8.14) below], and so ρ will be of order

ρ ∼ 1

κ2
4L2

c

∼ M
LL2

c

. (2.6.9)

Taking the ratio ρ/σ now gives

ρ

σ
∼ M/LL2

c

M/L3
∼ L

2

L2
c

∝ ε2. (2.6.10)

Formally, the scaling (2.6.10) can be achieved by replacing the matter action Sm with a

rescaled action Sm,ε given by (i) multiplying by ε4 as in Eq. (2.6.7), (ii) rescaling all fields and

dimensional constants with dimensions (mass)r(length)s by factors of ε−(r+s). The expansion

of the full action is then

Sε = Sg,ε + Sm,ε = Sg,0 + ε2 [Sg,2 + Sm]

= S0 + ε2S2. (2.6.11)

It can be seen that given brane tensions tuned to the bulk cosmological constants, σ2 ∼ Λ/κ2
5,

we require that the matter density on a brane should be small, so as not to spoil the tuning.
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This also yields ρ� σ, which roughly corresponds to the separation of lengthscales condition

L � Lc.

We perform this ε scaling separately in each bulk region of the model. The contribution

to the action from each region will separate into zeroth- and second-order terms.

III The Low-Energy Regime

Now that the contributions to each order have been identified, we can minimize the leading

order term in the action, S0 . Once general solutions to the equations of motion have been

found, we can use these solutions in the second-order term in the action. Thus, we solve

for the high-energy (short lengthscale) dynamics first, and use the solution to this as a

background solution for the low-energy (long lengthscale) dynamics. At this point, we may

let ε→ 1, and rely on the ratio (L/Lc)2 being sufficiently small to provide the separation of

lengthscales.

The effect of this separation of lengthscales is to enforce a decoupling of the high-energy

dynamics from the low-energy dynamics. We will see below that the equation of motion for

the high-energy dynamics contains y derivatives, but no xa derivatives. The theory at this

order thus reduces to a set of uncoupled theories, one along each fiber xa = const in the bulk.

These theories are coupled together at O(ε2), and thus in the regime of interest, the coupling

is minimal. After solving the high-energy dynamics along these fibers, a four-dimensional

effective description of the system remains.

The low-energy regime, in which the theory admits a four-dimensional description, is the

regime

Lc � L. (2.6.12)

This regime is also frequently characterized in the literature by the condition

ρ� σ, (2.6.13)
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where ρ is the mass density on a brane and σ is a brane tension [c.f. Eq. (2.6.10) above].

One can interpret the condition (2.6.13) as saying that the mass density on the brane must

be sufficiently small that the brane-tuning conditions [Eq. (2.7.17) below which enforces

σ2 ∼ Λ/κ2
5] are not appreciably modified. However, the condition (2.6.13) is less general than

the condition (2.6.12), and although necessary, is actually insufficient. First, as discussed

above, (2.6.13) only applies to branes, whereas (2.6.12) applies at each value of y, including

away from the branes. Second, even when the density on a given brane vanishes, four-

dimensional gravitational waves on that brane can give rise to radii of curvature Lc that

are comparable to L. In this case, the separation of lengthscales will not apply and the

four-dimensional effective theory will not be valid, despite the fact that the condition (2.6.13)

is satisfied. Curvature associated with the metric coefficient Φ can also yield similar results.

Finally, we discuss a subtlety in our definition of the “low-energy regime”. As noted in the

previous paragraph, Lc varies with position in the five-dimensional universe. Our separation

of lengthscales will break down when the induced metric on any slice of constant y has a

radius of curvature Lc comparable to that of the microphysical lengthscale L; it is insufficient

to require that Lc � L on each brane. When this happens, the terms of order ε2 will couple

strongly to the O(1) terms, and our approximate solutions for the five-dimensional metric will

no longer be valid. This will generically occur at sufficiently large distances from the branes, as

exp( χn ) typically grows exponentially small away from the branes, and L−2
c ∝ exp(− χn )R(4).

Despite this breakdown, the contribution to the action from these regimes is exponentially

suppressed by the warp factor, and thus provides only a small deviation from the effective

theory. It is unlikely that the warp factor can grow without bound after encountering this

regime while maintaining a globally hyperbolic spacetime.
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2.7 The Action to Lowest Order

In this section, we calculate and explicitly solve the equations of motion to lowest order in the

two-lengthscale expansion. First, however, we write out the complete, rescaled action showing

explicitly the dependence on ε. Inserting the decomposition (A.3) of the Ricci scalar and the

rescaled metric (2.6.5) into the action (2.5.23) [following the prescription of Eq. (2.6.7)], we

obtain

Sε =
N∑
n=0

∫
Rn

d5xn

[√
− γ̂n

e2 χn

2κ2
5 Φn

(
− 1

4
γ̂n ab γ̂n bc,y γ̂

n cd γ̂n da,y − 5( χn ,y)
2 − 4 χn ,yy

+ 4
Φn ,y

Φn
χn ,y − 2κ2

5 Φn 2Λn

)
+ λn (xa, y)

(√
− γ̂n − 1

)]

+
N−1∑
n=0

∫
Bn
d4wne

2 χn (n)
√
− γ̂n

[
2

κ2
5

(
χn ,y

Φn

∣∣∣∣
yn=n

−
χn+1
,y

Φn+1

∣∣∣∣
yn+1=n

)
− σn

]

+
N∑
n=0

ε2
∫
Rn

d5xn
√
− γ̂n

e χn

2κ2
5

(
Φn Rn (4) − 3 Φn ∇a∇a χ

n − 3

2
Φn (∇a χn )(∇a χ

n )

− 2∇a∇a Φn − 2(∇a χn )(∇a Φn )

)
+

N−1∑
n=0

ε2 Sn m[ hn ab, φ
n ] (2.7.1)

where we include the Lagrange multiplier terms (A.2) discussed in Appendix A, and the

factor of ε2 in front of the matter action comes from the process described in the previous

section (functional dependence of the action on [ γ̂n ab , Φn , χn , φn ] has been suppressed to

save space). This form explains the choice of the ε4 factor in Eq. (2.6.7), and shows the

decomposition into O(1) and O(ε2) terms, as claimed in Eq. (2.6.11).

From the form of Eq. (2.7.1), we see that we can neglect the last two lines in the limit

ε → 0. We can obtain a more precise characterization of the domain of validity of this

low-energy approximation by estimating the ratio between the terms dropped and the terms

retained. As an example, consider the first term on the 4th line and the first term on the first
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line. Their ratio is (dropping the ‘n’ labels)[
eχΦR(4)

] [e2χ

Φ
γ̂abγ̂bc,yγ̂

cdγ̂da,y

]−1

∼
[
eχΦR(4)

] [ e2χ

Φỹ2

]−1

∼
[
e−χR(4)

] [
Φ2ỹ2

]
(2.7.2)

where ỹ is the coordinate lengthscale over which γ̂ab varies. We recognize the first factor as

essentially the Ricci scalar of the induced metric eχγ̂ab, which is of order L−2
c . We recognize

the second factor as the square of the physical lengthscale in the y direction over which γ̂

varies, which is always ∼ L2 (see the explicit solution (2.7.20) below). Thus, the ratio is

(L/Lc)2, confirming the identification of the low-energy regime as L � Lc.

I Varying the Action

In the action (2.7.1) at zeroth-order in ε, we have three fields to vary (in N regions): Φn (xc, y),

χn (xc, y), and γ̂n ab(x
c, y). There is a subtlety in the variation however. The constraint that

det ( γ̂n ab) = −1 must be imposed either at the level of the equations of motion, or by a

Lagrange multiplier. The Lagrange multiplier is explicitly included in Eq. (2.7.1). Further

details are provided in Appendix A.

We begin by varying with respect to Φn . From this variation, we find a single equation of

motion in each region,

1

4
γ̂n ab γ̂n bc,y γ̂

n cd γ̂n da,y − 3 χn 2
,y − 2κ2

5 Φn 2Λn = 0. (2.7.3)

Next, we vary with respect to γ̂n ab. Note that in varying the action, we obtain boundary

terms from neighboring regions from the relationship (2.5.12). The variation produces an

equation of motion in each bulk region,

γ̂n ad,yy = γ̂n ab,y γ̂n bc γ̂n cd,y − γ̂n ad,y

(
2 χn ,y −

Φn ,y

Φn

)
. (2.7.4)

(If using Lagrange multipliers, this equation results after the Lagrange multiplier is eliminated

by tracing the equation using γ̂n ab and back substituting). Note that tracing over the indices
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in Eq. (2.7.4) and using Eq. (A.4) leads to Eq. (A.5) as expected. We also find a boundary

condition to be satisfied at each brane,

1

Φn
γ̂n ab,y(yn = n) =

1

Φn+1
γ̂n+1
ab,y(yn+1 = n). (2.7.5)

Finally, we vary with respect to χn . Here, we once again have boundary terms arising

from integrating bulk terms by parts in neighboring regions. There is an equation of motion

in each bulk region,

1

12
γ̂n ab γ̂n bc,y γ̂

n cd γ̂n da,y + χn 2
,y + χn ,yy −

Φn ,y

Φn
χn ,y +

2

3
κ2

5 Φn 2Λn = 0. (2.7.6)

We also find a boundary condition at each brane,

χn ,y

Φn

∣∣∣∣
yn=n

−
χn+1
,y

Φn+1

∣∣∣∣
yn+1=n

=
2

3
κ2

5σn. (2.7.7)

II Solving the Equations of Motion

We have three equations of motion for each bulk region, as well as numerous boundary

conditions for the fields at the branes [Eqs. (2.5.11), (2.5.12), (2.7.3), (2.7.4), (2.7.5), (2.7.6),

and (2.7.7)]. Note that these equations all describe the dynamics along a fiber of constant xa

which doesn’t couple to any other fibers, and so solving these equations of motion consists of

solving the dynamics of the extra dimension of the model.

We begin by solving Eq. (2.7.4). It is convenient to solve this equation in matrix notation.

Let

[γ̂ab] = γ̂ (2.7.8)

where we suppress indices n. Then in matrix notation, Eq. (2.7.4) is

¨̂γ = ˙̂γ γ̂−1 ˙̂γ − ˙̂γ

(
2χ,y −

Φ,y

Φ

)
, (2.7.9)
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where dots denote derivatives with respect to y. It is straightforward to check that a solution

to this differential equation in region n is

γ̂(xa, y) = A(xa) exp

(
B(xa)

∫ y

n−1

Φ(xa, y′)e−2χ(xa,y′)dy′
)
. (2.7.10)

where A and B are arbitrary 4×4 real matrix functions of xa. The lower limit on the integral

is chosen so that the boundary conditions may be matched at the previous brane (obviously,

care must be taken in the first region). The expression (2.7.10) has the correct number of

integration constants to satisfy arbitrary boundary conditions. From our knowledge of γ̂ab, A

must be a symmetric matrix with determinant −1. The exponential has unit determinant,

and so B must be traceless. The condition that γ̂ is symmetric implies that BT = A B A−1.

The quantity that appears in Eqs. (2.7.3) and (2.7.6) is

γ̂n ab γ̂n bc,y γ̂
n cd γ̂n da,y = γn ab γn ab,yy

= Tr
(
B2(xa)

)
Φ2e−4χ. (2.7.11)

We define

b(xa) =
1

12
Tr
(
B2(xa)

)
(2.7.12)

where the factor of 12 has been chosen for later convenience. From combining Eq. (2.7.5)

with Eqs. (2.5.11) and (2.5.12), we see that B (and thus b(xa)) is independent of region,

while A will change with each region according to Eq. (2.5.12).

From Eq. (2.7.3), we find

χn ,y = ±
√
b Φn 2 exp(−4 χn )− 2

3
κ2

5 Φn 2Λn

= Pn Φn
√
b exp(−4 χn )− 2

3
κ2

5Λn (2.7.13)

where Pn is either ±1 and is constant in each bulk region. Differentiating Eq. (2.7.13) gives

χn ,yy =
Φn y

Φ
χ,y − 2b Φn 2e−4 χn . (2.7.14)
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The same result is obtained by substituting Eq. (2.7.3) into Eq. (2.7.6), and so we see that

these equations of motion are degenerate. This leaves only one equation of motion (Eq.

(2.7.13)) and one boundary condition (Eq. (2.7.7)) to satisfy.

III Classes of Solutions

If B(xa) ≡ 0, then the induced metric on all the branes are related to one another by

conformal transformations, and a four-dimensional effective action is easily calculated. On

the other hand, when B(xa) 6= 0, the induced metrics on each brane are not simply related

conformally, but through Eqs. (2.5.12) and (2.7.10). If solutions with B(xa) 6= 0 were to

exist, the four-dimensional effective theory would contain more than one massless tensor

degree of freedom; i.e., it would constitute a multigravity theory (see Damour and Kogan

[68]). No such degrees of freedom have been seen in any linearized analyses3. It is important

to note that this is not a Kaluza-Klein mode. We believe that solutions with B(xa) 6= 0 are

ruled out due to divergences at y → ±∞, leading to a lack of global hyperbolicity in the

spacetime, although we have been unable to prove this rigorously. We will restrict attention

to the case B(xa) = 0 for the remainder of this work.

IV General Solutions at Leading Order

With B(xa) ≡ 0, the field γ̂n ab becomes independent of y [see Eq. (2.7.10)], and also

independent of n by Eq. (2.5.12). This means that we can drop the index n from xan, wn,

and γ̂n ab without causing confusion. With b(xa) = 0, the remaining equation of motion and

boundary condition simplify somewhat. Equation (2.7.13) becomes

χn ,y = Pn Φn
√
−2

3
κ2

5Λn, (2.7.15)

3In addition, it can be shown that in orbifolded models, there are no solutions with
B(xa) 6= 0; see Appendix B.
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which implies that Λn < 0, and so the bulk regions must be slices of anti de-Sitter space.

Define

kn =

√
−κ2

5Λn

6
. (2.7.16)

We can use Eq. (2.7.15) for χn in Eq. (2.7.7) to obtain

knPn − kn+1Pn+1 =
1

3
κ2

5σn. (2.7.17)

These relations are the well-known “brane-tunings”, which determine the branes tensions

required in order to avoid a cosmological constant on the branes [6].

We may integrate Eq. (2.7.15) to find

χn (xa, y) =


2k0P0

∫ y
0

Φn (xa, y′)dy′ + f(xa) n = 0,

χn−1 (xa, n− 1) + 2knPn
∫ y
n−1

Φn (xa, y′)dy′ n > 0

(2.7.18)

where f(xa) is an arbitrary function. Note that the field χn is related to the distance from

the previous brane to y along a geodesic normal to the branes, made dimensionless by the

appropriate lengthscale in the bulk. In particular, χ describes the number of e-foldings the

warp factor in the metric provides between two points in the five-dimensional spacetime.

Assuming that Φ is not divergent, if exp( χn (y)) approaches zero or ∞ anywhere, it can only

occur as y → ±∞. We will restrict attention to the cases

P0 = +1, and PN = −1. (2.7.19)

When these signs fail to hold, then the warp factor increases monotonically as one goes to

infinity, and it seems likely that the spacetime cannot be globally hyperbolic. We exclude

cases where exp( χn (y)) → 0 at finite y by restricting ourselves to topologically connected

spacetimes [52, 72].
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V Summary

We summarize our results so far. We have N branes, each with a brane tension which has

been carefully adjusted, according to (2.7.17). The branes divide our system into N + 1

regions. Our coordinates are xa, describing four-dimensional space, and y, describing the

extra dimension.

We expanded the action in terms of our ε scaling parameter to separate the high- and

low-energy contributions. Specializing to a low-energy regime, we solved for the high-energy

dynamics, arriving at the metric for each region of our system:

dsn 2 = e χn (xc,y)γ̂ab(x
c)dxadxb +

χn 2
,y(x

c, y)

4k2
n

dy2, (2.7.20)

with χn given by Eq. (2.7.18), where Φn (xa, y) can be chosen freely. The parameters kn are

determined by the bulk cosmological constants and the five-dimensional Newton’s constant,

by Eq. (2.7.16). The derivative χ,y has fixed sign Pn = ±1 in each region, although the

derivative may approach zero as y → ±∞.

As an aside, when the metric in each region is in the form (2.7.20), the zeroth-order action

S0[gab] [Eq. (2.6.8)] evaluates to exactly zero. This can be seen by substituting the metric

(2.7.20) into the action and explicitly evaluating the integral over the y dimension. All of the

integrals become total derivatives whose boundary terms exactly cancel the boundary terms

present in the action at this order.

The background metric ansatz (2.7.20) is essentially the same as the zeroth-order metric

calculated by Kanno and Soda [62], taking Φ2(xa, y) = exp(2φ(y, x)) in their notation.

However, from here, we proceed without their assumption that φ(y, x) = φ(x). The “näıve”

ansatz and the CGR ansatz of Chiba [66] are also in the form of our metric (2.7.20).
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2.8 The Action to Second Order

In this section, we investigate the action to second order in ε. By integrating out the previously

determined high-energy dynamics, we find the four-dimensional effective action.

I Acquiring the Four-Dimensional Effective Action

Using the metric (2.7.20) in Eqs. (2.5.23) and (2.6.8), we can calculate the second-order

contribution to the action, S2. The result is

S2 [ γ̂n ab , χ
n , φn ] =

N∑
n=0

∫
Rn

d5xn
√
−γ̂ e χn

4κ2
5knPn

[
χn ,yR

(4) − 3 χn ,y∇2 χn − 2∇2 χn ,y

− 3

2
χn ,y(∇a χn )(∇a χ

n )− 2(∇a χn )(∇a χ
n

,y)
]

+
N−1∑
n=0

Sn m

[
e χn (xa,n)γ̂ab, φ

n
]
. (2.8.1)

Note that covariant derivatives written here are associated with the metric γ̂ab, as is the

four-dimensional Ricci scalar R(4).

To obtain the effective four-dimensional action, we integrate over y in the five-dimensional

action (2.8.1), as the dynamics of this dimension have already been solved. The term involving

the Ricci scalar can be integrated straightforwardly, as R(4) has no y dependence, but the other

terms require more manipulation. We can combine the last four terms in the five-dimensional

integral in the following way:

−3e χn χn ,y∇2 χn − 3

2
e χn χn ,y(∇a χn )(∇a χ

n )− 2e χn ∇2 χn ,y − 2e χn (∇a χn )(∇a χ
n

,y)

=
3

2

∂

∂y

(
e χn (∇a χn )(∇a χ

n )
)
−∇a

(
3e χn χn ,y∇a χ

n + 2e χn ∇a χ
n

,y

)
(2.8.2)

The covariant derivative commutes with the integration over the fifth dimension in the action,
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and thus gives rise to a boundary term at xa →∞, which we discard. We obtain

S2 [ γ̂n ab , χ
n , φn ] =

N∑
n=0

∫
Rn

d5xn

√
−γ̂

4κ2
5knPn

∂

∂y

{
e χn R(4) +

3

2
e χn (∇a χn )(∇a χ

n )

}

+
N−1∑
n=0

Sn m

[
e χn (xa,n)γ̂ab , φ

n
]
. (2.8.3)

Integrating over y, we find boundary terms at each brane and at y = ±∞. We note that the

integral converges in the first and last regions because of the choices P0 = +1 and PN = −1,

and so the terms evaluated at ±∞ vanish. We can rearrange the remaining terms into a sum

over the branes.

S2 [ γ̂n ab , χ
n , φn ] =

N−1∑
n=0

∫
d4x
√
−γ̂ 1

4κ2
5

(
1

knPn
− 1

kn+1Pn+1

)
×[

e χn R(4) +
3

2
e χn (∇a χn (xa, n))(∇a χ

n (xa, n))

]
y=n

+
N−1∑
n=0

Sn m

[
e χn (xa,n)γ̂ab , φ

n
]

(2.8.4)

II Field Redefinitions

For convenience, we define the following quantities.

An =

∣∣∣∣ 1

knPn
− 1

kn+1Pn+1

∣∣∣∣ , (2.8.5)

εn = sgn

(
1

knPn
− 1

kn+1Pn+1

)
, (2.8.6)

for 0 ≤ n ≤ N − 1. It is useful to note that εn can be written as, from Eq. (2.7.17),

εn = −sgn (σnPnPn+1) . (2.8.7)

We now have a four-dimensional Ricci scalar, and a number of scalar fields. The values of

the function χ(xa, n) evaluated on the branes become N scalar fields in the four-dimensional

action, and we denote these by

Ψn =
√
Aneχn , (2.8.8)
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where we use χn = χ(xa, n). The values of Ψn encode the distance between the branes, along

with some physical parameters. Note that the domain of Ψn is the positive reals. There is a

residual parameterization freedom which implies that one of the fields Ψn is nondynamical,

but before we fix this freedom, we first give the four-dimensional low-energy action using the

definitions so far. It is given by4

S [γ̂ab,Ψn, φ
n ] =

∫
d4x

√
−γ̂

4κ2
5

[
R(4) [γ̂ab]

(
N−1∑
n=0

εnΨ2
n

)
+ 6

N−1∑
n=0

εn(∇̂aΨn)(∇̂aΨn)

]

+
N−1∑
n=0

Sn m

[
Ψ2
n

An
γ̂ab, φ

n

]
(2.8.9)

where we have suppressed the subscript “2”, and will continue to do so from now on. Here, we

have used the four-dimensional metric γ̂ab to raise and lower indices, and ∇̂a is the covariant

derivative associated with this same metric.

The residual parameterization freedom is

χ(xa, y)→ χ(xa, y) + δχ(xa) (2.8.10)

γ̂ab(x
a)→ γ̂abe

−δχ(xa), (2.8.11)

under which the metric (2.7.20) is invariant. We can fix this freedom by specifying the value

of χ(xa, n) for any n. In order to remain general, let us choose χ(xa, T ) = 0, for some T with

0 ≤ T ≤ N − 1. This causes the field ΨT to become non-dynamical. We note that this means

that the determinant of γ̂ is no longer constrained to be −1.

Some further field redefinitions now simplify the action. Let

Bn =
An
AT

, (2.8.12)

ψn =
√
Bneχn =

Ψn√
AT

. (2.8.13)

4In Appendix B, we show that an orbifolded N -brane model gives rise to this same
four-dimensional low-energy action with a rescaling of some parameters. Most of what follows
from here onwards is the same for orbifolded and uncompactified models.

50



Our dynamical scalar fields are now ψn, 0 ≤ n ≤ N − 1, n 6= T . Again, the domain of each ψn

is the positive reals. Finally, we can define a four-dimensional effective Newton’s constant as

1

2κ2
4

=
1

4κ2
5

AT . (2.8.14)

The action with these definitions is

S =

∫
d4x
√
−γ̂ εT

2κ2
4

[
R(4) [γ̂ab]

(
1 +

N−1∑
n=0
n6=T

εT εnψ
2
n

)
+ 6

N−1∑
n=1

εT εn(∇̂aψn)(∇̂aψn)

]

+ ST m [γ̂ab , φT ] +
N−1∑
n=0
n6=T

Sn m

[
ψ2
n

Bn

γ̂ab, φ
n

]
(2.8.15)

where the functional dependence of the action on [γ̂ab, ψn, φ
n ] has been suppressed to save

space. This is the four-dimensional effective action in the Jordan conformal frame of the T th

brane, BT . Note that the target space metric, determined by the kinetic energy term for

the scalar fields, is flat, and the target space manifold is a subset of the quadrant of RN−1

in which all the coordinates ψn are positive, bearing in mind that each ψn will be bounded

either above or below by their definition (2.8.13) and Eq. (2.7.18).

III Transforming to the Einstein Conformal Frame

The Einstein conformal frame is defined by an action in which the Ricci scalar (the Einstein-

Hilbert term) is canonically normalised, i.e., has a coefficient of m2
P/2. It is typically possible

to transform to the Einstein conformal frame by use of a conformal transformation5.

Defining the function

Θ = 1 +
N−1∑
n=0
n6=T

εT εnψ
2
n, (2.8.16)

we transform to the Einstein conformal frame using the conformal transformation gab = γ̂ab|Θ|.
5Exceptions exist in two spacetime dimensions, and points at which the coefficient is

vanishing in field space.
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The four-dimensional effective action becomes

S [gab, ψn, φ
n ] =

∫
d4x
√
−g εT sgn(Θ)

2κ2
4

[
R̃(4)[g]− 3

2Θ2
(∇̃aΘ)(∇̃aΘ)

+ 6
N−1∑
n=0
n6=T

εT εn
Θ

(∇̃aψn)(∇̃aψn)

]

+ ST m

[
1

|Θ|
gab, φT

]
+

N−1∑
n=0
n6=T

Sn m

[
ψ2
n

Bn|Θ|
gab, φ

n

]
(2.8.17)

where tildes refer to the metric gab. Note that the kinetic energy terms in this action (2.8.17)

have apparent divergences at Θ = 0. However, for any given set of signs εn (which correspond

to a choice of model), it can be shown that |Θ| > 0. This occurs because of the way each ψn

is bounded either above or below.

2.9 Analysis of the Action

In this section, we analyze the four-dimensional effective action (2.8.17) in a variety of cases.

We begin with the cases of one and two branes, which serve to highlight some features of

the model in the general case. In these special cases, our results reduce to previously known

results. We then analyze the general situation.

I One-Brane Case

In the one brane case, the effective action simplifies greatly.

S[gab, φ
0 ] =

∫
d4x
√
−g ε0

2κ2
4

R̃(4)[g] + S0 m

[
gab, φ

0
]
. (2.9.1)

The four-dimensional effective action is just general relativity (ε0 = +1 if the brane has

positive tension). This corresponds to the RS-II model [7].
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II Two-Brane Case

Here the parameter of importance is ε0ε1, which from Eqs. (2.7.17), (2.7.19) and (2.8.6) is

given by

ε0ε1 = − sgn (σ0σ1) . (2.9.2)

With P0 and P2 predetermined, it is possible for one brane tension to be negative, but not

both. Therefore ε0ε1 is positive if there is a negative tension brane, and is negative if both

branes have positive tension. Without loss of generality, we choose T = 0. Using the definition

(2.8.16) of Θ, the action (2.8.17) becomes

S =

∫
d4x
√
−g ε0 sgn(1 + ε0ε1ψ

2
1)

2κ2
4

[
R̃(4)[g] + 6

ε0ε1
(1 + ε0ε1ψ2

1)2
(∇̃aψ1)(∇̃aψ1)

]
+ S0 m

[
1

|1 + ε0ε1ψ2
1|
gab, φ

0

]
+ S1 m

[
ψ2

1

B1|1 + ε0ε1ψ2
1|
gab, φ

1

]
. (2.9.3)

The action is a functional of gab, ψ1, φ0 , and φ1 .

II.a Positive Brane Tensions

When both branes have positive tension, ε0ε1 = −1. Which of ε0 and ε1 is negative depends

on the sign of Θ. Combining Eqs. (2.8.16) and (2.8.13),

Θ = 1−B1e
χ1 . (2.9.4)

From Eqs. (2.7.19) and (2.8.7), we see that

ε0 = −ε1 = −sgn(P1). (2.9.5)

Combining this with Eq. (2.7.18) and recalling that χ0 = 0 if T = 0, we see that the

exponential function in Eq. (2.9.4) is greater than unity for P1 = +1, and less than unity for

P1 = −1. If P1 = +1, then the brane tensions [Eq. (2.7.17)] require that k0 > k1, and we see

that B1 > 1, giving Θ < 0 for ε0 = −1, ε1 = +1. If P1 = −1, then the brane tensions dictate

that k0 < k1. Thus, in this case, B1 < 1, and so Θ > 0 for ε0 = +1, ε1 = −1.
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Assuming that 0 < ψ1 < 1 (Θ > 0, P1 = −1, ε0 = +1), we define

ϕ = µ tanh−1(ψ1) (2.9.6)

where

µ =

√
6

κ4

. (2.9.7)

The domain of ϕ is 0 to ∞. The action (2.9.3) then becomes

S[gab, ϕ, φ
0 , φ1 ] =

∫
d4x
√
−g
[

1

2κ2
4

R̃(4)[g]− 1

2
(∇̃aϕ)(∇̃aϕ)

]
+ S0 m

[
cosh2

(
ϕ

µ

)
gab, φ

0

]
+ S1 m

[
1

B1

sinh2

(
ϕ

µ

)
gab, φ

1

]
. (2.9.8)

Requiring that the branes do not intersect or overlap gives

0 < ψ1 <
√
B1 =

√
1− k1/k2

1 + k1/k0

. (2.9.9)

Note that k1 < k2 to satisfy Eq. (2.7.17), and that
√
B1 < 1 (responsible for Θ > 0). Thus,

Eq. (2.9.9) is a more stringent constraint than 0 < ψ1 < 1.

In the situation where ψ1 > 1 (Θ < 0, P1 = +1, ε1 = +1), we define

ϕ = µ tanh−1

(
1

ψ1

)
. (2.9.10)

The domain of ϕ is from 0 to ∞. The action (2.9.3) then becomes

S[gab, ϕ, φ
0 , φ1 ] =

∫
d4x
√
−g
[

1

2κ2
4

R̃(4)[g]− 1

2
(∇̃aϕ)(∇̃aϕ)

]
+ S0 m

[
sinh2

(
ϕ

µ

)
gab, φ

0

]
+ S1 m

[
1

B1

cosh2

(
ϕ

µ

)
gab, φ

1

]
, (2.9.11)

which coincides with the previous action (2.9.8) if we swap the actions S0 m and S1 m and

rescale units in each matter action by factors of B
±1/2
1 .

The constraint on the radion field we impose to ensure that the branes do not overlap in

this case is

ψ1 >
√
B1 =

√
1 + k1/k2

1− k1/k0

> 1, (2.9.12)
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where k1 < k0 from the brane-tunings (Eq. (2.7.17)).

The actions (2.9.8) and (2.9.11) coincide with formulae in the literature for the action for

the RS-I model, up to a rescaling of units [6, 66, 46] [also, c.f. Eq. (2.4.15)]. They describe a

Brans-Dicke like scalar-tensor theory of gravity, with matter on each brane having a different

coupling strength to the scalar component.

II.b One Negative Brane Tension

If ε0ε1 = 1 then Θ > 0 always, and by requiring the conditions (2.7.19), both ε0 and ε1 must

be positive. We define

ϕ = µ tan−1(ψ1), (2.9.13)

where the domain of ϕ is 0 to (π/2)µ. The action (2.9.3) becomes

S[gab, ϕ, φ
0 , φ1 ] =

∫
d4x
√
−g
[

1

2κ2
4

R̃(4)[g] +
1

2
(∇̃aϕ)(∇̃aϕ)

]
+ S0 m

[
cos2

(
ϕ

µ

)
gab, φ

0

]
+ S1 m

[
1

B1

sin2

(
ϕ

µ

)
gab, φ

1

]
. (2.9.14)

Note that ϕ is a ghost field, which gives rise to the usual instability associated with a negative

tension brane.

III General Case of N branes

In the general case of N branes, it is convenient to redefine our fields in fieldspace. Let P

be the number of elements of the set {εT εn, 0 ≤ n ≤ N − 1, n 6= T} for which εT εn = +1,

corresponding to the number of scalar fields with positive coefficients in the action (2.8.17)

(ignoring the sign of Θ, and the kinetic-looking term for the same). Note that 0 ≤ P ≤ N − 1.

Also, let M = N − 1− P be the number of elements with εT εn negative, corresponding to

the number of scalar fields with negative coefficients. It is convenient to relabel the fields

{ψn} based on which have positive kinetic coefficient (ψ1, . . . , ψP ) and which have negative

55



kinetic coefficient (ψP+1, . . . , ψP+M ), based on the action 2.8.15 (the coefficient for each term

was εT εn). We now define new coordinates ζ, θ1, . . . , θP−1 and η, λ1, . . . , λM−1, such that

(ψ1, . . . , ψP ) = ζ (cos(θ1), sin(θ1) cos(θ2), . . . , sin(θ1) sin(θ2) · · · sin(θP−1)) , (2.9.15a)

(ψP+1, . . . , ψP+M) = η (cos(λ1), sin(λ1) cos(λ2), . . . , sin(λ1) sin(λ2) · · · sin(λM−1)) .

(2.9.15b)

We choose η, ζ > 0. All of the angular fields (θi and λj) have a domain of 0 to π/2, as

each ψn is positive. The fields ζ and η have domains of 0 < η, ζ <∞. This is essentially a

transformation to spherical polar coordinates in fieldspace, with one sphere for the positive-

coefficient fields, and a separate sphere for the negative-coefficient fields. The function Θ now

becomes

Θ = 1 + ζ2 − η2. (2.9.16)

Using these field definitions, the four-dimensional low-energy action can be written in as

S[gab,Φ
A, φn ] =

∫
d4x
√
−gεT sgn (Θ)

[
R(4)[gab]

2κ2
4

− 1

2
γAB(ΦC)gab∇aΦ

A∇bΦ
B

]
+

N−1∑
n=0

Sn m

[
e2αn(ΦC)gab, φ

n
]
. (2.9.17)

Here,
{

ΦA
}
≡ {ζ, η, θ1 , . . ., θP−1, λ1, . . ., λM−1}, and γAB(ΦC) is the metric on field space,

given by

dσ2 = γABdΦAdΦB =
µ2

Θ

[
−dζ2

(
1− η2

Θ

)
− ζ2dΩ2

p + dη2

(
1 + ζ2

Θ

)
+η2dΩ2

m −
2ηζ

Θ
dηdζ

]
, (2.9.18)

where dΩ2
p = dθ2

1 + sin2(θ1)dθ2
2 + . . . is the metric on the unit (P − 1)-sphere, and similarly for

dΩ2
m. The parameter µ is defined by µ =

√
6/κ4. The coupling functions αn(ΦC) are given

by

e2αT =
1

|Θ|
, (2.9.19a)

e2αn =
1

|Θ|
ψ2
n

Bn

, 0 ≤ n ≤ N − 1, n 6= T, (2.9.19b)
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where Bn is given by Eq. (2.8.12), and ψn(ΦC) is defined by the relevant expression in Eq.

(2.9.15).

We have now arrived at the explicit form of the theory originally given in Eq. (2.3.3).

There are N − 1 scalar fields, with a field space metric given by (2.9.18). The matter

coupling functions are given by Eqs. (2.9.19). The relationship between the five-dimensional

gravitational constant and the four-dimensional effective gravitational constant is given by

Eq. (2.8.14). There are no mass terms for the scalar fields, so the theory forms a massless

multiscalar-tensor theory in a nonlinear sigma model.

2.10 Discussion

This completes the explicit derivation of the low-energy effective action (2.3.3) in the case

of a specific model, and the illustration of our method of acquiring the four-dimensional

effective action. Although only the one application was demonstrated, the method is generally

applicable to compactified and orbifolded models6. Before analyzing the physics of the

four-dimensional effective action, we discuss various aspects of the method and its results.

I Domain of Validity of the Four-Dimensional Description

We begin our discussion of the domain of validity of the four-dimensional description given by

Eq. (2.8.17) by recapping the method of computation discussed in Section 2.6.III. Starting

from the five-dimensional action S, we define a rescaled action Sε which has the expansion

Sε = S0 + ε2S2 . (2.10.1)

In Section 2.7 we found the most general solution of δS0 = 0, and substituting that solution

into S2, gave the four-dimensional action functional of Section 2.8.III7.

6See Appendix B.
7The action S0 for the solution is zero, assuming the brane-tunings (2.7.17).
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The basis of our approximation method is the smallness of the bulk radius of curvature

1/kn compared to the radius of curvature Lc of the four-dimensional metric eχγ̂ab. However,

although this approximation is valid on all the branes, it inevitably breaks down as y → ±∞,

far from the branes, as Lc → 0, as discussed in Section 2.6.III. It is worth noting that in

the special case where all of the induced metrics on the branes are flat and there are no

matter fields, the metric ansatz (with Φ = const) is an exact solution to the five-dimensional

Einstein equations, and this breakdown does not occur.

One might expect contributions from the regime far from the branes to invalidate our

four-dimensional effective description. However, we expect that the contribution to the

action far from the brane will negligibly change the calculation, as in the region in which we

expect large departures from the derived metric, the warp factor exponentially suppresses

any contributions.

It is possible for our two-lengthscale expansion to break down not only asymptotically, but

also in between branes. A number of models (e.g., [58, 52, 68, 72] to cite but a few) discuss

bounce behavior in the warp factor, where it decreases and increases again in between branes,

as with a cosh2 dependence. Typically, this behavior appears when the metric γ̂ is a curved

FRW metric. It is a limitation of our method that this bounce is not evident in our solutions,

as it explicitly requires coupling between the O(1) and O(ε2) components (in particular, the

four-dimensional Ricci scalar). Thus, this behavior is excluded by the underlying assumptions

of our method, as near the turning point of these bounces, the separation of lengthscales has

broken down. We note, however, that cosh2 behavior is likely to be forbidden in the first or

last (y → ±∞) regions by global hyperbolicity. It is also possible to produce sinh2 behavior

in the warp factor. In between branes, this can lead to topologically disconnected regions of

spacetime as discussed in [52], which we have excluded by assumption. In the first or last

regions, correctly accounting for this behavior requires that the integration over the fifth

dimension be truncated. However, the contributions to our effective action from integrating

beyond these regions is again exponentially suppressed and negligible. In the regime in which
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the separation of lengthscales is valid, our solutions are in agreement with models displaying

these types of behavior.

For black holes, the solution given by our effective action is subject to the Gregory-

Laflamme instability [73] and the final outcome is uncertain (see [74] and citations thereof).

The five-dimensional stability of solutions for which the induced metric on the branes is not

nearly flat (e.g., black holes and neutron stars) is an interesting open question, although

recent numerical results [75] suggest that such solutions exist. We conjecture that all the

solutions without horizons are stable and are reasonably described by our four-dimensional

effective action.

We may also consider the regime in which Lc � L, such as will occur a long way away

from the branes. In this limit, the physical description would change from being that of

decoupled fibers to that of decoupled four-dimensional hypersurfaces [one should solve the

O(ε2) contribution to the action first, and substitute that into the O(1) contribution to the

action]. This approach may yield a matched asymptotic expansion approach to obtaining

a solution far from the branes. Our method may therefore be useful for investigating the

regime between Minkowski space on a brane and a black hole on a brane.

It is important to note that our method does not yield the leading order five-dimensional

metric. This can be seen from the fact that our four-dimensional action depends only on

the fields χn evaluated on the branes, and the values of these fields between the branes are

not determined. However, knowledge of the leading order five-dimensional metric is, rather

surprisingly, not a prerequisite for correctly capturing the leading order four-dimensional

dynamics. Most other methods rely on knowledge of the five-dimensional behavior of the

metric to calculate the effective four-dimensional equations of motion, and our method is

somewhat unique in this regard.

Our method of computation correctly captures the leading order dynamics of the system.

However, there will be higher-order corrections, suppressed by powers of ε2. In particular,
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the fields χn and Φn can be expanded as

χn = χn (0) + ε2 χn (2) +O(ε4), (2.10.2a)

Φn = Φn (0) + ε2 Φn (2) +O(ε4). (2.10.2b)

Throughout this chapter, we have dealt only with the fields χn (0) and Φn (0). The necessity of

higher-order terms can be seen from the exact, five-dimensional equations of motion, which

are derived in Appendix A. For example, the exact Israel junction conditions are given by

Eq. (A.10). If we substitute the expansions (2.10.2) into Eq. (A.10), and use (2.7.7) [with

χn and Φn replaced by χn (0) and Φn (0)] together with the brane-tuning conditions (2.7.17),

we find that the higher-order corrections χn (2) and Φn (2) are related to the matter stress

energy tensors on the brane. Our results confirm the suggestion of Kanno and Soda that

these higher-order corrections do not affect the four-dimensional effective action to leading

order [67].

II Models That Violate the Brane Tension Tunings

If a brane’s tension is adjusted so as to violate the tuning condition (2.7.17), then it is possible

to view the situation as having either detuned brane tensions or detuned bulk cosmological

constants. For accounting purposes, it is simpler to think of the bulk cosmological constants

as being detuned. When this occurs, the exact equations of motion in the bulk (A.6) to

(A.10) imply that a nonzero Ricci curvature is induced to compensate for the detuning. Exact

solutions have been calculated in highly symmetric cases, see for example Ref. [72]. In

general, the exact nature of the perceived detuning is nontrivial, as the bulk cosmological

constants on either side of the offending brane(s) can appear detuned by different amounts

to compensate.

If the deviation from the brane-tuning conditions is small [∆σ/σT = O(ε2)], then we can
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approximate the contribution to the four-dimensional effective action as

∆S = −
N−1∑
n=0

∫
d4x
√
− hn (σn − σTn ), (2.10.3)

where σTn is the tuned value for the nth brane, given by (2.7.17). This approximation is of

the same order as the other approximations we have made in our method. The net result is

then an effective cosmological constant on each brane, given by

Λ(4)
n = σn − σTn , (2.10.4)

which vanishes when the brane tensions are tuned. [Note that this expression differs from

results given in the literature for the RS-II model, see for example Ref. [42], but the difference

is O(ε4)].

If the detuning of a brane’s tension from its tuned value should become too large [O(1)

rather than O(ε2)], then the curvature induced by the four-dimensional effective cosmological

constant can cause the radius of curvature on a slice of constant y close to the branes to

violate the approximations used in our method, which implies that our four-dimensional

effective action will not be a good description of a system in this regime.

III Multigravity

Theories with more than one independent dynamical tensor field are called multigravity

theories; see the general discussion in Damour and Kogan [68]. The models in this work may

exhibit two forms of multigravity, although we have ignored one of them entirely.

The first form of multigravity is the possible existence of a second tensor field, given by

the matrix B(xa) in Eq. (2.7.10). We argued in Section 2.7.III that this form of multigravity

is likely forbidden.

The second form of multigravity arises from the the fact that outside of the low-energy

regime, the models will contain Kaluza-Klein graviton modes. These modes will have masses
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that are formally of order L−1, but may be much lighter due to exponential suppression factors,

and so may be phenomenologically important (so-called “ultra-light modes”) [49, 50]. Our

method of analysis automatically excludes all massive fields (formally, we take ε sufficiently

small to overcome any large exponential factors), so we have neglected all graviton Kaluza-

Klein modes. It is likely that some of these modes are in fact ultralight in our model, as in

the analyses of Damour and Kogan [49, 50, 68]. We discuss Kaluza-Klein modes in Appendix

C.

IV Evaluation

Our goal in this chapter was to devise a simple method by which to obtain an effective

four-dimensional action to capture the leading-order effects of braneworld models. Although

the description of the method became reasonably long and rather mathematical, most of the

effort contained here involved book-keeping and justifying approximations. The application of

the method is actually reasonably quick and straightforward, as we demonstrate in Appendix

B, where we apply the method to an orbifold model.

In the appropriate limits, the method yields results that are consistent with the literature,

and we are satisfied that it captures the leading order dynamics of five-dimensional models,

especially with regards to the radion structure. One feature of this method is that the

Kaluza-Klein gravitational modes have been truncated. However, this is also a drawback

in that there is no simple manner in which to reincorporate their effects. However, given

that our four-dimensional metric has been left arbitrary and dynamical (within the regime

of validity), no general expansion for the Kaluza-Klein tower is possible, and so acquiring a

four-dimensional effective description for these modes as massive gravitational modes cannot

be performed anyway.

Having developed a four-dimensional effective action, it is now time to investigate the

physics of this model, and apply both theoretical and experimental constraints on the
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parameter space. We perform this undertaking in the following chapter.
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Chapter 3

Gravitational Interactions in

Multibrane-Worlds

Contents
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In the previous chapter, we proposed an approximation scheme based upon a two-

lengthscale expansion which can be used to evaluate a four-dimensional low-energy action for

five-dimensional braneworld models, and demonstrated its application to an uncompactified

N -brane model. We now turn to analyzing the physics of the four-dimensional effective action

for this model.

We investigate the parameter space of the general model, and find regions in which the

theory has no ghosts. The parameter space is further refined by imposing observational

constraints from Solar System tests of gravity. We consider the possibility of placing dark

matter and Standard Model fields on separate branes, and by comparing to observational

data, find that the vast majority of the dark matter must reside on our brane in the models

considered.

Our motivation in analyzing general N -brane models is to determine whether the presence
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of extra branes may overcome some of the constraints the RS-I and RS-II models have,

particularly with regards to radion stabilization requirements for experimentally viable

models. We are also interested in potential applications to models of dark matter and energy.

Repeated here for convenience are the low-energy effective action, target space metric,

and coupling functions, for convenience. The low-energy effective action, as derived in the

previous chapter [Eq. (2.9.17)], is

S[gab,Φ
A, φn ] =

∫
d4x
√
−gεT sgn (Θ)

[
R(4)[gab]

2κ2
4

− 1

2
γAB(ΦC)gab∇aΦ

A∇bΦ
B

]
+

N−1∑
n=0

Sn m

[
e2αn(ΦC)gab, φ

n
]
. (3.0.1)

The field space metric [Eq. (2.9.18)] is

dσ2 = γABdΦAdΦB =
µ2

Θ

[
−dζ2

(
1− η2

Θ

)
− ζ2dΩ2

p + dη2

(
1 + ζ2

Θ

)
+η2dΩ2

m −
2ηζ

Θ
dηdζ

]
. (3.0.2)

Finally, the coupling functions [Eqs. (2.9.19)] are

e2αT =
1

|Θ|
, (3.0.3a)

e2αn =
1

|Θ|
ψ2
n

Bn

, 0 ≤ n ≤ N − 1, n 6= T. (3.0.3b)

This chapter is based on work originally presented in [2].

3.1 Parameterization of Field Space

We begin our investigation by finding coordinates on field space which diagonalize the field

space metric, Eq. (3.0.2). This is particularly useful for identifying the presence of any

unphysical ghost modes. We look at two special cases before analyzing the general case.

Recall that P is the number of terms with positive εT εn, and M the number of terms for

which it is negative. The two must add to give P +M = N − 1.

65



I Negative Definite Field Space Metric

In the case M = 0, the general metric reduces to

(1 + ζ2)

µ2
dσ2 = − 1

1 + ζ2
dζ2 − ζ2dΩ2

p. (3.1.1)

This can be rewritten as

dσ2 = − da2 − µ2 sin2

(
a

µ

)
dΩ2

p, (3.1.2)

where a = µ tan−1(ζ), with 0 ≤ a ≤ πµ/2.

II Positive Definite Field Space Metric

In the case of P = 0, the general metric reduces to

(1− η2)

µ2
dσ2 = dη2 1

1− η2
+ η2dΩ2

n. (3.1.3)

For the case where η < 1, this can be rewritten as

dσ2 = da2 + µ2 sinh2

(
a

µ

)
dΩ2

n, (3.1.4)

where a = µ tanh−1(η), with 0 < a < ∞. This is shown in Section 3.2 to be the only

physically relevant case.

For the case of η > 1, the metric (3.0.2) can be rewritten as

dσ2 = da2 − µ2 cosh2

(
a

µ

)
dΩ2

n, (3.1.5)

where a = µ coth−1(η), and 0 < a <∞.

We see that the two cases η > 1 and η < 1 are topologically disconnected, one being a

metric on elliptic space and the other being a metric on de Sitter space, and so the divergence

at η = 1 in the metric (3.1.3) is simply a coordinate singularity.
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III General Case

In the general case with M > 0, P > 0, the metric (3.0.2) is non-diagonal. It can be

diagonalized using suitable coordinate transformations in the three different cases Θ < 0,

0 < Θ ≤ 1, and Θ ≥ 1. Recall that

Θ = 1 + ζ2 − η2. (3.1.6)

III.a Θ < 0

For Θ to be negative, we require from Eq. (3.1.6) that η2 − ζ2 > 1. Recall that η and ζ are

non-negative. We define new coordinates (a, b) by

η = a cosh

(
b

µ

)
, (3.1.7a)

ζ = a sinh

(
b

µ

)
, (3.1.7b)

where a > 1, b ≥ 0. The metric (3.0.2) becomes

dσ2 =
a2

a2 − 1

[
db2 +

µ2

a2(a2 − 1)
da2 + µ2 sinh2

(
b

µ

)
dΩ2

p − µ2 cosh2

(
b

µ

)
dΩ2

m

]
. (3.1.8)

Defining c by a = cosec(c/µ) with 0 < c < πµ/2, the metric becomes

dσ2 = sec2

(
c

µ

)(
db2 + dc2 + µ2 sinh2

(
b

µ

)
dΩ2

p − µ2 cosh2

(
b

µ

)
dΩ2

m

)
. (3.1.9)

III.b 0 < Θ ≤ 1

In this regime, η > ζ as previously, but with η2 − ζ2 ≤ 1. We use the same coordinate

definitions (3.1.7), but with 0 ≤ a < 1 and b ≥ 0. The metric is the same as Eq. (3.1.8).

This time, define c = µ sech−1(a) with 0 < c <∞, which gives

dσ2 = cosech2

(
c

µ

)[
−db2 + dc2 − µ2 sinh2

(
b

µ

)
dΩ2

p + µ2 cosh2

(
b

µ

)
dΩ2

m

]
(3.1.10)

as the metric.
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III.c 1 ≤ Θ

In this region of field space, ζ ≥ η. We define coordinates (a, b) by

η = a sinh

(
b

µ

)
, (3.1.11)

ζ = a cosh

(
b

µ

)
, (3.1.12)

with domains of a ≥ 0, b ≥ 0. The metric (3.0.2) in these coordinates is

dσ2 =
a2

1 + a2

[
− µ2

a2(1 + a2)
da2 + db2 − µ2 cosh2

(
b

µ

)
dΩ2

p + µ2 sinh2

(
b

µ

)
dΩ2

m

]
. (3.1.13)

If we define c = µ cosech−1(a) with 0 < c <∞, the metric becomes

dσ2 = sech2

(
c

µ

)[
−db2 + dc2 − µ2 sinh2

(
b

µ

)
dΩ2

p + µ2 cosh2

(
b

µ

)
dΩ2

m

]
. (3.1.14)

The two cases 0 < Θ ≤ 1 and Θ ≥ 1 are two coordinate patches on the same manifold.

We see that the apparent divergence in the metric (3.0.2) at η2 − ζ2 = 1 is just a coordinate

divergence; it delineates the boundary between topologically disconnected spaces (Θ > 0

and Θ < 0). We show in Section 3.2 that only one of these cases is physically viable, and

corresponds to case 3.1.II with a different choice of T .

3.2 Physically Viable Models

In this section, we impose the constraint that all kinetic terms in the Einstein conformal

frame have the correct signs, in order to exclude ghosts. This requires that the field space

metric have positive definite signature. Of the field space configurations, only those giving

rise to the metrics (3.1.4) and (3.1.9) (with M = 1) meet this condition. We investigate the

constraints this imposes on the parameters of the model.

Recall that P is the number of parameters in the set {εT εn, n 6= T} which are positive,

and M = N − 1−P is the number which are negative. The metric (3.1.4) occurs when P = 0
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and M = N − 1. This requires all εn to have the same sign, except for εT which has the

opposite sign. It also requires Θ > 0.

The metric (3.1.9) occurs with the correct signature when M = 1 and P = N − 2. This

requires all εn (including εT ) to have the same sign except for one (not εT ), which has the

opposite sign. This metric also requires Θ < 0.

Combining these two cases, we see that all εn (including εT ) must have the same sign

except one, which must be opposite. If this special n is labelled S, then evidently the first

case [with metric (3.1.4)] corresponds to the choice S = T , while the second case corresponds

to S 6= T [with metric (3.1.9)]. We now investigate what constraints the requirements for

these metrics impose.

At brane Bn, where the bulk regions n and n+1 meet, there are four possible combinations

for the parameters Pn and Pn+1, namely (Pn, Pn+1) = (−,−), (−,+), (+,−) and (+,+).

Furthermore, the bulk cosmological constant can either increase or decrease across the brane.

The sign of the brane tension σn and the sign of εn for each of these eight cases is given in

Fig. 7, where the warp factor is plotted for each situation. Below, we refer to these eight

possibilities as cases 1 through 8. We begin by looking at the situation where a single εn is

positive (0 ≤ n ≤ N − 1), and then look at the situation where a single εn is negative.

I A single brane with εn positive

Recall that Pn is the sign of the slope of the warp factor in Rn. Using P0 = +1 and PN = −1

(which was assumed in deriving the four-dimensional low-energy action), we need a turning

point in the warp factor somewhere in the progression of branes, which restricts us to either

case 2 or case 6. Both of these cases have positive ε, and so we require that all other εn

are negative. Given that if the warp factor turns back upwards after turning downwards, it

would need to turn around again using another case 2 or 6 which would introduce a second

positive ε, we see that the warp factor is only allowed to increase, turn around, and then
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Figure 7: The behavior of the warp factor at a brane interface in the eight possible configu-
rations. An increasing warp factor in a region has Pn = +1, while a decreasing
warp factor has Pn = −1. In cases 2, 3, 6 and 7, the adjacent bulk cosmological
constants can be equal. The horizontal axis in all plots is the y coordinate. Note
that cases 2 and 6 are equivalent, for all intents and purposes, as are cases 3 and
7.

decrease. The only way to continue increasing with negative ε is using case 5, and the only

way to decrease with negative ε is using case 4. Thus, the progression of cases across the

branes must go

5, . . . , 5, (2 or 6), 4, . . . , 4. (3.2.1)

It is unnecessary to have any branes with case 5 or 4 (i.e., the first or last case may be 2/6).

Note that cases 2, 4, 5 and 6 all correspond to positive tension branes.

Given the growth and fall of the warp factor, there can only be one brane on which the

warp factor is a maximum. We call this the “central” brane. Choose T to be this brane, such

that χ(xa, T ) = 0, and so the warp factor is unity on the brane where the warp factor is a

maximum. With the progression (3.2.1), εT = +1, and all other εn = −1. We have P = 0

and M = N − 1, and so we require that Θ > 0 using these field definitions.

We are interested in the sign of Θ, to see if the requirement that Θ > 0 is met for the

70



metric (3.1.4). As An > 0, it is sufficient to know the sign of ATΘ. We have

ATΘ = AT −
∑
n 6=T

Ane
χn . (3.2.2)

Now, given that the warp factor is a maximum on BT and we know that Pn = −1 for n > T ,

it follows that χn > χn+1 for n > T . Similarly, we have χn < χn+1 for n < T . We now

consider the expression for An [Eq. (2.8.5)] based on what we know about Pn and kn from

the progression (3.2.1).

AT = 1/kT + 1/kT+1

An = 1/kn − 1/kn+1 (n > T )

An = 1/kn+1 − 1/kn (n < T ) (3.2.3)

Thus, Θ may be written as

ATΘ =
∑
n≤T
n6=0

1

kn
(eχn − eχn−1) +

1

k0

eχ0 +
∑
n≥T

n 6=N−1

1

kn+1

(eχn − eχn+1) +
1

kN
eχN−1 . (3.2.4)

Each term in both sums is positive, and so Θ > 0.

Thus, we see that a situation with all εn parameters negative bar one produces an action

with no incorrectly signed kinetic terms. Furthermore, this choice of parameters requires

all the brane tensions to be positive. Finally, the Ricci scalar in the action has positive

coefficient, as εT sgn(Θ) = +1. We investigate the properties of models in this parameter

space in the remainder of this chapter.

II A single brane with εn negative

Here, the number of possibilities is larger than in the previous case. By using the same logic

as above, we find that the following progressions of cases are the only ways to meet the
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required conditions:

Option 1: 1, . . . , 1, 5, 1, . . . , 1, (2 or 6), 8, . . . , 8 (3.2.5a)

Option 2: 1, . . . , 1, (2 or 6), 8, . . . , 8, 4, 8, . . . , 8 (3.2.5b)

Option 3: 1, . . . , 1, (2 or 6), 8, . . . , 8, (3 or 7), 1, . . . , 1, (2 or 6), 8, . . . , 8 (3.2.5c)

Each of these cases requires one or more negative tension branes. We consider each of these

cases in turn.

Option 1:

Let the one negative εn be εT , corresponding to case 5. One brane will have the maximum

warp factor; call this brane X. Note that X 6= T , as brane T , being case 5, does not have

the maximum warp factor. We now have εT = −1, and all other εn = +1, and so we have

P = 0 once again, which requires Θ > 0. Consider the sign of ATΘ. We have

ATΘ = AT −
∑
n6=T

Ane
χn . (3.2.6)

We can once again calculate An explicitly.

AT = 1/kT+1 − 1/kT , An = 1/kn − 1/kn+1 (0 ≤ n ≤ X − 1, n 6= T ),

AX = 1/kX + 1/kX+1, An = 1/kn+1 − 1/kn (n > X) (3.2.7)

ATΘ can then be expressed as

ATΘ = − 1

k0

eχ0 −
X∑
n=1

1

kn
(eχn − eχn−1)− 1

kN
eχN−1 −

N−2∑
n=X

1

kn+1

(eχn − eχn+1) . (3.2.8)

Here, all bracketed terms are positive. Thus, Θ < 0, in contradiction of the requirement that

Θ > 0 necessary for this situation.

Option 2:

This case proceeds in exactly the same manner as Option 1, and we again find Θ < 0, in

contradiction of the requirements for this situation.
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Option 3.

This case is a little more complicated. Let T be the one brane with negative ε, corresponding

to case 3 or 7. Two branes will have a local maximum warp factor; let them be L and R (to

the left and right of brane T ). Now, consider ATΘ, which we require to be positive in this

situation (as we once again have P = 0).

ATΘ = AT −
∑
n6=T

Ane
χn . (3.2.9)

This time, we have

An =
1

kn
− 1

kn+1

, 0 ≤ n < L, T < n < R,

An =
1

kn+1

− 1

kn
, L < n < T, R < n,

AL =
1

kL
+

1

kL+1

, AT =
1

kT
+

1

kT+1

, AR =
1

kR
+

1

kR+1

. (3.2.10)

Combining these, we find

ATΘ = − eχ0

k0

−
L∑
n=1

1

kn
(eχn − eχn−1)−

T−1∑
n=L

1

kn+1

(eχn − eχn+1)

−
R∑

n=T+1

1

kn
(eχn − eχn−1)−

N−1∑
n=R

1

kn+1

(eχn − eχn+1)− eχN−1

kN
. (3.2.11)

Once again, Θ is negative, and so this configuration also creates a contradiction.

III The Effect of Negative Tension Branes

From the above arguments, we see that the only ghost-free configurations are those which do

not have any negative tension branes. This is consistent with the well-known local arguments

for the instability of a negative tension brane. We note that by just using positive tension

branes with the assumption that P0 = +1 and PN = −1 (and ignoring the requirement of

the different εn parameters having specific signs), the only possible combination is (3.2.1),

and so it is the presence of negative tension branes which are giving rise to the instability.

Any valid configuration which only has positive tension branes will not have this instability.
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Figure 8: Diagram of a physically allowable warp factor between branes, and the associated
bulk cosmological constants (dashed). Branes are represented as vertical lines.
The bulk cosmological constants are negative, while the warp factor lies between
0 and 1.

The combination of cases (3.2.1) provides a rather tight restriction on the progressions of

the bulk cosmological constant which can give rise to physically viable scenarios. Recalling

that the bulk cosmological constants are negative, we require the bulk cosmological constants

to increase across the branes monotonically to a maximum, and then decrease monotonically

(see Fig. 8). Note that in the special case where the first (last) brane has the maximum warp

factor, then |Λ| can be monotonically increasing (decreasing).

3.3 Specializing to Physically Viable Cases

In this section, we specialize to the physically viable cases discussed above, and find a set of

variables which simplifies the action.

I The Physical Action

We previously found that the only physically viable configuration for the model is the

configuration (3.2.1), in which the warp factor increases to a maximum, and then decreases

again, with all brane tensions positive. We denote by n = T the index of the brane with the
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maximum warp factor, and call this brane the “central brane”. Specializing Eq. (2.8.15) to

these parameters, we find

S[γ̂ab, ψn, φ
n ] =

∫
d4x
√
−γ̂ 1

2κ2
4

R(4) [γ̂ab]

1−
N−1∑
n=0
n6=T

ψ2
n

− 6
N−1∑
n=0
n6=T

(∇̂aψn)(∇̂aψn)


+ ST m

[
γ̂ab , φT

]
+

N−1∑
n=0
n6=T

Sn m

[
ψ2
n

Bn

γ̂ab, φ
n

]
. (3.3.1)

This is the action in the Jordan conformal frame of the central brane.

As P = 0, M = N − 1, the function Θ is now given by

Θ = 1−
N−1∑
n=0
n6=T

ψ2
n = 1− η2, (3.3.2)

and we know that Θ > 0 from the arguments of the previous section. We now follow

the field redefinitions (2.9.15b) exactly, transforming into spherical polar coordinates. Let

(λ1, . . . , λN−2) be angular coordinates such that

ψ0

η
= cos(λ1) = f0 (3.3.3a)

ψ1

η
= sin(λ1) cos(λ2) = f1 (3.3.3b)

...

ψT−1

η
= sin(λ1) . . . sin(λT−1) cos(λT ) = fT−1 (3.3.3c)

ψT+1

η
= sin(λ1) . . . sin(λT ) cos(λT+1) = fT+1 (3.3.3d)

...

ψN−2

η
= sin(λ1) . . . sin(λN−3) cos(λN−2) = fN−2 (3.3.3e)

ψN−1

η
= sin(λ1) . . . sin(λN−3) sin(λN−2) = fN−1. (3.3.3f)

Defining a = µ tanh−1(η) with a > 0 as in Section 3.1.II, we have our final four-dimensional
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low-energy action, written in the Einstein conformal frame, where gab = Θγ̂ab.

S =

∫
d4x
√
−g

[
R(4)[g]

2κ2
4

− (∇a)2

2
− µ2

2
sinh2

(
a

µ

)N−2∑
n=1

{
n−1∏
m=1

sin2(λm)

}
(∇λn)2

]

+ ST m

[
cosh2

(
a

µ

)
gab, φT

]
+

N−1∑
n=0
n6=T

Sn m

[
sinh2

(
a

µ

)
f 2
n

B′n
gab, φ

n

]
(3.3.4)

The functional dependence of the action on [gab, a, λn, φ
n ] has been suppressed for space, and

(∇X)2 = (∇aX)(∇aX). In a more convenient notation, the field space metric is

dσ2 = da2 + µ2 sinh2

(
a

µ

)
dΩ2

n, (3.3.5)

where dΩ2
n = dλ2

1 + sin2(λ1)dλ
2
2 + . . . is the metric on the unit N − 2 sphere. This is the

metric on hyperbolic space.

The target space will not be all of the quadrant of (N − 1)-dimensional hyperbolic space

for which all the field coordinates are positive, as we have yet to impose the constraint of

having no branes intersecting, which was implicit in the derivation of the action. In the

general case, these constraints are

χn < χn+1, n < T, (3.3.6a)

χn > χn+1, n > T, (3.3.6b)

where χn is related to ψn by Eq. (2.8.13).

II The Effect of One Brane on Another

Given the low-energy action (3.3.4), it is interesting to ask about the effect one brane has on

another, depending on how they are located. To investigate this, we consider two separate

scenarios, one with N branes, and one with N + 1 branes, where an extra brane has been

added after the last brane in the original scenario. The effect of this extra brane on η2 is to

add an extra term to the sum (3.3.2). In the scenario with N + 1 branes,

η2 = η2
0 +BN+1e

χN , (3.3.7)
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where η0 is the value of η in the scenario with N branes.

The continuity of χ(xa, y) across branes requires that

eχN = eχN−1e−2kNdN , (3.3.8)

where dN is the geodesic distance between the now second last and last (newly added) branes.

As exp(χN−1) ≤ 1 (χT = 0 is the maximum χ), this contribution to η2 becomes exponentially

small as the distance to the new brane increases. Looking at Eqs. (3.3.3), we see that the

change to the angular fields is also exponentially suppressed, and so the contribution of

this new brane to the gravitational coupling is exponentially suppressed on all other branes.

We therefore infer that the effect of the position of one brane on another, insofar as that

information is coded into the radion fields, grows exponentially small as the distance between

the branes increases. Given that the interbrane distances must be large compared to the AdS

radii of curvature in order to meet the constraint from γ (see Section 3.4.I), this implies that

the physics of a model with a large number of branes will dominated by the central brane

and those branes nearest to it.

3.4 Observational Constraints

The theories (3.3.4) that are not ruled out by instabilities contain several massless radion

fields, which will mediate long range forces and give rise to corrections to general relativity.

Therefore, these theories will be subject to constraints arising from Solar System and other

tests of general relativity. The nature of these constraints depends on which brane normal

visible matter is assumed to reside. In this section, we investigate the extent to which

these radion fields modify general relativity, and determine the corresponding observational

constraints on the parameters of the theory.
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I Eddington PPN Parameter

The Eddington parameterized post-Newtonian (PPN) parameter γ, which measures deviations

from general relativity, is one of the most tightly constrained numbers from Solar System

measurements of gravity. In this section, we compute this parameter from the action (3.3.4).

As shown in Ref. [76], for a theory of the form

S[gab,Φ
A, φn ] =

∫
d4x
√
−g
{

1

2κ2
4

R(4)[gab]−
1

2
γAB(ΦC)gab∇aΦ

A∇bΦ
B

}
+

N−1∑
n=0

Sn m

[
e2αn(ΦC)gab, φ

n
]

(3.4.1)

where ΦA are scalar fields and γAB(ΦC) is the metric on field space, the Eddington PPN γ

parameter for observers on brane n is given by

1− γ =
2 αn 2

0

1 + αn 2
0

(3.4.2)

where

αn 2
0 =

2

κ2
4

γAB
∂αn
∂ΦA

∂αn
∂ΦB

(3.4.3)

and γAB is the inverse field space metric. For our theory (3.3.4), we have ΦA ≡ (a ,

λ1, . . . , λN−2), the field space metric is given by Eq. (3.3.5), and the functions αn are

given by Eqs. (3.3.3) and (3.3.4).

We calculate γ for each of our branes. On the central brane, we find that

αT 2
0 =

1

3
η2, (3.4.4)

where η = tanh(a/µ) has been used. As 0 < η < 1, it is possible for αT 2
0 to be sufficiently

small on this brane to meet experimental constraints, which require that [77]

|γ − 1| ≤ 2.3× 10−5. (3.4.5)

This constraint implies that the brane which is closest to the central brane must be at least 5

times the bulk curvature scale away from it [from Eqs. (2.7.18), (2.8.13) and (3.3.2)].
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For the other branes, let

p(n) =


n, n < T

n− 1, n > T

(3.4.6)

in order to account for the hole in the sum over the matter actions in Eq. (3.3.4). For brane

n, we calculate αp 2
0 to find

αp 2
0 =

1

3η2

[
1 + (1− η2)

{
p∑
j=1

cot2(λj)∏j−1
m=1 sin2(λm)

+ (1− δp,N−2)
tan2(λp+1)∏p
m=1 sin2(λm)

}]
(3.4.7)

>
1

3η2
. (3.4.8)

As 0 < η < 1, none of these branes can give rise to a γ parameter consistent with our observed

Universe, and thus for this type of model not to be observationally excluded requires that we

live on the central brane, where the warp factor is maximized. This implies that models of

the form we are considering are unsuitable for explanations of the hierarchy problem, as no

hierarchy can be obtained when considering Standard Model fields to be living on the central

brane. Solving the hierarchy problem requires stabilizing at least some of the radion modes.

II Dark Matter Limits

One of the motivations behind braneworld models is that the sequestering that occurs between

matter on different branes may provide a natural explanation for the weakness of the coupling

between normal matter and dark matter. Because of the different coupling factors of the

metric to matter on different branes, there is a different Newton’s constant for each brane,

as well as different interaction strengths between matter on separate branes. As such, the

Newton’s constant becomes a Newton’s matrix. In this section, we calculate the Newton’s

matrix measured by observers on different branes.

The Newton’s matrix depends on the brane on which the observer resides, since the units

in terms of which the Newton’s constant is measured vary from one brane to another. As
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the above section constrains normal matter to live on the central brane, we calculate the

Newton’s matrix from the perspective of the central brane. Generalizing the arguments

presented in the appendix of [78], for a theory of the form (3.4.1), we calculate the elements

of the Newton’s matrix to be

Gmn
eff =

κ2
4

8π
e2αT

(
1 +

2

κ2
5

γAB
∂αm
ΦA

∂αn
ΦB

)
, (3.4.9)

where Gmn
eff measures the strength of the gravitational interaction between matter on brane n

and matter on brane m. Note that for m = n, the quantity in the brackets is 1 + αn 2
0.

When calculating the elements of (3.4.9), it is again convenient to write the quantities in

terms of η = tanh(a/µ). We also use p(n) [Eq. (3.4.6)], and similarly define q(m), in order

to account for the missing term in the matter action sum in Eq. (3.3.4). We find

GTT
eff =

κ2
4

8π
e2αT

(
1 +

η2

3

)
, (3.4.10a)

GTp
eff =

κ2
4

8π
e2αT

(
1 +

1

3

)
, (3.4.10b)

Gpp
eff =

κ2
4

8π
e2αT

(
1 +

1

3η2

[
1+

(1− η2)

{
p∑
j=1

cot2(λj)∏j−1
k=1 sin2(λk)

+ (1− δp,N−2)
tan2(λp+1)∏p
k=1 sin2(λk)

}])
, (3.4.10c)

Gpq
eff =

κ2
4

8π
e2αT

(
1 +

1

3η2

[
1 + (1− η2)

{
q∑
j=1

cot2(λj)∏j−1
k=1 sin2(λk)

− 1∏q
k=1 sin2(λk)

}])
,

(3.4.10d)

where m 6= n 6= T , and m < n. In all cases, the “1” in the outermost brackets arises from

graviton exchange, while the remaining terms come from the exchange of scalar quanta.

By considering the formation of the Sagittarius tidal streams, Kesden and Kamionkowski

[79] have placed limits on the relative strengths of gravitational interaction between dark

matter and normal matter. The constraint is roughly∣∣∣∣ GM−DM√
GM−MGDM−DM

− 1

∣∣∣∣ . 0.02 (3.4.11)
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where “M” indicates matter, and “DM” indicates dark matter. If we assume that all the dark

matter lives on branes other than the central brane, we can calculate the constraints on our

model that this provides, finding that η & 0.8. This disagrees with the constraint (3.4.5),

which implies η . 6× 10−3. Thus, this model is unable to explain dark matter by positing

the existence of matter fields on other branes1.

We next consider the possibility that some fraction of the dark matter lives on our (central)

brane, and some fraction lives on other branes. We can then calculate the percentage of

dark matter which must reside on the central brane in order to be compatible with the

observational constraints (3.4.5) and (3.4.11). On average, a mass M of dark matter will be

composed of a mass αM on our brane, say, and (1 − α)M on other branes. The effective

matter to dark matter coupling strengths will then be

GMM
eff = GTT

eff (3.4.12a)

GDD
eff = GTT

eff α
2 +Gnn

eff (1− α)2 +GTn
eff α(1− α) (3.4.12b)

GMD
eff = GTT

eff α +GTn
eff (1− α). (3.4.12c)

For simplicity, we use

Gnn
eff = Gmn

eff ∼
κ2

4

8π
e2αT

(
1 +

1

3η2

)
(3.4.13)

as the “off-brane to off-brane” coupling strength. Combining values for GTT
eff , G

Tn
eff and Gnn

eff

with Eqs. (3.4.12) in the constraint (3.4.11) and using η2 ∼ 3.5× 10−5, we find α & 0.998,

indicating that the vast majority of the dark matter must reside on our brane in this simplified

model.
1Note, however, that if the radion fields are stabilized, then it is possible to circumvent this

restriction. As such, we can only rule out braneworld models with no moduli stabilization as
an explanation for the observed weak interaction strength between dark matter and normal
matter.
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3.5 Discussion

This completes our analysis of the observational constraints for a general uncompactified

five-dimensional braneworld model with arbitrary numbers of branes and without a radion

stabilization mechanism, in the low-energy four-dimensional regime. The parameter space

of such models was restricted by excluding ghost modes, and the phenomenology of the

resulting models was analyzed. For such models to be viable, there is only one brane upon

which Standard Model fields may reside, and such a configuration was unable to provide any

benefit for the hierarchy problem, nor a natural explanation for the weakness of the coupling

between normal matter and dark matter by sequestration. The Kaluza-Klein modes in such

a model behave very similarly to the original RS-II model. Our model was not found to be

ruled out experimentally, although observational constraints on the change in the value of

GN between nucleosynthesis and today may do so.

The methodology discussed in these chapters is also applicable to orbifolded models. In

Appendix B, we show that the low-energy theory for orbifolded models is very similar to that

for the uncompactified model discussed here. In Appendix C, we discuss the spectrum of

Kaluza-Klein modes in both orbifolded and uncompactified multibrane models.

Overall, we found that models with N branes are quantitatively very similar to the

two-brane case. Furthermore, uncompactified and orbifolded models were also found to be

very similar, giving rise to identical four-dimensional low-energy theories, after a scaling of

parameters.

I Evalulation

Our approach to analyzing the five-dimensional model and obtaining a four-dimensional

effective theory is straightforward and versatile. The general approach of a two-lengthscale

expansion is applicable to actions involving different contributions, such as induced gravity
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on branes (for example, the DPG model [5]) and Gauss-Bonnet curvature terms in the bulk.

However, to acquire the four-dimensional effective theory for such models would require

performing the analysis of the previous chapter again, in particular, identifying the leading

order contributions to the equations of motion.

Braneworld models such as the ones we have analyzed are often complemented by a radion

stabilization mechanism. Radion stabilization is particularly useful in circumventing the

observational constraints that we calculated here, as massive radion modes will be subject to

Yukawa suppression and thus will have suppressed contributions to deviations in γ. A radion

stabilization mechanism may be implemented in the model explicitly by including it in the

action, and the new model analyzed in the two-lengthscale expansion. In the case where a

bulk scalar field is used [45, 46], we expect interactions between the radion modes and the

scalar field to give rise to nontrivial dynamics. On the other hand, if radion stabilization is

implemented by hand, such as by giving masses to the ψn fields in Eq. (2.8.15) (corresponding

to fixing the distance between successive branes), then our analysis will proceed unchanged,

although our calculations of the observational constraints will not apply.

The approach of using a two-lengthscale expansion has been demonstrated to be a useful

method for understanding the low-energy theory of braneworld models, as we have shown

here in the case of simple N -brane models in a five-dimensional bulk. We hope that others

find the method applicable to a broad range of models.

Part of the motivation for investigating these models was to evaluate if any possible

explanations for dark energy could arise from this manner of construction. As all of the

radion modes turn out to be massless scalar fields, they are unfortunately not useful for dark

energy models. A possible modification to the models which might give rise to the desired

behavior would be to more closely investigate detuned branes, which naturally give rise to

effective four-dimensional cosmological constants, as well as potentials for the radion modes.

However, the dynamics associated with such a detuning can easily violate the separation of
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lengthscales argument upon which this method is based, and so alternative analysis techniques

would be required.

Having concentrated on analyzing a specific class of models for two chapters, we now

change gears and look at dark energy models with a more general approach. Later, we will

meet the two approaches in the middle.
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Chapter 4

A Class of Effective Field Theory

Models of Cosmic Acceleration
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We now turn to a rather different approach to dark energy models. Instead of investigating

individual models, here we construct an effective field theory model of dark energy, with

the aim of being as generic and all-encompassing as possible. We pay close attention to

the regime of validity of the effective field theory, and find that such an approach isn’t as

all-encompassing as we had hoped.

This chapter is based on work originally presented in [3].

4.1 Introduction

The accelerated expansion of the universe, to our current observations, appears to be

progressing in a homogeneous and isotropic manner on the largest scales. Should this
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expansion be due to something other than a cosmological constant, then it can typically be

attributed to an effective scalar mode, so that the expansion has no directional preference

such as would be associated with modes of other spins.

If dark energy has a dynamical microphysical origin, then it would represent a modification

to gravity on extreme infrared scales. However, it is important not to modify gravity on

scales in which gravity has been stringently tested, namely solar system scales down to

sub-millimetre scales. Gravity is eventually expected to differ from general relativity on

length-scales smaller than this, at the Planck scale, if not before. However, deviations at

small scales are unable to contribute to the expansion of the universe.

A famous theorem due to Weinberg [28] shows that the self-interactions of a Lorentz-

invariant massless spin-two field are equivalent to general relativity in the low-energy limit,

and so any modifications of gravity perforce require the addition of new degrees of freedom. It

is therefore little surprise that a common feature of the majority of dark energy and modified

gravity models is that in the low-energy limit, they are equivalent to general relativity coupled

to one or more scalar fields, often called quintessence fields.

It is thus useful to try to construct very general low-energy effective quantum field theories

of general relativity coupled to light scalar fields, in order to encompass broad classes of

dark energy models. Considering dark energy models as quantum field theories is useful,

even though the dynamics of dark energy is likely in a classical regime, because it facilitates

discriminating against theories which are theoretically inconsistent or require fine tuning.

I Previous Work

A similar situation occurs in the study of models of inflation, where it is useful to construct

generic theories using effective field theory. Cheung et al. [80] constructed a general effective

field theory for gravity and a single inflaton field, for perturbations about a background

FRW cosmology in unitary gauge. This work was later generalized in multiple directions
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[81, 82] and has been very useful. An alternative approach to single field inflationary models

was taken by Weinberg [83], who constructed an effective field theory to describe both the

background cosmology and the perturbations. This theory consisted at leading order of a

standard single field inflationary model with a potential, together with higher-order terms in

a covariant derivative expansion up to four derivatives. More detailed discussions of this type

of effective field theory were given by Burgess, Lee and Trott [84].

When one turns from inflationary effective field theories to quintessence effective field

theories, the essential physics is very similar, but there are three important differences that

arise:

• First, the hierarchy of scales is vastly more extreme in quintessence models. The Hubble

parameter H is typically several orders of magnitude below the Planck scale mP ∼ 1028

eV in inflationary models, whereas for quintessence models H0 ∼ 10−33 eV is ∼ 60 orders

of magnitude below the Planck scale. Quintessence fields must have a mass that is

smaller than or on the order of H0. It is a well-known, generic challenge for quintessence

models to ensure that loop effects do not give rise to a mass much larger than H0.

Because of the disparity of scales, this issue is more extreme for quintessence models

than inflationary models.

• In most inflationary models, it is assumed that the dynamics of the Universe are

dominated by gravity and the scalar field (at least until reheating). By contrast, for

quintessence models in the regime of low redshifts relevant to observations, we know

that cold dark matter gives an O(1) contribution to the energy density. Therefore there

are additional possible couplings and terms that must be included in an effective field

theory.

• For any effective field theory, it is possible to pass outside the domain of validity of

the theory even at energies E low compared to the theory’s cutoff Λ, if the mode

occupation numbers N are sufficiently large (see Section 4.5.II below for more details).
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This corresponds to a breakdown of the classical derivative expansion. For quintessence

theories, mode occupation numbers today can be as large as N ∼ (mP/H0)2 and it is

possible to pass outside the domain of validity of the theory. By contrast in inflationary

models, this is less likely to occur since mode occupation numbers for the perturbations

are not large before modes exit the horizon. Thus, the effective field theory framework

is less all-encompassing for quintessence models than for inflation models. This issue

seems not to have been appreciated in the literature and we discuss it in Section 4.5.II

below.

Several studies have been made of generic effective field theories of dark energy. Creminelli,

D’Amico, Noreña and Vernizzi [85] constructed a the general effective theory of single-field

quintessence for perturbations about an arbitrary FRW background, paralleling the similar

construction for inflation [80]. Park, Watson and Zurek constructed an effective theory for

describing both the background cosmology and the perturbations, following the approach of

Weinberg [83] but generalizing it to include couplings to matter [86].

The two approaches to effective field theories of quintessence – specialization to perturba-

tions about a specific background, and maintaining covariance and the ability to describe the

dynamics of a variety of backgrounds – are complementary to one another. The dynamics of

the cosmological background FRW solution can be addressed in the covariant approach of

Weinberg, but not in the background specific approach of Creminelli et al., which restricts

attention to the dynamics of perturbations about a given, fixed background. On the other

hand, a background specific approach can describe a larger set of dynamical theories for the

perturbations than can a covariant derivative expansion1.

1To see this, consider for example a term in the Lagrangian of the form f(φ)(∇φ)2n, where
φ is the quintessence field. Such a term would be omitted in the covariant derivative expansion
for sufficiently large n. However, upon expanding this term using φ = φ0 + δφ, where φ0

is the background solution, one finds terms ∼ (∇φ0)
2n−2(∇δφ)2 which are included in the

Creminelli approach of applying standard effective field theory methods to the perturbations.
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II Approach

In this chapter, we revisit, generalize and correct slightly the covariant effective field theory

analysis of Park, Watson and Zurek [86]. Following Weinberg and Park et al., we restrict

attention to theories where the only dynamical degrees of freedom are a graviton and a single

scalar. We allow couplings to an arbitrary matter sector, but we assume the validity of the

weak equivalence principle, motivated by the strong experimental evidence for this principle.

We assume that the theory consists of a standard quintessence theory coupled to matter at

leading order in a derivative expansion, with an action of the form

S[gαβ, φ, ψm] =

∫
d4x
√
−g
{
m2
P

2
R− 1

2
(∇φ)2 − U(φ)

}
+ Sm

[
eα(φ)gµν , ψm

]
. (4.1.1)

Here ψm denotes a set of matter fields, and mP is the Planck mass. The factor eα(φ) in the

matter action provides a leading-order non-minimal coupling of the quintessence field to

matter, in a manner similar to Brans-Dicke models in the Einstein frame [87, 88].

Our analysis then consists of a series of steps:

1. We add to the action all possible terms involving the scalar field and metric, in a

covariant derivative expansion up to four derivatives. We truncate the expansion at

four derivatives, as this is sufficient to yield the leading corrections to the action (4.1.1).

As described by Weinberg [83] there are ten possible terms, with coefficients that can

be arbitrary functions of φ [see Eq. (4.2.3) below]. Section 4.5.I below describes one

possible justification of this covariant derivative expansion from an effective field theory

viewpoint, starting from a set of ultralight pseudo-Nambu-Goldstone bosons (pNGBs).

It is likely that the same expansion can be obtained from other, more general starting

points.

2. We allow for corrections to the coupling to matter by adding to the metric that appears in

the matter action all possible terms involving the metric and φ allowed by the derivative

expansion, that is, up to two derivatives. There are six such terms [see Eq. (4.2.4) below.]
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We also add to the action terms involving the stress energy tensor Tµν of the matter

fields, up to the order allowed by the derivative expansion using Tµν ∼ m2
PGµν [see Eq.

(4.2.3) below]. Including such terms in the action seems poorly motivated, since a priori

there is no reason to expect that the resulting theory would respect the weak equivalence

principle. However, we show in Appendix D that the weak equivalence principle is

actually satisfied, to the order we are working to in the derivative expansion. In addition,

all the terms in the action involving Tµν can be shown to have equivalent representations

not involving the stress energy tensor, using field redefinitions (see Appendix D).

3. The various correction terms are not all independent because of the freedom to perform

field redefinitions involving φ, gµν and the matter fields, again in a derivative expansion.

In Section 4.3 we explore the space of such field redefinitions, finding eleven independent

transformations and tabulating their effects on the coefficients in the action (see Table 1

below).

4. Several of the correction terms that are obtained from the derivative expansion are

“higher-derivative” terms, by which we mean that they give contributions to the equations

of motion which involve third- or higher-order time derivatives of the fields2. Normally,

such higher-derivative terms give rise to additional degrees of freedom. However, if they

are treated perturbatively (consistent with our derivative expansion) additional degrees

of freedom do not arise. Specifically, one can perform a reduction of order procedure on

the equations of motion [90, 91, 92], substituting the zeroth-order equations of motion

into the higher derivative terms in the equations of motion to eliminate the higher

2The precise definition of higher-derivative that we use, which is covariant, is that an
equation will be said not to contain any higher-derivative terms if there exists a choice
of foliation of spacetime for which any third-order or higher-order derivatives contain at
most two time derivatives. Theories which are higher-derivative in this sense are generically
associated with instabilities (Ostragradski’s theorem) [89], although the instabilities can be
evaded in special cases, for example f(R) gravity. For most of this work (except for the
Chern-Simons term), a simpler definition of higher-derivative would be sufficient: a term
in the action is “higher-derivative” if it gives rise to terms in the equation of motion that
involve any third- or higher-order derivatives.
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derivatives3. We actually use a slightly different but equivalent procedure of eliminating

the higher derivative terms directly in the action using field redefinitions4 (see Appendix

E).

Weinberg [83] and Park et al. [86] use a slightly different method, consisting of substi-

tuting the leading order equations of motion directly into the higher derivative terms in

the action. This method is not generally valid, but it is valid up to field redefinitions

that do not involve higher derivatives, and so it suffices for the purpose of attempting to

classify general theories of dark energy (see Appendix E).

5. Another issue that arises with respect to the higher derivative terms is the following. Is

it really necessary to include such terms in an action when trying to write down the most

general theory of gravity and a scalar field, in a derivative expansion? Weinberg [83]

suggested that perhaps a more general class of theories is generated by including these

terms and performing a reduction of order procedure on them, rather than by omitting

them. However, since it is ultimately possible to obtain a theory that is perturbatively

equivalent to the higher-derivative theory, and which has second-order equations of

motion, it should be possible just to write down the action for this reduced theory. In

other words, an equivalent class of theories should be obtained simply by omitting all

the higher-derivative terms from the start. We show explicitly in Section 4.4 that this is

the case for the class of theories considered here.

6. We fix the remaining field redefinition freedom by choosing a “gauge” in field space,

thus fixing the action uniquely (see Section 4.4.II).

3This is more general than requiring the solutions of the equation of motion to be analytic
in the expansion parameter, as advocated by Simon [93]; see Ref. [92].

4This procedure is counterintuitive since normally field redefinitions do not change the
physical content of a theory; here however they do because the field redefinitions themselves
involve higher derivatives.
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Figure 9: The parameter space of fractional density perturbation δρ/ρ for perturbations to
the quintessence field, and cutoff scale M for the effective field theory, illustrating
the constraint (4.1.3) on the domain of validity. Near the boundary of the domain
of validity the higher derivative terms in the action are potentially observable, this
is labeled the “interesting regime”. Further away from the boundary the higher
derivative terms are negligible and the theory reduces to a standard quintessence
model with a matter coupling.

III Results and Implications

Our final action is [Eq. (4.4.5) below]

S =

∫
d4x
√
−g
{
m2
P

2
R− 1

2
(∇φ)2 − U(φ)

}
+ Sm[eα(φ)gαβ, ψm]

+ ε

∫
d4x
√
−g
{
a1(∇φ)4 + b2T (∇φ)2 + c1G

µν∇µφ∇νφ

+ d3

(
R2 − 4RµνRµν +RµνσρR

µνσρ
)

+ d4ε
µνλρC αβ

µν Cλραβ

+ e1T
µνTµν + e2T

2 + . . .

}
. (4.1.2)

Here the coefficients a1, b2 etc. of the next-to-leading order terms in the derivative expansion

are arbitrary functions of φ, and the ellipsis . . . refers to higher-order terms with more than

four derivatives. The corresponding equations of motion do not contain any higher derivative

terms. This result generalizes that of Weinberg [83] to include couplings to matter.

We can summarize our key results as follows:
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• The most general action contains nine free functions of φ: U , α, a1, b2, c1, d3, d4, e1, e2,

as compared to the four functions that are needed when matter is not present [83].

• There are a variety of different forms of the final theory that can be obtained using

field redefinitions. In particular some of the matter-coupling terms in the action can be

re-expressed as terms that involve only the quintessence field and metric. Specifically,

the term T (∇φ)2 term could be eliminated in favor of �φ(∇φ)2, the (∇φ)4 could be

eliminated in favor of a term T µν∇µφ∇νφ, or the Gµν∇µφ∇νφ term could be eliminated

in favor of a term T µν∇µφ∇νφ (see Section 4.4.II).

• As mentioned above, one obtains the correct final action if one excludes throughout the

calculation all higher-derivative terms.

• The final theory does contain terms involving the matter stress-energy tensor. Neverthe-

less, the weak equivalence principle is still satisfied (see Appendix D). It is possible to

eliminate the stress-energy terms, but only if we allow higher derivative terms in the

action (where it is assumed that the reduction of order procedure will be applied to

these higher derivative terms). Thus, for a fully general theory, one must have either

stress-energy terms or higher derivative terms; one cannot eliminate both (see Section

4.4.II).

• We can estimate how all the coefficients a1 etc. scale with respect to a cutoff scale

M for an effective field theory as follows (see Section 4.5.I). We assume that several

ultralight scalar fields of mass ∼ H0 arise as pseudo-Nambu-Goldstone bosons from

some high-energy theory [94, 95], and are described by a nonlinear sigma model at low

energies. We then suppose that all but one of the these pNGB fields have masses M that

are somewhat larger than ∼ H0, and integrate them out. This will give rise to a theory

of the form discussed above for the single light scalar, where the higher derivative terms

are suppressed by powers of M . The scalings for each of the coefficients in the action

are summarized in Table 3. We find that the fractional corrections to the cosmological

dynamics due to the higher derivative terms scale as H2
0/M

2, as one would expect.
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• Finally, we can use these scalings to estimate the domain of validity of the effective

field theory (see Section 4.5.II). We find that cosmological perturbations with a density

perturbation δρ in the quintessence field must have a fractional density perturbation

that satisfies

δρ

ρ
� M2

H2
0

. (4.1.3)

Thus perturbations can become nonlinear, but only modestly so, if M is close to H0. The

parameter space of fractional density perturbation δρ/ρ and cutoff scale M is illustrated

in Fig. 9. In addition there is the standard constraint for derivative expansions

E �M (4.1.4)

where E−1 is the length-scale or time-scale for some process. We show in Fig. 10 the

two constraints (4.1.3) and (4.1.4) on the two dimensional parameter space of energy E

and mode occupation number N .

Finally, in Appendix F we compare our analysis to that of Park, Watson and Zurek [86],

who perform a similar computation but in the Jordan frame rather than the Einstein frame

(see also Ref. [96]). The main difference between our analysis and theirs is that they use a

different method to estimate the scalings of the coefficients, and as a result their final action

differs from ours, being parameterized by three free functions rather than nine.

4.2 Class of Theories Involving Gravity and a Scalar Field

As discussed in the introduction, our starting point is an action for a standard quintessence

model with an arbitrary matter coupling, together with a perturbative correction which

consists of a general derivative expansion up to four derivatives. The action is a functional

of the Einstein-frame metric gαβ, the quintessence field φ, and some matter fields which we
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Figure 10: The domain of validity of the effective field theory in the two dimensional
parameter space of energy E per quantum of a mode of the quintessence field,
and mode occupation number N . The cutoff scale M must be larger than the
Hubble parameter H0 in order that the background cosmology lie within the
domain of validity. Perturbation modes on length-scales that are small compared
to H−1

0 but large compared to M−1 can be described, but only if the mode
occupation number and fractional density perturbation are sufficiently small.
See Section 4.5.II for details.

denote collectively by ψm:

S[gαβ, φ, ψm] = S0[gαβ, φ] + εS1[gαβ, φ, Tαβ(ψm)] + Sm[ḡαβ, ψm] +O(ε2). (4.2.1)

Here Sm is the action for the matter fields, and the quantity ε is a formal expansion parameter.

We will see in Section 4.5.I below that ε can be identified as proportional to M−2, where M is

a cutoff scale or the mass of the lightest of the fields that have been integrated out to obtain

the low-energy action. Equivalently, ε counts the number of derivatives in our derivative

expansion, with εn corresponding to 2(n+ 1) derivatives. The notation in the second term

indicates that the perturbative correction S1 to the action can depend on the matter fields,

but only through their stress energy tensor Tαβ (as defined in the Preface). Explicitly we
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have

S0 =

∫
d4x
√
−g
[
m2
P

2
R− 1

2
(∇φ)2 − U(φ)

]
, (4.2.2)

and [83, 86]

S1 =

∫
d4x
√
−g
{
a1(∇φ)4 + a2�φ(∇φ)2 + a3(�φ)2 + b1T

µν∇µφ∇νφ

+ b2T (∇φ)2 + b3T�φ+ b4T
µν∇µ∇νφ+ b5RµνT

µν

+ b6RT + b7T + c1G
µν∇µφ∇νφ+ c2R(∇φ)2 + c3R�φ

+ d1R
2 + d2R

µνRµν + d3

(
R2 − 4RµνRµν +RµνσρR

µνσρ
)

+ d4ε
µνλρC αβ

µν Cλραβ + e1T
µνTµν + e2T

2

}
. (4.2.3)

Here Cµνλρ is the Weyl tensor and εµνλρ is the antisymmetric tensor (our conventions for

these are given in the Preface). There are additional terms with four derivatives that one can

write down, but all such terms can be eliminated by integration by parts. Finally, the metric

ḡµν which appears in the matter action Sm in Eq. (4.2.1) is given by5

ḡµν = eαgµν + εeα
[
β1∇µφ∇νφ+ β2(∇φ)2gµν + β3�φgµν

+ β4∇µ∇νφ+ β5Rµν + β6Rgµν
]

+O(ε2). (4.2.4)

All of the coefficients ai, bi, ci, di, ei, βi and α are arbitrary functions of φ.

Let us briefly discuss each of the perturbative terms. The terms with coefficients ai are

corrections to the kinetic term of the scalar field. The bi and βi terms are couplings between

the scalar field and the stress-energy tensor, or between curvature and the stress-energy

tensor. The ci terms are kinetic couplings between the scalar field and gravity. The di terms

are quadratic curvature terms, which we have chosen to write as an R2 term, an RµνR
µν

term, and the Gauss-Bonnet term. Any constant piece of the coefficient d3 is a topological

5We call this metric the Jordan frame metric, in an extension of the usual terminology
which applies to the case when the relation (4.2.4) between the two metrics is just a conformal
transformation.
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term and may be omitted. The term d4 is the gravitational Chern-Simons term, which

may be excluded if one wishes to introduce parity as a symmetry of the theory, and again,

any constant component of d4 is topological and may be omitted. Finally, the ei terms are

quadratic in the stress-energy tensor.

Note that several of the terms in the action (4.2.3) are “higher derivative” terms, that is,

they give rise to contributions to the equations of motion containing derivatives of order three

or higher. The specific terms are those parameterized by the coefficients a3, b3, . . . , b6, c2, c3,

d1, d2 and β3, . . . , β6. As discussed in the introduction and in Appendix E, we will choose to

define our theory by treating these terms perturbatively, which excludes the extra degrees of

freedom and instabilities that are normally associated with higher derivative terms.

We also note that the theory (4.2.1) satisfies the weak equivalence principle, to linear order

in ε, as we show in Appendix D. That is, objects with negligible self-gravity with different

compositions all experience the same acceleration. It is not a priori obvious that the principle

should be satisfied since, as we show in Appendix D, violations of the principle generically

arise whenever the matter stress energy tensor appears explicitly in the gravitational action,

as in Eq. (4.2.1).

4.3 Transformation Properties of the Action

The description of the theory provided by Eqs. (4.2.1) – (4.2.4) is very redundant, in part

because of the freedom to perform field redefinitions. In this section we derive how the

various coefficients in the action (4.2.1) are modified under various transformations. In the

next section we will use these transformation laws to derive a canonical representation of the

theory, involving only nine free functions.
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I Expansion of the Matter Action

Consider first the perturbative terms parameterized by β1, . . . , β6, in the definition (4.2.4) of

the Jordan metric ḡαβ, which appears in the matter action Sm[ḡαβ, ψm]. Using the definition

(0.0.2) of the stress-energy tensor, we can eliminate these terms in favor of terms in the action

involving Tαβ. Specifically we have from Eq. (0.0.2) that

Sm[eα(gµν + δgµν), ψm] = Sm[eαgµν , ψm] +
1

2

∫
d4x
√
−ge2αT µνδgµν +O(δg2). (4.3.1)

Choosing

δgµν = ε[β̃1∇µφ∇νφ+ β̃2(∇φ)2gµν + β̃3�φgµν + β̃4∇µ∇νφ+ β̃5Rµν + β̃6Rgµν ] (4.3.2)

then gives a transformation of the action (4.2.1) characterized by the following changes in

the coefficients:

δβ1 = −β̃1, δb1 = 1
2
e2αβ̃1,

δβ2 = −β̃2, δb2 = 1
2
e2αβ̃2,

δβ3 = −β̃3, δb3 = 1
2
e2αβ̃3,

δβ4 = −β̃4, δb4 = 1
2
e2αβ̃4,

δβ5 = −β̃5, δb5 = 1
2
e2αβ̃5,

δβ6 = −β̃6, δb6 = 1
2
e2αβ̃6.

(4.3.3)

Here the parameters β̃i can be arbitrary functions of φ. Similarly choosing δgµν = εα̃gµν gives

a transformation characterized by

δα = −εα̃, δb7 = 1
2
e2αα̃. (4.3.4)

II Field Redefinitions Involving just the Scalar Field

Consider a perturbative field redefinition of the form

φ = ψ + εγ, (4.3.5)
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where the quantity γ can in general depend on any of the fields and their derivatives. To

leading order in ε, the change in the action (4.2.1) is then proportional to the zeroth-order

equation of motion (4.5.10b) for φ. Relabeling ψ as φ, the change induced in the action is

δS = ε

∫
d4x
√
−gγ

[
�φ− U ′ + 1

2
e2αα′T

]
. (4.3.6)

There are three special cases that will be useful:

1. First, choose

φ = ψ + εσ1T, (4.3.7)

where σ1 is an arbitrary function6 of ψ, and T is the trace of the stress-energy tensor.

Substituting this into Eq. (4.3.6) and comparing with the general action (4.2.3), we find

the following transformation law for the coefficients:

δb3 = σ1, δb7 = −U ′σ1,

δe2 =
1

2
α′e2ασ1. (4.3.8)

2. Second, we use the field redefinition

φ = ψ + εσ2[�ψ + U ′(ψ)]. (4.3.9)

Here the second term in the square bracket is included in order to maintain canonical

normalization of the scalar field, that is, to avoid generating terms in the action of the

form f(φ)(∇φ)2. The resulting transformation law is

δa3 = σ2, δb3 =
1

2
e2αα′σ2,

δb7 =
1

2
α′e2αU ′σ2, δU = ε(U ′)2σ2. (4.3.10)

6Because we are working to linear order in ε, it does not matter whether we take σ1 to be
a function of φ or of ψ.
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3. Third, consider the field redefinition

φ = ψ + εσ3 − ε
1

U ′
σ′3(∇ψ)2, (4.3.11)

where σ3 is a function of ψ and again the particular combination of terms is chosen

to maintain canonical normalization. Substituting into Eq. (4.3.6), performing some

integrations by parts and comparing with Eq. (4.2.3) gives the transformation law

δa2 = −σ
′
3

U ′
, δb2 = − 1

2U ′
e2αα′σ′3,

δb7 =
1

2
e2αα′σ3, δU = εU ′σ3. (4.3.12)

Note that this transformation is not well defined in general in the limit U ′ → 0, because

of the factors of 1/U ′. However, it is well defined in the limit U ′ → 0, σ′3 → 0 with

σ′3/U
′ kept constant.

III Field Redefinitions Involving the Metric

We now consider a more general class of field redefinitions, where in addition to redefining

the scalar field via Eq. (4.3.5), we also perturbatively redefine the metric via

gαβ = ĝαβ + εFαβ. (4.3.13)

Here the quantity Fαβ can depend on ψ, ĝαβ, their derivatives and the stress energy tensor.

The corresponding change in the action is proportional to the equation of motion (4.5.10a).

Relabeling ĝαβ as gαβ and ψ as φ, the total change in the action is

δS =
ε

2

∫
d4x
√
−gFαβ

[
−m2

PG
αβ +∇αφ∇βφ− 1

2
(∇φ)2gαβ − Ugαβ + e2αTαβ

]
+ ε

∫
d4x
√
−gγ

[
�φ− U ′ + 1

2
e2αα′T

]
. (4.3.14)

Note that this formula includes the effect of the change in the Jordan frame metric (4.2.4)

caused by the transformation (4.3.13). We now consider seven different transformations of

this type:
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Coeff. Term σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 σ10 σ11

a1 (∇φ)4 ? ? ?
a2 �φ(∇φ)2 ? ? ?
a3 † (�φ)2 ?
b1 T µν∇µφ∇νφ ? ?
b2 T (∇φ)2 ? ? ? ?
b3 † T�φ ? ? ?
b4 † T µν∇µ∇νφ ?
b5 † RµνTµν ? ?
b6 † RT ? ? ?
b7 T ? ? ? ? ? ? ? ? ? ? ?
c1 Gµν∇µφ∇νφ ? ? ?
c2 † R(∇φ)2 ? ?
c3 † R�φ ?
d1 † R2 ? ?
d2 † RµνRµν ?
d3 Gauss-Bonnet
d4 Chern-Simons
e1 T µνTµν ?
e2 T 2 ? ?

U (potential) ? ? ? ? ? ? ? ?

Table 1: This table shows which of the terms in our action (4.2.2) are affected by each of the
eleven field redefinitions (4.3.7) – (4.3.29) that are parameterized by the functions
σ1(φ), . . . , σ11(φ). The columns represent the redefinitions, and the rows represent
terms. Daggers † in first column indicate “higher derivative” terms, that is, terms
that give contributions to the equations of motion containing derivatives of higher
than second-order. Stars ? indicate that the coefficient of that row’s term is altered
by that column’s field redefinition. We omit the coefficients α and β1, . . . , β6 since
those coefficients are degenerate with b1, . . . , b7 by Eqs. (4.3.3) and (4.3.4).
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4. The first case is a change to the metric proportional to Rgαβ. In order to maintain

canonical normalization of both the metric and the scalar field, that is, to avoid terms

of the form f(φ)(∇φ)2 and f(φ)R, we need the following combination of terms in the

field redefinition:

gαβ = ĝαβ − 2εσ′4

(
m2
P

U
R̂ + 4

)
ĝαβ, (4.3.15a)

φ = ψ + 4εσ4, (4.3.15b)

for some function σ4(ψ). Substituting into Eq. (4.3.14), performing some integrations

by parts and comparing with Eq. (4.2.3) we obtain for the transformation law

δb7 = 2e2αα′σ4 − 4e2ασ′4, δc2 =
m2
P

U
σ′4,

δd1 = −m
4
P

U
σ′4, δb6 = −e

2α

U
m2
Pσ
′
4,

δU = 4ε [U ′σ4 − 4Uσ′4] . (4.3.16)

5. Next consider changes to the metric proportional to Rαβ. In order to maintain canonical

normalizations we use the following combination of terms in the field redefinition:

gαβ = ĝαβ(1− 2εσ′5)− 2ε
m2
P

U
σ′5R̂αβ, (4.3.17a)

φ = ψ + εσ5, (4.3.17b)

for some function σ5(ψ). This gives the transformation law

δb7 =
1

2
e2αα′σ5 − e2ασ′5, δc1 = −m

2
P

U
σ′5,

δd1 = −m
4
P

2U
σ′5, δd2 =

m4
P

U
σ′5,

δb5 = −m
2
P

U
e2ασ′5, δU = ε [U ′σ5 − 4Uσ′5] . (4.3.18)

6. The next case is a change to the metric proportional to (∇φ)2gαβ. To maintain canonical

normalization of the scalar field, we need in addition a change to the scalar field, with
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the combined transformation being

gαβ = ĝαβ − 2ε
σ′6
U

(∇̂ψ)2ĝαβ, (4.3.19a)

φ = ψ + 4εσ6, (4.3.19b)

for some function σ6. The resulting transformation law for the coefficients is

δa1 =
σ′6
U
, δb2 = −e2ασ

′
6

U
,

δb7 = 2e2αα′σ6, δc2 = −σ′6
m2
P

U
,

δU = 4εU ′σ6. (4.3.20)

7. Next consider changes to the metric proportional to �φgαβ. The required form of field

redefinition that preserves canonical normalization of φ is

gαβ = ĝαβ + 2εσ7�̂ψĝαβ, (4.3.21a)

φ = ψ + 4εUσ7, (4.3.21b)

for some function σ7. The coefficients in the action then change according to

δa2 = −σ7, δb3 = e2ασ7,

δb7 = 2e2αα′Uσ7, δc3 = m2
Pσ7,

δU = 4εUU ′σ7. (4.3.22)

8. The fifth case is a change to the metric proportional to ∇αφ∇βφ. The required form of

field redefinition that preserves canonical normalization of φ is

gαβ = ĝαβ − 2ε
σ′8
U
∇̂αψ∇̂βψ, (4.3.23a)

φ = ψ + εσ8, (4.3.23b)

for some function σ8. The coefficients in the action then change according to

δa1 = − σ
′
8

2U
, δb1 = −e2ασ

′
8

U
,

δb7 =
1

2
e2αα′σ8, δc1 =

m2
P

U
σ′8,

δU = εU ′σ8. (4.3.24)
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9. Next consider a change in the metric proportional to ∇α∇βφ. To preserve canonical

normalization of φ we use the redefinitions

gαβ = ĝαβ + 2εσ9∇̂α∇̂βψ, (4.3.25a)

φ = ψ + εUσ9, (4.3.25b)

for some function σ8. The coefficients in the action then change according to

δa1 = −1

2
σ′9, δa2 = −σ9,

δb4 = e2ασ9, δb7 =
1

2
e2αα′Uσ9,

δc1 = m2
Pσ
′
9, δU = εUU ′σ9. (4.3.26)

10. A simple case is when the change in the metric is proportional to Tgαβ, for which no

change to the scalar field is required. The redefinition is

gαβ = ĝαβ + 2εσ10T ĝαβ, (4.3.27)

for some function σ10. The transformation law for the coefficients is

δb2 = −σ10, δb7 = −4σ10U,

δe2 = e2ασ10, δb6 = m2
Pσ10. (4.3.28)

11. Similarly, no transformation to the scalar is required for the case of a change in the

metric proportional to Tαβ. The redefinition is

gαβ = ĝαβ + 2εσ11Tαβ, (4.3.29)

for some function σ11, and the corresponding transformation law is

δb1 = σ11, δb2 = −1

2
σ11,

δb7 = −σ11U, δe1 = e2ασ11,

δb5 = −m2
Pσ11, δb6 =

1

2
m2
Pσ11. (4.3.30)
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The eleven7 field redefinitions (4.3.7) – (4.3.29) are summarized in Table 1, which shows

which coefficients are modified by which transformations.

4.4 Canonical Form of Action

In this section, we derive our final, reduced action (4.1.2) from the starting action (4.2.1),

using the transformation laws derived in Section 4.3. There is some freedom in which terms

we choose to eliminate and which terms we choose to retain. We choose to eliminate all

terms that give higher derivatives in the equations of motion, so that the final theory is not

a “higher derivative” theory. However, even after this has been accomplished, there is still

some freedom in how the final theory is represented. We discuss this further in Section 4.4.II

below. The order of operations in the derivation is important, since we need to take care that

terms which we have already set to zero are not reintroduced by subsequent transformations.

Table 2 summarizes our calculations and their effects on the coefficients in the action at each

stage in the computation.

I Derivation

The steps in the derivation are as follows:

1. Elimination of Derivative Terms in the Jordan Frame Metric: The transformation

(4.3.3) can be used to eliminate all of the terms involving derivatives in the Jordan frame

metric (4.2.4), which are parameterized by the coefficients β1, . . . , β6. This changes the

coefficients of the terms in the action that depend linearly on the stress energy tensor,

namely b1, . . . , b6. As discussed in Appendix D, these terms involving the stress-energy

7We could also consider a twelfth redefinition given by gαβ = ĝαβ(1 − 2εσ′12), φ =

ψ + εσ12 − εm2
Pσ
′
12R̂/U

′. However this redefinition is not independent of the first eleven;
the same effect can be achieved by choosing σ1 = −e2ασ′12/U

′, σ3 = −σ12, σ7 = σ′12/U
′,

σ10 = e2αα′σ′12/(2U
′).
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Step 1 2 3 3 4 5 6 6 7 Final

Transformation β̃j σ4, σ5 σ9 σ10, σ11 σ6, σ7 σ2, σ3 σ8 σ1 α̃

Coeff. Term in Action

a1 (∇φ)4 ? ? ? X
a2 �φ(∇φ)2 ? ? → 0 ◦
a3 † (�φ)2 → 0

b1 Tµν∇µφ∇νφ ? ? → 0 ◦
b2 T (∇φ)2 ? ? ? ? X
b3 † T�φ ? ? ? → 0

b4 † Tµν∇µ∇νφ ? → 0

b5 † RµνTµν ? ? → 0

b6 † RT ? ? → 0

b7 T ? ? ? ? ? ? ? → 0

c1 Gµν∇µφ∇νφ ? ? ? X
c2 † R(∇φ)2 ? → 0

c3 † R�φ → 0

d1 † R2 → 0

d2 † RµνRµν → 0

d3 Gauss-Bonnet X
d4 Chern-Simons X
e1 TµνTµν ? X
e2 T 2 ? ? X

U (potential) ? ? ? ? ? X
Coeff. Term in ḡµν
β1 ∇µφ∇νφ → 0

β2 (∇φ)2gµν → 0

β3 † �φgµν → 0

β4 † ∇µ∇νφ → 0

β5 † Rµν → 0

β6 † Rgµν → 0

α (conf. factor) ? X

Table 2: This table shows the progression of manipulations we make in this section. The
second column on the left lists the various terms in the action (4.2.3), or in the
Jordan-frame metric (4.2.4). The first column lists the corresponding coefficients;
daggers † indicate higher derivative terms. The numbers in the first row along
the top refer to the numbered steps in the derivation in Section 4.4.I. The second
row shows which transformation functions are used in each step. In the table, a
star ? indicates that the corresponding row’s term receives a contribution from the
corresponding column’s reduction process, while → 0 indicates that the term has
been eliminated. The check marks X in the last column indicate the remaining
terms that are non-zero in the final action (4.4.5). Finally, circles ◦ in the last
column indicate terms that are nonzero in alternative forms of the final action
obtained using the transformations (4.3.11) or (4.3.23), as discussed in Section
4.4.II.
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tensor look like they might violate the weak equivalence principle, but in fact they do

not.

2. Elimination of Higher Derivative, Quadratic in Curvature Terms: We next consider the

terms in the action that are quadratic functions of curvature, whose coefficients are d1,

d2, d3 and d4. The Chern-Simons term (d4) and the Gauss-Bonnet term (d3) give rise to

well behaved equations of motion (in the sense that they not increase the number of

degrees of freedom), so we do not attempt to eliminate these terms. By contrast, the

terms proportional to the squares of the Ricci scalar and Ricci tensor, parameterized by

d1 and d2, do increase the number of degrees of freedom. We can eliminate these terms

by using the transformations (4.3.15) and (4.3.17), with parameters chosen to be

σ4 =

∫
dφ

U

m4
P

(d1 + d2/2), σ5 = −
∫
dφ

U

m4
P

d2. (4.4.1)

These transformations will then modify the coefficients b5, b6, b7, c1 and c2, as well as

the potential U (see Table 1).

3. Elimination of some of the Linear Stress-Energy Terms: We next turn to terms which

depend linearly on the stress-energy tensor, parameterized by b1, . . . , b6. First, we can

eliminate the term b4T
µν∇µ∇νφ by using the transformation (4.3.25) with σ9 = −e−2αb4.

This gives rise to changes in the coefficients a1, a2, b7, c1 as well as to the potential

U . Second, we can eliminate the terms parameterized by b5 and b6 by using the

transformations (4.3.27) and (4.3.29) with the parameters σ10 = −(b6 + b5/2)/m2
P ,

σ11 = b5/m
2
P . This changes the coefficients b1, b2, b7, e1 and e2.

4. Elimination of Kinetic Coupling of the Scalar to Curvature: We next focus on the terms

which kinetically couple the scalar field to gravity, namely Gµν∇µφ∇νφ, R(∇φ)2 and

R�φ. The first of these does not produce higher derivative terms in the equation of

motion, so we focus on the remaining two terms, which are parameterized by c2 and c3.

These terms can be eliminated using the transformations (4.3.19) and (4.3.21), with the
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parameters chosen to be

σ6 =

∫
dφ

U

m2
P

c2, σ7 = − c3

m2
P

. (4.4.2)

These transformations then give rise to changes in the coefficients a1, a2, b2, b3, b7 as

well as to the potential U .

5. Elimination of some of the Corrections to Scalar Field Kinetic Term: Our action

includes three corrections to the scalar kinetic term, parameterized by a1, a2 and a3.

Of these, only term a3 contributes higher-order derivatives to the equations of motion.

We eliminate this term, and also the term a2, by using the transformations (4.3.9) and

(4.3.11) with

σ2 = −a3, σ3 =

∫
dφU ′a2. (4.4.3)

This gives rise to corrections to the coefficients b2, b3 and b7 and to the potential U .

6. Elimination of some Kinetic Couplings of the Scalar to Stress-Energy: We next turn to

the term b1T
µν∇µφ∇νφ. We can eliminate this using the transformation (4.3.23) with

the parameter choice

σ8 =

∫
dφ b1Ue

−2α. (4.4.4)

This gives rise to changes in the coefficients a1, b7, c1 and U , from Table 1. We can

also eliminate the term b3T�φ by using the transformation (4.3.7) with σ1 = −b3. This

changes the coefficients e2 and b7.

7. Elimination of Trace of Stress-Energy Tensor Term: The last step is to re-express

the term b7T in terms of an O(ε) correction to the conformal factor eα by using the

transformation (4.3.4) with α̃ = −2e−2αb7.
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II Canonical Form of Action and Discussion

Applying the parameter specializations derived above to the action (4.2.1) we arrive at our

final result:

S =

∫
d4x
√
−g
{
m2
P

2
R− 1

2
(∇φ)2 − U(φ)

}
+ Sm[eα(φ)gαβ, ψm]

+ ε

∫
d4x
√
−g
{
a1(∇φ)4 + b2T (∇φ)2 + c1G

µν∇µφ∇νφ+ e1T
µνTµν

+ d3

(
R2 − 4RµνRµν +RµνσρR

µνσρ
)

+ d4ε
µνλρC αβ

µν Cλραβ + e2T
2

}
. (4.4.5)

This action contains nine free functions of φ: U, α, a1, b2, c1, d3, d4, e1, e2. The corresponding

equations of motion do not contain any higher derivative terms and are presented in Appendix

G.

Our final result (4.4.5) can be re-expressed in a number of equivalent forms:

• First, the term b2T (∇φ)2 in the action can be eliminated in favor of a term proportional

to e2αβ2(∇φ)2gµν in the Jordan frame metric (4.2.4) using the transformation (4.3.3).

As discussed in Appendix D the latter representation makes explicit that the weak

equivalence principle is satisfied.

• The term b2T (∇φ)2 could also be eliminated in favor of a term a2�φ(∇φ)2, using the

transformation (4.3.11) parameterized by σ3, as long as α′ 6= 08. The dynamics of a

scalar quintessence field with kinetic terms of the latter type have recently been explored

in detail in Ref. [97], who called the mixing of the scalar and metric kinetic terms in the

equations of motion “kinetic braiding”. The representation of this term as a2�φ(∇φ)2

has some advantages for cosmological analyses: in this representation the dynamics of

the term are confined to the scalar sector, while in the b2 representation they are coupled

to matter.
8More precisely the criterion is that the zeroth-order term in the expansion in α′ in powers

of ε is nonzero. A nonzero α′ that is proportional to ε would be insufficient to allow this
transformation.
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• The term a1(∇φ)4 can be eliminated in favor of a term b1T
µν∇µφ∇νφ, using the

transformation (4.3.23) parameterized by σ8.

• Alternatively, the term c1G
µν∇µφ∇νφ can be eliminated in favor of a term b1T

µν∇µφ∇νφ,

using the transformation (4.3.23) parameterized by σ8. Our result in this representation

agrees with that of Weinberg [83] when all the matter terms are dropped. The c1

representation has the advantage over the b1 representation that the corrections are

confined to the scalar sector and do not involve matter. The term c1G
µν∇µφ∇νφ has

interesting effects: it can give rise to a self-tuning cosmology as well as potentially

support a Vainshtein screening mechanism [98].

• As discussed in Appendix D, it is possible to eliminate all the stress-energy terms from

the action by applying field redefinitions. This yields a form of the theory in which the

weak equivalence principle is manifest. However, the resulting action contains higher

derivative terms, unlike all the representations discussed so far in this subsection. As

discussed in the introduction and in Appendix E, to define the theory when higher

derivative terms are present we use the reduction of order technique applied to the

equations of motion.

• Finally, the result can be cast in the Jordan conformal frame by doing a conformal

transformation, followed by some field redefinitions to simplify the answer. The result is

similar in form to the Einstein frame action (4.4.5):

S[g̃αβ, φ̃, ψm] =

∫
d4x
√
−g̃
[

1

2
m2
P e
−αR̃− 1

2
(∇̃φ̃)2 − Ũ(φ̃)

]
+ Sm[g̃αβ, ψm]

+ ε

∫
d4x
√
−g
{
ã1(∇̃φ̃)4 + b̃2T (∇̃φ̃)2 + c̃1G̃

µν∇̃µφ̃∇̃νφ̃

+ d̃3

(
R̃2 − 4R̃µνR̃µν + R̃µνσρR̃

µνσρ
)

+ d̃4ε
µνλρC̃ αβ

µν C̃λραβ

+ ẽ1T
µνTµν + ẽ2T

2

}
. (4.4.6)

Here g̃µν = eαgµν and the field φ̃ is a function of φ, where the function is chosen to give

canonical normalization for φ̃ in the Jordan frame action (4.4.6). All of the functions
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Ũ , ã1, etc. in this action differ from the corresponding functions in the Einstein frame

representation (4.4.5), but can in principle be computed in terms of them. The Jordan

frame result (4.4.6) can also be cast in a number of different forms using linearized field

redefinitions, just as for the Einstein frame result (4.4.5). Note that the stress energy

tensor we use is the same in both frames, and is defined in the Preface. The result (4.4.6)

matches that found by Park et al. [86] (up to some minor adjustments, see Appendix F).

We note that the Chern-Simons term (d4) gives rise to third-order derivatives in the

equations of motion [see Eqs. (G.4) and (G.5) below]. However, with the choice of foliation9

given by surfaces of constant φ, there are no third-order time derivatives, and so the Chern-

Simons term is not a higher-derivative term according to our definition (see the discussion in

Section 4.1.II above), and is not subject to the Ostrogradski instability. For further discussion

of the Chern-Simons term in gravitational theories, see, e.g., Ref. [99]. As a parity-violating

term, this term modifies the propagation speed of different polarizations of gravitons.

In the above derivation, we eliminated higher derivative terms using field redefinitions.

As discussed in Appendix E, an alternative but equivalent procedure is to derive a form of

the action which explicitly exhibits the extra degrees of freedom associated with the higher

derivative terms, and then integrate out those degrees of freedom at tree level. This is

shown explicitly for higher derivatives of the scalar field in Appendix E, and can also be

shown explicitly for the terms d1 and d2 involving higher derivatives of the metric. A third,

equivalent method is to perform a reduction of order procedure at the level of the equations

of motion, as discussed in the introduction and in Appendix E.

The above derivation confirms the general argument made in the introduction that it

should not be necessary to include higher derivative terms in the action. This is because

the new terms that are generated when one eliminates the higher derivative terms should

already be included in the derivative expansion. In the above derivation, if we eliminate

9This choice requires the assumption that ∇φ is timelike everywhere, which will be true
in cosmological applications when perturbations are sufficiently small.
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from the start the higher derivative terms (a3, b3, b4, b5, b6, c2, c3, d1, d2), then we must also

forbid all transformations that generate these terms, which includes all the transformations

we have considered except Eqs. (4.3.3), (4.3.4), (4.3.11) and (4.3.23). The above derivation

gets modified by dropping steps 2, 3, and 4, the portion of step 5 that sets a3 to zero, and

the portion of step 6 that sets b3 to zero. The final result (4.4.5) is unchanged.

In a similar vein, the correct result can also be obtained by omitting from the initial

action all terms involving the stress energy tensor, that is, the terms parameterized by b1,

. . . , b7 and e1, e2. If one follows all the steps of the derivation in Table 2, the same final

result is obtained, and all the final coefficients are nonzero in general. This occurs because

all the terms involving the stress energy tensor have alternative representations not involving

it (although they do involve higher derivatives). Thus, from this point of view, it is not

necessary to include in the action stress-energy terms.

However, it is not possible to do without both the higher derivative terms and the stress-

energy terms. Suppose we throw out at the start all the higher derivative terms in both the

action (4.2.1) and Jordan frame metric (4.2.4), and in addition omit all the stress-energy

terms in the action. This would yield a version of the action (4.2.1) involving only the

terms a1, a2, β1, β2, c1, d3 and d4. Using the transformation (4.3.2) the terms β1 and β2 can

be exchanged for b1 and b2, and the terms a2 and b1 can then be eliminated using the

transformations parameterized by σ3 and σ8. This yields our final action (4.4.5) but without

the terms e1 and e2, which in general arise from intergrating out heavy fields which are

gravitationally coupled. Therefore, for a fully general theory, one can choose to eliminate

higher derivative terms, or stress-energy terms, but not both.

III Extension to N scalar fields: Qui-N-tessence

The preceding analysis can be generalized straightforwardly to the case of N scalar fields,

which we call “qui-N-tessence”, an analog of multifield inflation [100, 81]. The zeroth-order
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action (4.2.2) gets replaced by a general nonlinear sigma model:

S0 =

∫
d4x
√
−g
[
m2
P

2
R− 1

2
qAB(φC)∇νφ

A∇µφ
Bgµν − U(φC)

]
, (4.4.7)

where φA = (φ1, . . . , φN) are the N scalar fields and qAB is a metric on the target space. In

the remainder of the action, functions of φ are replaced by functions of φA. The first three

terms of the second line of Eq. (4.4.5) are replaced by

a1ABCD∇µφ
A∇νφ

B∇λφ
C∇σφ

Dgµνgλσ + a2ABC∇µ∇λφ
A∇σφ

B∇λφ
Cgµνgλσ

+ c1ABG
µν∇µφ

A∇νφ
B. (4.4.8)

Thus the coefficients a1, a2 and c1 become tensors on the target space of the indicated orders.

Note that we must use the representation involving the coefficients a1ABCD, a2ABC and not

b1AB, b2AB (we assume α,A 6= 0) since the latter are less general; the equivalence between the

different representations discussed in Section 4.4.II does not generalize to the N field case.

When N ≥ 4 one could also add a term

a4ABCD∇µφ
A∇νφ

B∇λφ
C∇σφ

Dεµνλσ, (4.4.9)

where a4ABCD is an arbitrary 4-form on the target space.

4.5 Order of Magnitude Estimates and Domain of Validity

In the previous sections, we started from the standard quintessence model with a matter

coupling (4.2.2), and added arbitrary corrections involving the scalar field and metric in a

derivative expansion up to four derivatives. We then exploited the field-redefinition freedom

to eliminate all terms that give rise to additional degrees of freedom (“higher derivative

terms”), and to reduce the set of operators in the action to the canonical and unique set

given in our final action (4.4.5).
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We now turn to estimating the scaling of the coefficients in the final action using effective

field theory. We will then use these estimates to determine the domain of validity of the

theory.

I Derivation of Scaling of Coefficients

We start by recalling the scenario of pseudo-Nambu-Goldstone Bosons [94, 95] discussed

in the introduction that may give rise to the zeroth-order action (4.2.2). Suppose that at

some high-energy scale M∗ we spontaneously break a set of continuous global symmetries

and thereby generate N massless Goldstone bosons φA = (φ1, . . . , φN). The theory then has

N residual continuous symmetries. If we now suppose that these residual symmetries are

explicitly broken at some much lower energy scale Λ, then a potential is generated that scales

as Λ4V (φA/M∗), for some function V which is of order unity. In particular the mass of the

pNGB fields scale as Λ2/M∗ and can be very light. For example, in axion models M∗ ∼ 1012

GeV and Λ ∼ ΛQCD ∼ 100 MeV, giving an axion mass of order 10−5 eV.

The leading order action for the pNGB fields coupled to gravity at low energies will be

that of a nonlinear sigma model,

S =

∫
d4x
√
−g
[

1

2
m2
PR−

1

2
qAB(φC/M∗)∇νφ

A∇µφ
Bgµν − Λ4V (φC/M∗)

]
, (4.5.1)

where qAB is a metric on the target space which admits N Killing vectors (the residual sym-

metries). In the special case where qAB is flat, these residual symmetries are shift symmetries

φA → φA+ constant. We now assume that these fields drive the cosmic acceleration, and in

addition we assume that the kinetic and potential terms are of the same order, that is, we

assume that slow roll parameters are only modestly small. It then follows from the action

(4.5.1) that the scales of spontaneous and explicit symmetry breaking M∗ and Λ must be of
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order10

M∗ ∼ mP , Λ ∼
√
H0mP , (4.5.2)

where H0 is the Hubble parameter, so that the quintessence fields have mass ∼ H0 and energy

density ∼ m2
PH

2
0 . Defining the dimensionless fields ϕA = φA/mP allows us to rewrite the

action as

S =

∫
d4x
√
−g
[

1

2
m2
PR−

1

2
m2
P qAB(ϕC)∇νϕ

A∇µϕ
Bgµν −m2

PH
2
0V (ϕC)

]
. (4.5.3)

Consider now the stability of the theory (4.5.3) under loop corrections. The story is exactly

the same here as in inflationary models [101, 94] (aside from couplings to matter, see below).

Computing loop corrections starting from the action (4.5.3) does not lead to large corrections

δm � H0 to the mass of the quintessence fields, because in the limit where the explicit

symmetry breaking scale Λ =
√
mPH0 goes to zero, the theory possesses exact symmetries

which must be respected by the loop corrections. Hence the loop corrections to the potential

must scale proportionally to H2
0m

2
P , as for the original potential. Thus the smallness of the

mass of the quintessence field is natural in the sense of ’t Hooft. However, this is not the

entire story, since the form (4.5.3) of the low-energy theory imposes non trivial constraints on

the physics at high energies, which must respect the residual symmetries. Indeed in general

there is no guarantee that there exists a consistent high-energy theory with the low-energy

limit (4.5.3). This question is beyond the scope of this work: we shall simply assume that a

consistent UV theory can be found. See Ref. [102] for an example of an attempt to address

this issue.

So far in the discussion we have neglected coupling to matter. If we assume the validity of

the weak equivalence principle, the general leading order coupling of φC to matter will be of

the form of a scalar-tensor theory, given by adding to the action (4.5.3) the term

Sm

[
eα(φc/M∗)gµν , ψm

]
= Sm

[
eα(ϕc)gµν , ψm

]
, (4.5.4)

10The need to use the Hubble scale today in the symmetry breaking scale Λ is associated
with the coincidence problem.
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for some function α.

We now suppose that one or more of the pNGB fields has a mass ∼M which is paramet-

rically larger than H0, and we integrate out these heavier fields, following the similar analysis

of inflationary models by Burgess, Lee and Trott [84]. Integrating out the heavier fields gives

rise to modifications to the target space metric and potential for the remaining light fields

[that do not change the scalings shown in Eq. (4.5.3)], and also a set of correction terms to the

leading order action (4.5.3). The leading, tree-level correction terms can be obtained simply

by solving the classical equations of motion for the heavy fields in an adiabatic approximation

and substituting back into the action. One finds that the induced correction terms have the

form11

M2m2
P

∑
n

cn
Md
On, (4.5.5)

where the sum is over operators On involving d derivatives acting on k powers of the

dimensionless fields ϕ and/or gµν , and the coefficients cn are of order unity (see Appendix H

for details). In other words, each additional derivative is suppressed by a power of the mass

M of the fields that have been integrated out (which we can think of as a cutoff scale), and

the overall prefactor is such that the normal kinetic terms would be reproduced for the case

k = d = 2.

Note that the rule (4.5.5) for how the coefficients of additional corrections to the action

depend on the cutoff scale M differs from the usual rule of effective field theory, where an

operator of dimension D + 4 has a coefficient ∼ M−D. The rule (4.5.5) instead gives a

coefficient ∼ M−(d−2)m
−(k−2)
P , where d is the number of derivatives in the operator and k

is the number of powers of (canonically normalized) fields, related to D by D = d+ k − 4.

The difference between the two rules arises from the fact that we are making nontrivial

assumptions about the physics above the scale M , specifically that it is described by an

11These are the terms involving just the scalar field and metric. One also finds correction
terms involving the matter stress energy tensor as long as α′ 6= 0, of the form indicated in
Table 3.
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Coefficient Term in Action Scaling

a1 (∇φ)4 ∼ 1/(m2
PM

2)
a2 �φ(∇φ)2 ∼ 1/(mPM

2)
a3 † (�φ)2

b1 T µν∇µφ∇νφ ∼ 1/(m2
PM

2)
b2 T (∇φ)2 ∼ 1/(m2

PM
2)

b3 † T�φ
b4 † T µν∇µ∇νφ
b5 † RµνTµν
b6 † RT
b7 T
c1 Gµν∇µφ∇νφ ∼ 1/M2

c2 † R(∇φ)2

c3 † R�φ
d1 † R2

d2 † RµνRµν

d3 Gauss-Bonnet ∼ m2
P/M

2

d4 Chern-Simons ∼ m2
P/M

2

e1 T µνTµν ∼ 1/(m2
PM

2)
e2 T 2 ∼ 1/(m2

PM
2)

Table 3: This table gives the scalings of the various coefficients. The first column lists the
coefficients, and the second column lists the corresponding terms in the action
(4.2.3). Daggers in the first column indicate higher derivative terms. The third
column gives our estimate of the scale of the coefficients, under the assumptions
discussed in the text, for those coefficients that are nonzero in our final action
(4.4.5), or in versions of that action obtained using the field redefinitions (4.3.11)
or (4.3.23). The quantity M is the mass of the lightest field that is integrated out
to produce our final action. In all cases, these scales for the coefficients correspond
to fractional corrections to the leading order dynamics of order ∼ H2

0/M
2.
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action of the pNGB form (4.5.3) 12. If we were to allow arbitrary physics at energies above

the scale M , then the coefficients would scale according to the standard rule.

We now specialize to the case of a single light field. The correction terms (4.5.5) have the

form of a double power series, in number of derivatives and in powers of the fields. If we fix

the number of derivatives and associated index structure, we can sum over all operators that

differ only by powers of ϕ to obtain operators with prefactors that are functions of ϕ,

f(ϕ) =
∑

ckϕ
k (4.5.6)

with coefficients of order unity. We now write out all the resulting terms to leading order in

1/M2, imposing general covariance. The result is the theory (4.4.5) discussed in the previous

section13, but with additional information about the coefficients a1, b1 etc. Specifically we

find that

a1(φ) =
1

m2
PM

2
â1(φ/mP ), (4.5.7)

where the function â1 is of order unity, i.e., the coefficients in its Taylor expansion are

independent of mP and M . The corresponding prefactors or overall scaling for the other

coefficients are listed in Table 3.

Finally, we note that, as is well-known, Solar System tests of general relativity strongly

constrain the coupling of φ to the matter sector14. If we define the dimensionless parameter

12More general interactions which are not of the form (4.5.3) can modify the scaling rule
(4.5.5), even if they respect the residual (shift) symmetries. For example consider a scalar field
ψ of mass m which couples to φ via a term ψ(∇φ)2/m∗ for some mass scale m∗. Integrating
out this field gives a correction to the φ action ∼ (∇φ)4/(m2m2

∗) (see Appendix H). To keep
such terms from invalidating the scaling rule we need to assume that mm∗ &MmP , i.e. that
any such fields are either sufficiently massive or sufficiently weakly coupled to the pNGB
fields.

13The parity-violating Chern-Simons term is not generated in this way, since the fields we
are integrating out do not violate parity. To obtain the Chern-Simons term with the scaling
indicated in Table 3 would require integrating out some parity violating fields at the scale M
which approximately respect the residual (shift) symmetries.

14Strictly speaking, Solar System tests lie outside the domain of validity of our effective
field theory unless M−1 . 1 A.U., which is very small compared to H−1

0 ; see Section 4.5.II
above.

118



λ = mP |α′(φ0)|, where φ0 is the present day cosmological background value of φ, then the

Solar System constraint is15 λ . 10−2 [77]. In addition the coupling of the scalar to the

visible sector will generically give rise to large corrections to the quintessence potential via

loop corrections [104, 105, 106, 107, 108]. For a fermion of mass mf , the correction δm to

the mass of the quintessence field will be of order

δm

H0

∼ λ

(
m2
f

H0mP

)
. (4.5.8)

If λ ∼ 1 and mf �
√
mPH0 ∼ 10−3 eV, then δm � H0, which is inconsistent if the

quintessence field is to drive cosmic acceleration. This is a well-known naturalness problem

for matter couplings in quintessence models, and it motivates setting16 α = 0.

II Domain of Validity of the Effective Field Theory

We now estimate the domain of validity for the theory (4.4.5) with the scalings given by

Table 3, by requiring that the terms with higher derivatives be small compared to terms with

fewer derivatives. If E is the energy involved in a given process, or equivalently E−1 is the

corresponding time-scale or length-scale, then successive terms in the derivative expansion

are suppressed by the ratio E/M , which yields the standard condition

E �M (4.5.9)

for the domain of validity. As discussed in the introduction, M must be somewhat larger

than H0 in order to describe the background cosmology and observable perturbation modes.

However if M is significantly larger than H0 then the corrections due to the higher-order

terms in Eq. (4.4.5) become negligible, and the theory reduces to a standard quintessence

model with some matter coupling. Therefore, the interesting regime is when M is perhaps

15This constraint can be evaded in models where nonlinear effects in φ are important in
the Solar System, such as Chameleon [103] and Galileon models [29, 30, 31].

16More precisely the condition is α′ = 0, i.e., α = constant, but the constant can be
absorbed by a rescaling of all the dimensionful parameters in the matter action.
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just one or two orders of magnitude larger than H0, as indicated in Fig. 9. In particular,

when the scale M is in this interesting regime, the theory is unable to describe gravitational

effects in the Solar System and binary pulsars, which is a shortcoming of the effective field

theory approach used here.

Consider now the background cosmological solution. The theory (4.2.1) to zeroth-order in

ε (or equivalently 1/M2) has the equations of motion

m2
PGαβ = ∇αφ∇βφ−

1

2
(∇φ)2gαβ − U(φ)gαβ + e2α(φ)Tαβ, (4.5.10a)

�φ = U ′(φ)− 1

2
α′e2αT. (4.5.10b)

For each of these two equations we assume that all of the terms are of the same order. For

the matter terms this is this is a reasonable approximation, since ΩΛ ∼ 0.7 and Ωmatter ∼ 0.3.

If the scalar potential term dominates over the kinetic term, then the following estimates

need to be modified by including factors of slow roll parameters; we ignore these factors here

since we expect them to be only modestly small. Similarly, our estimates assume that mPα
′

is of order unity; some changes would be required if this quantity were very small. From

these assumptions, and ignoring O(1) functions of the scalar field, we have

m2
PR ∼ (∇φ)2 ∼ U ∼ T ∼ mP�φ ∼ mPU

′(φ) ∼ H2
0m

2
P . (4.5.11)

Inserting these estimates into the action (4.4.5) and using the scalings given in Table 3, we

find that for each of the correction terms in the action, the fractional corrections to the

leading order cosmological dynamics scale as H2
0/M

2. The corrections therefore are of order

unity at M ∼ H0, as we would expect, since at this scale the heavy fields which we have

integrated out have the same mass scale as the light fields, and would be expected to give rise

to O(1) corrections to the dynamics. This gives a useful consistency check of the calculations

underlying Table 3 discussed in the previous subsection.

In addition to the standard constraint (4.5.9), there are other constraints on the domain

of validity which we now discuss. We focus attention on cosmological perturbations, for
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which φ(t,x) = φ0(t) + δφ(t,x), and consider the conditions under which the dynamics of

the perturbation δφ can be described by the effective theory. Consider localized wavepacket

modes δφ, where the size of the wavepacket is of the same order as the wavelength, both

∼ E−1. For such modes we can characterize perturbations in terms of two parameters, the

energy E and the number of quanta or mode occupation number N . The total energy of the

wavepacket will be of order NE ∼
∫
d3x(∇δφ)2 ∼ E−3(Eδφ)2 which gives the estimate

δφ ∼
√
NE. (4.5.12)

The fractional density perturbation due to the wavepacket is of order

δρ

ρ
∼ (∇δφ)2

H2
0m

2
P

∼ NE4

H2
0m

2
P

. (4.5.13)

We now demand that the term a1(∇δφ)4 in the action17 be small compared to the leading

order term (∇δφ)2. Using the scaling a1 ∼ 1/(m2
PM

2) from Table 3 and combining with the

estimate (4.5.13) of the fractional density perturbation then gives the constraint18

δρ

ρ
� M2

H2
0

. (4.5.14)

Thus, the theory can describe perturbations in the nonlinear regime, but the perturbations

can only be modestly nonlinear if M is fairly close to H0. In terms of the parameters E and

N the constraint (4.5.14) is

NE4 �M2m2
P . (4.5.15)

17Here we envisage computing an action for the perturbations by expanding the action
(4.4.5) around the background cosmological solution, as in Ref. [84].

18In the previous subsection we showed that a1(φ) = â1(φ/mP )/(M2m2
P ), where â1 is

function for which all the Taylor expansion coefficients are of order unity. It follows that
â1 ∼ 1 for φ ∼ mP . However the estimate (4.5.14) requires the stronger assumption â1 . 1 for
φ� mP which need not be valid. If we instead assume that â1 ∼ (φ/mP )α for φ� mP then
the constraint (4.5.15) gets replaced by N(E/M)γ � m2

P/M
2, where γ = 2(4 + α)/(2 + α).

This modifies the boundary of the domain of validity of the effective field theory shown in
Fig. 10 by changing the slope of the tilted portion of the boundary. In the limit α→∞ this
portion of the boundary approaches the green curve δϕ ∼ mP .
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This gives a nontrivial constraint on the domain of validity of the theory in the regime

E .M . The two dimensional parameter space (E,N) is illustrated in Fig. 10, which shows

the constraints (4.5.9) and (4.5.14), the curves δρ/ρ ∼ 1 and δρ ∼ M2/H2
0 , as well as the

curve where δφ ∼ mP .

Another potential constraint on the domain of the validity of the theory (4.4.5) with the

scalings given by Table 3 is that the theory should be weakly coupled, i.e. the effects of loop

corrections should be small. Using the power counting methods of Ref. [84] one can show

that this is indeed true within the domain H0 . E � M of interest. Strong coupling can

arise due to tri-linear couplings, as discussed in Section 2.2 of Ref. [84], but this only occurs

for energies far below the Hubble scale H0, and so is not relevant to cosmological applications

of the theory.

We note that there are several well-known theories of cosmic acceleration that are not

encompassed by our effective field theory. The form of our expansion requires that the

dominant contribution to cosmic acceleration be the leading order scalar terms and not the

higher-order terms, and so theories in which other mechanisms provide the acceleration cannot

be described in our formalism. One example is provided by k-essence models in which terms

in the action like (∇φ)4, (∇φ)6 . . . are all equally important. In particular this is true for

ghost condensate models [20]. Also there are many cosmic acceleration models that exploit

the Vainshtein effect [109, 110, 111] to evade Solar System constraints on light fields with

gravitational-strength couplings. The Vainshtein effect relies on nonlinear derivative terms

in the scalar field action. Although our class of theories includes models that demonstrate

the Vainshtein mechanism, the mechanism only operates outside the domain of validity of

our approach, as we require the nonlinear derivative terms to be small. The chameleon

mechanism [103, 112], on the other hand, does not require nonlinearities in the derivatives of

the scalar field, and thus may be analyzed in our formalism, although the regime in which a

screening mechanism would be required to evade fifth force experiments and solar system

constraints will be in the regime of validity of our analysis only for large enough values of the
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cutoff M .

4.6 Discussion

In this chapter, we have investigated effective field theory models of cosmic acceleration

involving a metric and a single scalar field. The set of theories we considered consists of

a standard quintessence model with matter coupling, together with a general covariant

derivative expansion, truncated at four derivatives. We showed that this class of theories

can be obtained from a pNGB scenario, where one of the pNGB fields is lighter than all the

others, and the heavier fields are integrated out. We showed that in constructing this class of

theories, including higher derivative terms in the action, as suggested by Weinberg [83], does

not give any increased generality. We also showed that complete generality requires one to

include terms in the action that depend on the stress-energy tensor of the matter fields.

We now turn to a discussion of some of the advantages and shortcomings of the approach

adopted here to describe models of dark energy. Some of the shortcomings are:

• By construction, our approach excludes theories where nonlinear kinetic terms in the

action give an order unity contribution to the dynamics, such as k-essence, ghost

condensates etc., since such theories do not arise from the pNGB construction used here,

nor does their derivative expansion possess a small parameter. On the other hand, such

theories are less natural than the class of theories considered here, from the point of view

of loop corrections: they require very nontrivial physics at the scale ∼ H0, instead of at

the scale ∼
√
H0mP required in the pNGB approach. The most general class of theories

of this kind is that of Horndeski [113], which contains four free functions of φ and (∇φ)2

[26], and which is the most general class of theories of a metric and a scalar field for

which the equations of motion are second-order. As discussed in the introduction, these

theories are included in the alternative, background-dependent approach to effective
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field theories of quintessence of Creminelli et al. [85].

• Our class of theories will be observationally distinguishable from vanilla quintessence

theories only if the cutoff M is near the Hubble scale H0. In this regime, our framework

cannot be used to analyze Solar System tests of general relativity, since they are outside

the domain of validity of the effective field theory. Also, when the background cosmology

is evolved backwards in time it passes outside the domain of validity at fairly low

redshifts. (This is not a serious disadvantage since dark energy dominates only at low

redshifts.)

• We have restricted attention to theories with a metric and a single scalar field, with the

only symmetry being general covariance. Thus, our analysis does not include models with

several scalar fields, vector fields etc. In addition, our analysis excludes an interesting

class of models that one obtains by imposing that the action be invariant under φ→ f(φ),

where f is any monotonic function, as such a symmetry cannot be realized with our

derivative expansion. This class of models includes Horava-Lifshitz gravity and has the

same number of physical degrees of freedom as general relativity [26, 114]. It would be

interesting to explore the most general dark energy models of this kind.

Some of the advantages of the approach used here are:

• Our class of theories is generic within the pNGB construction, which itself is a well

motivated way to obtain the ultralight fields needed for cosmic acceleration. The theories

are fairly simple and it should be straightforward to confront them with observational

data.

• Our class of theories allow for a unified treatment of the cosmological background and

perturbations, unlike the background-dependent approach of Ref. [85].

Finally, we list some possible directions in which the approach used here could be extended:
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• It would be interesting to compute the relation between the nine free functions used in

our theories to the free functions of the post-Friedmannian approach to parameterizing

dark energy models [26].

• It would be interesting to explore the phenomenology of the various higher-order terms

in our action, for the cosmological background evolution and perturbations. Many of

the terms have already been explored in detail, see for example Refs. [97, 98].

• Either by using the post-Friedmannian approach, or more directly, it would be useful to

compute the current observational constraints on the free functions in the action.

• An interesting open question is the extent to which our final action is generic. That is,

is there a class of theories more general than nonlinear sigma model pNGB theories for

which our action is obtained by integrating out some of the fields?
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Chapter 5

Discussion and Conclusions

Contents
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5.3 Future Prospects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.1 Combining Results

We now turn to one final calculation, demonstrating the ability of the EFT approach of

Chapter 4 to include the braneworld low-energy theory described in Chapters 2 and 3. We

start from the low-energy braneworld action (3.3.4), reproduced here.

S =

∫
d4x
√
−g

[
R(4)[g]

2κ2
4

− (∇a)2

2
− µ2

2
sinh2

(
a

µ

)N−2∑
n=1

{
n−1∏
m=1

sin2(λm)

}
(∇λn)2

]

+ ST m

[
cosh2

(
a

µ

)
gab, φT

]
+

N−1∑
n=0
n6=T

Sn m

[
sinh2

(
a

µ

)
f 2
n

B′n
gab, φ

n

]
(5.1.1)

From the analysis of the Eddington γ parameter, we know that a/µ ≤ 0.05. This implies that

the only significant radion mode is the field a, and the remaining modes λn may be neglected.

Furthermore, based on the result that the vast majority of matter must exist on our brane,

we can assume that all matter fields live on the central brane. Using these assumptions, we
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can construct an approximate action

S =

∫
d4x
√
−g
[
R(4)[g]

2κ2
4

− (∇a)2

2

]
+ ST m

[
cosh2

(
a

µ

)
gab, φT

]
. (5.1.2)

In the EFT approach, we are then left with a simple correspondence. We make the

identifications a ≡ φ and exp(α(φ)) ≡ cosh2
(
a
µ

)
, while all other functions in the EFT are

vanishing. The factor µ is related to the four-dimensional gravitational scale by µ =
√

6/κ4 =
√

6m
(4)
P , and so the scaling of the conformal factor follows the form predicted by the EFT.

While this theory obviously satisfies the requirement that the derivative expansion be valid,

the model is unable to explain dark energy, as the scalar field is massless and thus cannot

have the correct equation of state.

5.2 Summary of Results

Although our current understanding of gravity provides a remarkably accurate description of

observations from terrestrial to cosmological scales, a number of theoretical problems remain

unsolved. Chief amongst these is the issue of the accelerated expansion of the universe,

attributed to an unknown energy density dubbed dark energy. This dissertation has described

two separate approaches to theoretical investigations of dark energy.

In the first approach, described in Chapters 2 and 3, a class of extra-dimensional braneworld

models were investigated. These models involved generalizations of the Randall-Sundrum

models to include multiple branes in orbifolded and uncompactified configurations, without

radion stabilization. The motivation for these generalizations was to investigate whether the

addition of further branes on a variety of topological configurations is able to ameliorate

the observational constraints that apply to the original RS-I and RS-II models, or lead to

interesting new behavior.

A method to construct a four-dimensional low-energy description of such models was

described in detail, and applied to the case of N branes in an uncompactified five-dimensional
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bulk as an example. The low-energy action of such a model was shown to be four-dimensional

general relativity coupled to N −1 radion fields in a non-linear sigma model, as well as matter

fields on the branes with conformal couplings to the radion modes. The requirement that the

non-linear sigma model had no ghosts required that negative tension branes could only exist

at orbifold fixed points (i.e., orientifolds). The subset of models with this condition have

hyperbolic space as the target space. The Eddington PPN γ parameter was calculated, and it

was found that it could be consistent with observations for only one brane, the equivalent of

the Planck brane in the RS-I model. For essentially the same reasons as in that model, this

implies that a potential solution to the hierarchy problem must involve radion stabilization.

By comparing the gravitational coupling between matter on different branes, an estimate

was made of whether dark matter could reside on another brane in this class of models.

From combining observational constraints on γ and dark-matter to normal-matter gravita-

tional couplings, it was found that dark matter cannot reside wholly on another brane, at

least without a radion stabilization mechanism. Qualitatively, models involving more than

two branes were physically very similar to two-brane models. A single scalar mode dominated

the dynamics of the system, and the effect of extra branes was found to be exponentially

suppressed. As such, we found that the inclusion of multiple branes is unable to circumvent

observational constraints on the original Randall-Sundrum models.

In the second approach, described in Chapter 3, we took an effective field theory approach

to dark energy models. Considering single-field dark energy, we constructed a derivative

expansion, where general relativity and normal quintessence with a non-minimal coupling

are the leading order terms. This approach allowed us to provide a general description

of dark energy models within the regime in which the derivative expansion holds. We

constrained our approach by requiring that the perturbative terms did not lead to higher-

order derivatives in the equations of motion, which introduce new degrees of freedom (typically

ghost modes), and also by imposing the weak equivalence principle. We demonstrated how

this construction could be arrived at by integrating out heavy modes in a non-linear sigma
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model of pseudo-Nambu-Goldstone bosons, and used the properties of this construction to

derive the regime of validity of our effective field theory. Furthermore, we motivated the

scaling of the different operators based on the pNGB construction. It is hoped that this

construction will aid in establishing generic observational constraints on dark energy models.

At least one collaboration is currently investigating this possibility.

5.3 Future Prospects

I Theoretical Prospects

The effective field theory approach taken in Chapter 4 is very general in the sense that

it captures the leading-order effects of scalar field dark energy models. However, as has

been previously noted, the regime of validity of the description is somewhat restrictive.

Furthermore, the background behavior of dark energy models is somewhat degenerate, as

even for standard minimally coupled quintessence, it is possible to choose a potential to

yield any cosmological history a(t). The inclusion of further free functions compounds

this degeneracy. Therefore, it is of great interest to identify the perturbative behavior of

dark energy models, whose influence on the growth of structure in the late universe will be

fundamental in applying observational constraints to the parameter space.

In inflation, a very successful effective field theory of the perturbations in the inflaton field

has been constructed by Cheung et al. [80], and applied to quintessence models by Creminelli

et al. [85]. The background evolution of the universe must be specified as an input to the

theory, but the theory can handle regimes in which our approach is invalid. A benefit of

this approach is that there are fewer free functions present in the description. While this

signals a degeneracy among the functions described in this work, it does give hope that the

application of observational constraints will be more straightforward.
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However, previous work has only considered minimally coupled quintessence fields. Work

presented here motivates a number of possible couplings between quintessence fields and

matter, and so it will be of use to extend the EFT of inflation work to describe various matter

couplings. This work is currently in progress.

II Experimental Prospects

While our theoretical tools for probing dark energy are developing, it is also exciting to

see a number of upcoming experiments that are designed to help yield information on the

cosmological evolution. Currently underway and due to release data soon, the Planck mission

will observe the CMB anisotropies to unprecedented accuracy. This will be of great use in

describing cosmological parameters and understanding the spectrum of perturbations that

seeded large scale structure. Looking towards the future, Stage IV experiments such as Euclid,

the LSST, and WFIRST have been designed to undertake large imaging surveys of the sky,

while experiments such as BigBOSS and Euclid will be making spectroscopic measurements

of galaxies. The combined data sets from upcoming experiments will hopefully allow us to

place stringent constraints on dark energy models, and ascertain whether or not dark energy

is dynamical in our universe.
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Appendix A

Five-Dimensional Ricci Scalars and

Exact Equations of Motion

Here we present the dimensionally reduced Ricci scalar and the exact equations of motion

for the action (2.5.23). We include the order at which terms appear in terms of our scaling

parameter, ε.

1 Dimensional Reduction of the Ricci Scalar

The constraint det γ̂ = −1 may be enforced either at the level of the equations of motion, or

by using a Lagrange multiplier.

If the constraint det γ̂ = −1 is being enforced at the level of the equations of motion, then

it is simplest to compute the equations of motion using the metric (2.5.4), and then perform

a conformal transformation on the quantities in the equations of motion. In this metric, the

five-dimensional Ricci scalar is given by

Rn (5) = ε2
(
Rn (4) − 2∇a∇a Φn

Φn

)
−

γn ab γn ab,yy

Φn 2
+ γn ab γn ab,y

Φn ,y

Φn 3

− 1

4 Φn 2

(
γn ab γn ab,y

)2
+

3

4 Φn 2
γn ab γn ac,y γ

n cd γn db,y, (A.1)

where covariant derivatives and the four-dimensional Ricci scalar are those associated with

γn ab.
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For the constraint det γ̂ = −1 to be enforced at the level of the action, a Lagrange

multiplier term must be added to the action

∆S =
N∑
n=0

∫
Rn

d5xn λn (xa, y)
(√
− γ̂n − 1

)
, (A.2)

where λn (xa, y) are the Lagrange multiplier fields. Using the metric (2.6.5), the five-

dimensional Ricci scalar is given by

Rn (5) = ε2e− χn
(
Rn (4) − 3∇a∇a χ

n − 3

2
(∇a χn )(∇a χ

n )

−2∇a∇a Φn

Φn
− 2(∇a χn )(∇a Φn )

Φn

)
+

1

Φn 2

(
−1

4
γ̂n ab γ̂n ac,y γ̂

n cd γ̂n db,y − 5( χn ,y)
2 − 4 χn ,yy + 4

Φn ,y

Φn
χn ,y

)
, (A.3)

where covariant derivatives and the four-dimensional Ricci scalar are those associated with

γ̂n ab. To obtain this form, we use the following two formulae that may be derived from the

fact that det( γ̂n ab) = −1:

γ̂n ab γ̂n ab,y = 0, (A.4)

γ̂n ab γ̂n ab,yy = γ̂n ab γ̂n bc,y γ̂
n cd γ̂n da,y. (A.5)

The complete action (with ε scaling and Lagrange multipliers) is given by Eq. (2.7.1).

2 Varying the Action

We use γ̂n ab to compute covariant derivatives, the four-dimensional Ricci scalar Rn (4) and

the four-dimensional Einstein tensor G
n (4)

ab . Indices will also be raised and lowered using this

metric.

Varying the action (2.7.1) with respect to Φn , we find the bulk equation of motion

ε2e− χn
(
Rn (4) − 3

2
(∇a χn )(∇a χ

n )− 3∇a∇a χ
n

)
− 3

Φn 2
χn 2
,y

+
1

4 Φn 2
γ̂n ab γ̂n bc,y γ̂

n cd γ̂n da,y − 2κ2
5Λn = 0. (A.6)
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From combining the variations with respect to γ̂n ab and χn (after eliminating the Lagrange

multiplier by tracing over the γ̂n ab equation of motion, or enforcing det γ̂ = −1 on the

equations of motion), we obtain a traceless tensor equation of motion in the bulk

1

2
Φn 2ε2e− χn

(
4 G
n (4)

ab + γ̂n ab R
n (4) + 2(∇a χ

n )(∇b χ
n )− 1

2
γ̂n ab(∇c χn )(∇c χ

n )

− 4∇a∇b χ
n + γ̂n ab∇c∇c χ

n

)
+

3

2
Φn ε2e− χn

(
−4∇a∇b Φn + 4(∇(a Φn )(∇b) χ

n )

+ γ̂n ab∇c∇c Φn − γ̂n ab(∇c Φn )(∇c χn ))

− γ̂n ab,yy +
Φn ,y

Φn
γ̂n ab,y − 2 χn ,y γ̂

n
ab,y + γ̂n ac,y γ̂

n cd γ̂n db,y = 0, (A.7)

and a scalar equation of motion in the bulk

1

2
Φn 2ε2e− χn

(
− Rn (4) +

3

2
(∇a χn )(∇a χ

n ) + 3∇a∇a χ
n

+
5

Φn
∇a∇a Φn +

5

Φn
(∇a Φn )(∇a χn )

)
+

1

4
γ̂n ab γ̂n ab,yy + 3 χn ,yy + 3( χn ,y)

2 − 3
Φn ,y

Φn
χn ,y + 2 Φn 2κ2

5Λn = 0. (A.8)

These variations also give rise to the boundary conditions on the branes

1

Φn
γ̂n ab,y −

1

Φn+1
γ̂n+1
ab,y = 2κ2

5ε
2e− χn

(
Tn ab − γ̂n ab

1

4
γ̂n cd Tn cd

)
, (A.9)

and

−
3 χn ,y

Φn
+

3 χn+1
,y

Φn+1
+ 2κ2

5σn =
1

2
κ2

5ε
2e− χn γ̂n ab Tn ab. (A.10)

The four-dimensional stress energy tensors on the branes ( Tn ab) are defined by Eq. (0.0.1),

where factors of h are converted into factors of γ̂ as appropriate.

Note that every factor of ε2 is accompanied by a factor of exp(− χn ). Also note that the

O(1) terms in these equations are exactly our equations of motion (2.7.3) to (2.7.7).

134



Appendix B

Results on an Orbifold

In this appendix, we derive the four-dimensional low-energy action of an orbifolded N -brane

model, and show that it is equivalent to the uncompactified model up to the rescaling of

parameters.

We begin by describing the construction of the model, using the notation established in

Chapter 2. Consider a model with N branes on an orbifold. The first and last branes are

taken to be at the orbifold fixed points. The other N − 2 branes lie between these two branes

on one half of the orbifold, and are duplicated on the other half by the symmetry. These

regions effectively lie on a circle, and so the coordinate describing the extra dimension will

be periodic. To calculate the action for this model, we take there to be 2(N − 1) regions

and 2(N − 1) branes. Let the first brane be labeled by B0, situated at y = 0, where y is

the coordinate describing the extra dimension. After gauge specializing, let there be N − 1

branes located at y = 1, 2, . . . , N − 1. In between the branes, we have N − 1 bulk regions.

To account for the orbifolding, continue the extra dimension in the negative y direction, with

another N − 1 branes located at y = −1,−2, . . . ,−N + 1, with the coordinates y and −y

identified. The y coordinate varies from −N + 1 to N − 1, and these endpoints are identified

under periodic boundary conditions in y. The branes labeled N − 1 and −N + 1 are thus the
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B0 B1 B2 BN-1B-1B-2B-N+1

y
R-1 R1 R2 RN-1R-2R-N+1

Equivalent by Orbifold

Equivalent by periodic boundary conditions

Figure 11: Diagram indicating how the branes are labeled in the construction of the
orbifolded model. The orbifold symmetry identifies y with −y, and we impose
the periodicity condition of identifying y with y + 2N − 2. To calculate the
action, the model is broken up into 2(N − 1) bulk regions Rn, but regions Rn

and R−n coincide by the orbifold symmetry.

same brane. Labellings are described in Fig. 11. The action for this model is given by

S
[
gΓΣ, x

n Γ, φn
]

=

(
N−1∑
n=1

+
−1∑

n=−N+1

)∫
Rn

d5xn
√
− gn

(
Rn (5)

2κ2
5

− Λn

)

+
N−2∑

n=−N+1

1

κ2
5

∫
Bn
d4wn

√
− hn

(
Kn + + Kn −)

−
N−2∑

n=−N+1

σn

∫
Bn
d4wn

√
− hn + S0 m [ h0 ab, φ

0 ]

+
1

2

(
N−1∑
n=1

+
−1∑

n=−N+1

)
Sn m[ hn ab, φ

n ] (B.1)

The sums over branes which only run to N − 2 are written so because the branes −N + 1

and N − 1 are the same brane. Note that the brane tensions at the orbifold fixed points are

included once only, while the brane tensions on the other branes are doubly included. This is

just a choice of how to describe the brane tensions in the orbifold. The choice of the factor of

1/2 in the matter actions accounts for the doubling that occurs with the orbifolding.

The procedure described in Chapter 2 may now be followed for each region. We gauge

specialize to the straight gauge, before separating length-scales in the action. Writing the

metric in each region as

dsn 2 = e χn (xcn,yn) γ̂n ab(x
c
n, yn)dxandx

b
n + Φn 2(xcn, yn)dy2

n (B.2)

with det(γ̂) = −1, we can find the equations of motion at lowest order in the separation
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of length-scales. The following equations and boundary conditions arise, corresponding to

Eqs. (2.5.11), (2.5.12), (2.7.3), (2.7.4), (2.7.5), (2.7.6), and (2.7.7). Note that the equations

in regions n and −n are identical, as required by the orbifolding condition:

χn (wcn, n) = χn+1 (wcn, n) (B.3)

2

3
κ2

5σn =
χn ,y

Φn

∣∣∣∣
yn=n

−
χn+1
,y

Φn+1

∣∣∣∣
yn+1=n

(B.4)

γ̂n ab(w
c
n, n) = γ̂n+1

ab(w
c
n, n) (B.5)

1

Φn
γ̂n ab,y(w

c
n, n) =

1

Φn+1
γ̂n+1
ab,y(w

c
n, n) (B.6)

0 =
1

4
γ̂n ab γ̂n bc,y γ̂

n cd γ̂n da,y − 3 χn 2
,y − 2κ2

5 Φn 2Λn (B.7)

γ̂n ad,yy = γ̂n ab,y γ̂n bc γ̂n cd,y − γ̂n ad,y

(
2 χn ,y −

Φn ,y

Φn

)
(B.8)

0 =
1

12
γ̂n ab γ̂n bc,y γ̂

n cd γ̂n da,y + χn 2
,y + χn ,yy −

Φn ,y

Φn
χn ,y +

2

3
κ2

5 Φn 2Λn. (B.9)

The boundary conditions at the first and last branes are

0 = γ1 ab,y

∣∣
y1=0+

(B.10)

0 = γN−1
ab,y

∣∣
yN−1=(N−1)−

(B.11)

−P1
1

3
κ2

5σ0 =
χ1 ,y

Φ1

∣∣∣∣
y1=0+

(B.12)

and

PN−1
1

3
κ2

5σN−1 =
χN−1
,y

ΦN−1

∣∣∣∣∣
yN−1=(N−1)−

. (B.13)

Equation (B.8) should be solved first. The solution (in matrix notation and suppressing

indices n) is

γ̂(xa, y) = A(xa) exp

(
B(xa)

∫ y

Φ(xa, y′)e−2χ(xa,y′)dy′
)

(B.14)

where A(xa) and B(xa) are arbitrary 4 × 4 matrices such that γ̂ has the properties of a

metric. Combining this with Eqs. (B.5) and (B.6), we see that B is independent of region.
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The boundary conditions Eqs. (B.10) and (B.11) then imply that B = 0 in all regions.

Finally, the condition (B.5) then implies that A is independent of region, and so we can write

γ̂n ab(x
c, y) = γ̂ab(x

c) for all regions.

The remaining equations of motion are then solved straightforwardly. Defining

kn =

√
−κ2

5Λn

6
, (B.15)

we find

χn ,y = 2Pnkn Φn (B.16)

and the brane-tuning condition

knPn − kn+1Pn+1 =
1

3
κ2

5σn. (B.17)

For the first and last branes, this condition is

k1P1 = − 1

6
κ2

5σ0, (B.18)

kN−1PN−1 =
1

6
κ2

5σN−1. (B.19)

The metric in each bulk region is

dsn 2 = e χn (xc,y)γ̂ab(x
c)dxadxb +

χn 2
,y(x

c, y)

4k2
n

dy2. (B.20)

Following our prescription, we now substitute this into the action (B.1) and integrate over

the fifth dimension. The result is

S [γ̂ab,Ψn, φ
n ] =

∫
d4x
√
−γ̂ 1

2κ2
5

[
N−1∑
n=1

(
eχn

knPn
− eχn−1

knPn

)
R(4)

+
3

2

N−1∑
n=1

(
eχn

knPn
(∇χn)2 − eχn−1

knPn
(∇χn−1)2

)]

+
N−1∑
n=0

Sn m[eχn γ̂ab, φ
n ], (B.21)

where χn(xa) = χn (xa, n).
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We now make the following definitions.

An =

∣∣∣∣ 1

knPn
− 1

kn+1Pn+1

∣∣∣∣ (B.22)

A0 =

∣∣∣∣− 1

k1P1

∣∣∣∣ =
1

k1

(B.23)

AN−1 =

∣∣∣∣ 1

kN−1PN−1

∣∣∣∣ =
1

kN−1

(B.24)

εn = sgn

(
1

knPn
− 1

kn+1Pn+1

)
(B.25)

ε0 = sgn(−P1) = −P1 (B.26)

εN−1 = sgn(PN−1) = PN−1 (B.27)

Ψn =
√
Aneχn (B.28)

With these definitions, the action is given by

S [γ̂ab,Ψn, φ
n ] =

∫
d4x

√
−γ̂

2κ2
5

[
R(4) [γ̂ab]

(
N−1∑
n=0

εnΨ2
n

)
+ 6

N−1∑
n=0

εn(∇aΨn)(∇aΨn)

]

+
N−1∑
n=0

Sn m

[
Ψ2
n

An
γ̂ab, φ

n

]
. (B.29)

This is identical to Eq. (2.8.9) above except for a factor of two multiplying 1/4κ2
5, which

arises from integrating each region twice rather than once. Otherwise, only the definitions of

ε0, A0, εN−1 and AN−1 have changed, which corrects for the removal of the regions between

the first and last branes and infinity in the bulk. Thus, the four-dimensional low-energy

action for this model is the same as for the uncompactified case (2.9.17), although some

parameters have been modified. A special case of the orbifolded model is the two-brane case,

corresponding to the RS-I model (also see Section 2.4). In this case, the action (B.29) reduces

to previously known four-dimensional actions [62].

Most of the analysis for the orbifolded scenario is identical to that for the orbifolded

scenario. The only time when the orbifolded scenario requires a separate analysis is when

removing ghost modes. In the orbifolded case, we again want all εn parameters to have the

same sign except for one, which is opposite. Note that we now have ε0 = sgn(σ0) = −P1 and
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εN−1 = sgn(σN−1) = PN−1. For the first and last branes, we may only choose whether ε is

positive or negative, while for the intermediary branes, all of the previously discussed cases

are possibilities.

For a single positive εn, we need one of the following configurations:

−, 5, . . . , 5, (2 or 6), 4, . . . , 4,−,

+, 4, . . . , 4,−,

−, 5, . . . , 5,+.

For a single negative εn, the options are

−, 1, . . . , 1,+,

+, 8, . . . , 8,−,

+, 8, . . . , 8, (3 or 7), 1, . . . , 1,+.

The analysis of each configuration proceeds exactly as in Section 3.2. We find that we must

have a single positive εn, with all other εn negative. This implies that all branes must be

positive tension, with the possible exception of the first and last branes, which may be

negative. Again, the warp factor thus rises to a maximum and then falls again. If the first

brane has the maximum warp factor, it has a positive tension, and similarly for the last brane.

The four-dimensional low-energy action specialized to such a configuration is described by

(3.3.4) above.

As the constraints on the Eddington γ factor and the dark matter limits arise only from this

action, the constraints on this orbifolded model are identical to those in the uncompactified

model.

In arriving at the four-dimensional low-energy action (B.29), we make the same approxi-

mations as for the uncompactified case, namely that the separation of length-scales is valid

everywhere between the branes. However, we don’t have any issues with the separation of
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length-scales breaking down towards infinity in the bulk, and nor do we need to invoke global

hyperbolicity to constrain the behavior of the warp factor outside the collection of branes.

Furthermore, the boundary conditions imposed by the orbifolding ensures that the degree of

freedom B is projected out. In these regards, the orbifolded analysis is more robust than the

uncompactified analysis.
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Appendix C

Kaluza-Klein Modes

In this appendix, we venture away from the four-dimensional theory to discuss the Kaluza-

Klein modes of our model. The methods and results here mimic the original RS-II model [7]

closely.

Consider an uncompactified model with N branes (with brane tensions tuned) and no

matter. The solution for the five-dimensional metric can be written as

ds2 = eχ(y)ηabdx
adxb + dy2 (C.1)

after appropriate gauge transformations, where χ,y = 2knPn, and χ is continuous. Now

consider metric fluctuations of the form

ds2 =
(
eχ(y)ηab + hab(x

c, y)
)
dxadxb + dy2. (C.2)

Decomposing hab into Fourier modes hab(x
c, y) = habψ(y) exp(ipcx

c), where pc is a four-

momentum with p2 = −m2, we find to first order in h(
−1

2
m2e−χ − 1

2

∂2

∂y2
+

1

2
(χ,y)

2 +
χ,yy

2

)
ψ = 0. (C.3)

Our gauge choice is haa = ∂ahab = 0. Equation (C.3) is equivalent to Eq. (8) in [7]. As

discussed there, the solutions to this equation are Bessel functions (although here, they must

be defined piecewise because of the piecewise nature of χ). There is a massless graviton mode,

which has been integrated to give the four-dimensional effective graviton in our low-energy
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theory (3.3.4), and a continuum of massive Kaluza-Klein graviton modes, which in this work

were previously truncated.

As in the RS-II model, there is no mass gap. Note that there are no so-called “ultra-light”

[49, 50, 68] modes present in this model, as such modes occur in a model where the mass

spectrum is quantized. Although the presence of extra branes complicates the mathematics,

the physical effect of the Kaluza-Klein modes in our model is essentially the same as in the

RS-II model.

In an orbifolded model, the analysis of the Kaluza-Klein modes follows similarly, but the

orbifolding condition implies that the mass spectrum is quantized, and we expect ultra-light

modes to be present (see [68] and citations therein).
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Appendix D

The Weak Equivalence Principle

In this appendix, we show that including terms in the action that depend explicitly on the

matter stress energy tensor, as in Eq. (4.2.1) above, generically gives rise to violations of the

weak equivalence principle. However, we also show that our specific model (4.2.1) does not,

to linear order in ε. Since the parameter ε essentially counts the number of derivatives in our

derivative expansion, it follows the weak equivalence principle is satisfied for our derivative

expansion up to four derivatives.

1 Generic Violations of Weak Equivalence Principle when Stress-

Energy Terms are Present in Action

Consider first an action principle of the general form

S[gαβ, φ, ψm] = Sg[gαβ, φ] + Sm[ḡαβ, ψm]. (D.1)

Here the first term is a gravitational action, depending only on the metric gαβ and the scalar

field φ, and the second term is the matter action, in which all the matter fields ψm couple

only to the Jordan metric ḡαβ (some function of gαβ and φ), and not to gαβ and φ individually.

By definition, any theory of this form obeys the weak equivalence principle. What this means

is as follows. We define weakly self-gravitating bodies to be bodies for which we can neglect

the perturbations they cause to gαβ and φ. From the form of the action (D.1), it follows that
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all weakly self-gravitating bodies will fall on geodesics of the metric ḡαβ, and hence will all

fall on the same geodesics.

The action principle (4.2.1) we use in this work is not of the general form (D.1), because

of the explicit appearance of terms involving the stress energy tensor in the gravitational

action. Therefore one expects violation of the weak equivalence principle to arise. We now

verify explicitly that this does occur in a specific example. We choose the following special

case of the action (4.2.1), where the only perturbative term included is the term proportional

to the trace of the stress energy tensor:

S =

∫
d4x
√
−g
[

1

2
m2
PR−

1

2
(∇φ)2 − U(φ) + εf(φ)T

]
+ Sm[ḡαβ, ψm]. (D.2)

We choose the matter field ψm to be a scalar field ψ with action

Sm = −
∫
d4x
√
−ḡ
[

1

2
(∇̄ψ)2 + V (ψ)

]
, (D.3)

and we specialize the relation (4.2.4) between the two metrics to be the conformal transfor-

mation ḡαβ = eα(φ)gαβ. This gives T = −e−α(∇ψ)2 − 4V and the total action is therefore

S =

∫
d4x
√
−g
[1

2
m2
PR−

1

2
(∇φ)2 − U(φ)− 1

2
(eα + 2εe−αf)(∇ψ)2

− (e2α + 4εf)V (ψ)
]
. (D.4)

The kinetic term for ψ can be written as
∫
d4x
√
−ĝ(∇̂ψ)2 where ĝαβ = (eα + 2εe−αf)gαβ, and

the potential term can be written as
∫
d4x
√
−g̃V (ψ), where g̃αβ =

√
e2α + 4εfgαβ. Therefore,

objects whose stress energy is composed of different combinations of the kinetic term and the

potential term will fall on different combinations of the metrics ĝαβ and g̃αβ, violating the

weak equivalence principle.

2 Validity of Weak Equivalence Principle to Linear Order

In the above analysis, we note that the metrics ĝαβ and g̃αβ coincide to linear order in ε, so

there is no violation to this order. We now show that, similarly, none of the stress-energy-
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dependent terms included in Eq. (4.2.1) violate the weak equivalence principle, to linear order

in ε.

The key idea of the proof is to use the transformation laws derived in Section 4.3 above to

rewrite the theory in the general form (D.1), which we know satisfies the weak equivalence

principle. All of the terms in the action given by Eqs. (4.2.1) – (4.2.4) are of this form, except

for the terms parameterized by the coefficients b1, . . . , b7, e1 and e2. However, as we now

show, we can use transformations to eliminate these terms in favor of the remaining terms

which manifestly satisfy the principle.

Consider first the terms in the action (4.2.3) which depend linearly on the stress-energy

tensor. We can eliminate the terms parameterized by b1, . . . , b6 using the transformation

(4.3.3) with β̃i = −2e−2αbi for 1 ≤ i ≤ 6. This generates contributions to the the terms

parameterized by β1, . . . , β6 in the definition (4.2.4) of the Jordan metric. Similarly, by using

the transformation (4.3.4) with α̃ = −2e−2αb7, we can eliminate the term parameterized by

b7 in favor of an O(ε) correction to the function α in Eq. (4.2.4).

We now turn to the terms in the action (4.2.3) which depend quadratically on the

stress-energy tensor, namely the terms parameterized by e1 and e2. For e1 we use the

transformation (4.3.29) with σ11 = −e−2αe1, and for e2 we use the transformation (4.3.27)

with σ10 = −e−2αe2. These transformations generates new contributions to the linear stress-

energy terms parameterized by b1, b2, b5, b6 and b7 (see Table 1), but we have already shown

that all of those terms satisfy the weak equivalence principle.

To summarize, we have shown that our model (4.2.1) satisfies the weak equivalence

principle despite the explicit appearance of stress energy terms in the action. Of course, there

can be violations of the strong equivalence principle in models of this kind, which can even be

of order unity [115]. In addition, the weak equivalence principle will generically be violated

by quantum loop corrections, although this is a small effect [116].
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3 Potential Ambiguity in Definition of Weak Equivalence Princi-

ple

We next discuss a potential ambiguity that arises in the definition of the weak equivalence

principle. In the definition one restricts attention to bodies whose gravitational fields, as

measured by the perturbations they produce to the metric gµν and scalar field φ, can be

neglected. However, consider for example the field redefinition (4.3.27), where the metric

transforms according to

gαβ = ĝαβ + 2εσ10T ĝαβ. (D.5)

It is possible for the perturbation δĝαβ generated by the body to be negligible, but the

perturbation δgαβ to be non-negligible, because of the appearance of the stress-energy term

in Eq. (D.5). If this occurs then the weak equivalence principle could be valid for one choice

of variables, but not valid for the other choice.

To assess this ambiguity, we now make some order of magnitude estimates. Consider a body

of mass ∼Mb and size ∼ R. Then in general relativity the size of the metric perturbation due

to the body is of order δĝαβ ∼Mb/(m
2
PR). Suppose now that σ10 ∼ 1/(m2

PM
2), as indicated

by Eq. (4.3.28) and Table 3. Then the contribution to the metric perturbation δgαβ from the

second term in Eq. (D.5) will be of order Mb/(R
3m2

PM
2), which will be much larger than

δĝαβ whenever R�M−1. Therefore the ambiguity could in principle arise.

However, in the models considered in this work, the ambiguity does not occur. This is

because the condition R�M−1 is excluded by the condition (4.5.9) for the validity of the

effective field theory.
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Appendix E

Equivalence Between Field

Redefinitions, Integrating Out New

Degrees of Freedom, and Reduction

of Order

The action (4.2.1) we start with in Chapter 4 contains several higher-derivative terms, that

is, terms which gives contributions to the equations of motion which involve third-order and

fourth-order derivatives of the fields. As discussed in the introduction, the theory with these

higher-derivative terms contains additional degrees of freedom compared to our zeroth-order

action (4.2.2), which contains a single graviton and scalar. Our goal in this work is to describe

a general class of theories containing just one tensor and one scalar degree of freedom, so we

wish to exclude these additional degrees of freedom1.

Therefore, as discussed in the introduction, we define the theory we wish to consider,

associated with our action (4.2.1), to be that obtained from the following series of steps:

1. Vary the action to obtain the equations of motion, which will contain third-order and

fourth-order derivative terms which are proportional to ε.

2. Perform a reduction of order procedure on the equations of motion [90, 91, 92]. That is,

1Higher derivative terms are also generically associated with instabilities [89], although
this can be evaded in special cases, for example R2 terms.
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substitute the zeroth-order in ε equations of motion into the higher derivative terms in

order to obtain equations that contain only second-order and lower order derivatives,

which are equivalent to the original equations up to correction terms of O(ε2) which we

neglect.

3. Optionally, one can then derive the action principle that gives the reduced-order equations

of motion.

In this appendix, we show that this procedure is equivalent to the computational procedure

we use in Chapter 4, in which we apply perturbative field redefinitions directly to the action in

order to obtain an action with no higher-derivative terms. We also show that it is equivalent

to integrating out at tree level the extra degrees of freedom that are associated with the

higher derivative terms.

We note that the analyses of general quintessence models by Weinberg [83] and Park et

al. [86] used a different method of eliminating higher derivative terms. They performed a

reduction of order procedure directly at the level of the action, that is, they substituted the

zeroth-order equations of motion directly into the higher-derivative terms in the action, to

obtain an action with no higher-derivative terms. We will show that this method is not in

general correct; it does not agree with the theory obtained by applying the reduction of order

method to the equations of motion2. However, it differs from the correct result only by field

redefinitions (that do not involve higher derivatives), and so for the purpose of attempting to

classify general theories of quintessence, Weinberg’s method is adequate.

2The reason is that substituting the zeroth-order equations of motion into the action gives
an action which is correct off-shell to O(ε0) and on-shell to O(ε), but it needs to be valid
off-shell to O(ε).
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1 Reduction of Order Method

We start by considering the case of just a scalar field; a more general argument valid for

scalar and tensor fields will be given below. Consider a general action of the form

S =

∫
d4x
√
−g
{
−1

2
(∇φ)2 − U(φ) + εF [φ, (∇φ)2,�φ]

}
, (E.1)

where F is an arbitrary function. We introduce the notation K = (∇φ)2 and L = �φ. We

first show that applying the reduction of order procedure to the equations of motion (steps 1

– 3 above) give rise to a theory of the form (E.1) but with F (φ,K,L) replaced by another

function F̂ (φ,K,L), given by

F̂ (φ,K,L) = F [φ,K,U ′(φ)] + [L− U ′(φ)]F,L[φ,K,U ′(φ)]. (E.2)

To see this, we vary the action (E.1) to obtain the equation of motion

�φ− U ′(φ) + εF,φ − 2ε∇α(F,K∇αφ) + ε�F,L = 0. (E.3)

We now make the field redefinition

ψ = φ+ εF,L[φ, (∇φ)2,�φ]. (E.4)

Rewriting the equation of motion (E.3) in terms of ψ yields

�ψ − U ′(ψ) + εU ′′(ψ)F,L + εF,φ − 2ε∇α(F,K∇αψ) = O(ε2), (E.5)

where the arguments of F,φ, F,L and F,K are now [ψ, (∇ψ)2,�ψ].

We now apply the reduction of order procedure to the equation of motion given by Eqs.

(E.4) and (E.5), that is, we substitute in the zeroth-order equation of motion �ψ = U ′(ψ).

The field redefinition (E.4) gets replaced by the following field redefinition which does not

involve higher derivatives:

ψ = φ+ εF,L[φ, (∇φ)2, U ′(φ)] +O(ε2). (E.6)

150



The equation of motion (E.5) is unchanged, except that the arguments of F,φ, F,L and F,K

are now [ψ, (∇ψ)2, U ′(ψ)]. This equation of motion can be obtained from the action

S =

∫
d4x
√
−g
{
−1

2
(∇ψ)2 − U(ψ) + εF [ψ, (∇ψ)2, U ′(ψ)]

}
. (E.7)

Finally we rewrite this action in terms of φ using the change of variable (E.6). The result is

S =

∫
d4x
√
−g
{
− 1

2
(∇φ)2 − U(φ) + εF [φ, (∇φ)2, U ′(φ)]

+ ε[�φ− U ′(φ)]F,L[φ, (∇φ)2, U ′(φ)]
}
. (E.8)

Note that although this action contains second-order derivatives, the corresponding equations

of motion contain derivatives only up to second order, that is, the theory is no longer a

“higher derivative” theory [97]. The final, reduced-order action (E.8) is of the form (E.2)

claimed above.

The final result (E.8) shows explicitly that the method of reducing order directly in the

action used in Refs. [83, 86] is not correct. Applying this procedure to the action (E.1) would

yield the first three terms in the action (E.8), but not the fourth term.

2 Method of Integrating Out the Additional Fields

We next show that the same result (E.8) can be obtained by integrating out the new degrees

of freedom that are associated with the higher derivative terms. Starting from the action

(E.1), we introduce an auxiliary scalar field ψ and consider the action

S[φ, ψ] =

∫
d4x
√
−g
{
− 1

2
(∇φ)2 − U(φ) + εF [φ, (∇φ)2, ψ]

+ ε(�φ− ψ)F,L[φ, (∇ψ)2, ψ].
}
, (E.9)

The equation of motion for ψ from this action is ψ = �φ, assuming F,LL 6= 0, and substituting

this back into the action (E.9) yields the action (E.1). Thus the two actions are equivalent

classically.
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We now proceed to integrate out the field ψ, at tree level, i.e., classically. The equation of

motion for φ is ψ = U ′(φ) +O(ε), and substituting this back the action (E.9) gives the same

result (E.8) as was obtained from the reduction of order method.

3 Field Redefinition Method

We next turn to a discussion of the method we use to eliminate higher derivative terms in

Section 4.3, using perturbative field redefinitions. That method is not generally applicable,

but when it can be used, it is equivalent to the method of reduction of order (steps 1-3 above),

as we now show. We start with an action of the form (E.1), with the function F chosen to be

of the form

F (φ,K,L) = g(φ,K) + [L− U ′(φ)]h(φ,K,L), (E.10)

for some functions g and h. This is the most general form of F for which the field redefinition

method can be used to eliminate the higher derivatives, and is sufficiently general to encompass

the cases used in the work presented here. First, we apply the reduction of order method.

Inserting the formula (E.10) into Eq. (E.2) shows that the reduced-order action is characterized

by the function F̂ given by

F̂ (φ,K,L) = g(φ,K) + [L− U ′(φ)]h[φ,K,U ′(φ)]. (E.11)

However, the same result is obtained by starting with the action given by Eqs. (E.1) and

(E.10) and performing the field redefinition

φ→ φ+ εh[φ, (∇φ)2, U ′(φ)]− εh[φ, (∇φ)2,�φ]. (E.12)

This shows the reduction of order and field redefinition methods are equivalent.

We now give a more general and abstract argument for the equivalence, valid for any

field content. Suppose we have a theory containing higher-derivative terms in the action,
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proportional to ε. Suppose that we can find a linearized field redefinition, involving higher

derivatives, that has the effect of eliminating all higher derivative terms from the action. We

can then consider this process in reverse: starting from a theory which is not higher derivative,

by making a linearized field redefinition we obtain another theory which has higher derivative

terms, proportional to ε. However, the change in the action induced by the field redefinition

must be proportional to the equations of motion. Hence, these higher derivative terms will

be eliminated by applying Weinberg’s method of substituting the zeroth-order equations of

motion into the O(ε) terms in the action. As we have discussed, Weinberg’s procedure is

valid up to a field redefinition of the type (E.6) which does not change the differential order.
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Appendix F

Comparison with Previous Work

In this appendix we compare our analysis and results in Chapter 4 to those of Park, Watson

and Zurek [86], who perform a similar computation with similar motivation, but obtain a

somewhat different final result [Eq. (1) of their paper]. The main differences that arise are:

• They work throughout in the Jordan frame, whereas we work in the Einstein frame.

This is a minor difference which only affects the appearance of the computations and

results, since it is always possible to translate from one frame to another.

• As discussed in the introduction and in Appendix E, they use Weinberg’s method

of eliminating the higher derivative terms, consisting of substituting the zeroth-order

equations of motion into the higher derivative terms in the action, whereas we use the

field redefinition method. The two methods are not equivalent for a given specific theory

with specific coefficients, but are equivalent for the purpose of determining a general

class of theories.

• After eliminating higher derivative terms, their result is an action [Eq. (5) of their paper]

that contains eleven functions of the scalar field, whereas our corresponding result (4.4.6)

has only nine free functions. However, this is a minor difference: their function Z(φ)

can be eliminated by redefining the scalar field to attain canonical normalization, and

their function f(φ) can be eliminated by the transformation used in step 7 in Section

4.4.I above.
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• Another minor difference is that in their analysis they have in their action a Weyl squared

term ∝ CαβγδC
αβγδ, which is unaffected by any of the transformation they make to the

action. This Weyl squared term gives rise to higher derivative terms in the equation

of motion that are associated with ghost-like additional degrees of freedom [117]. In

our analysis the Weyl squared term is replaced by the Gauss-Bonnet term, which is not

a higher derivative term, because it would be a topological term if it were not for the

φ-dependent prefactor.

• Aside from the above minor differences, our result (4.4.5) is equivalent to the result given

in Eq. (5) of their paper. Two major differences arise subsequently in the estimates of

the scalings for the coefficients of the operators in the Lagrangian.

First, Park et al. use the standard effective theory scaling rule wherein an operator of

dimension 4 + n has a coefficient ∼ Λ−n, where Λ is the cutoff. As discussed in Section

4.5.I above, this corresponds to placing no restrictions on the theory that applies above

the cutoff scale Λ. By contrast, our approach does place restrictions on the physics at

scales above Λ, and yields the modified scaling rule (4.5.5). As a consequence, our cutoff

Λ (which we denote by M in our work) can be taken all the way down to the Hubble

scale H0 ∼ 10−33 eV, whereas their cutoff must be larger than ∼
√
H0mP ∼ 10−3 eV.

Second, Park et al. actually assume separate cutoffs for the gravitational, matter and

scalar sectors of the theory, and estimate how each of their coefficients scale as functions

of these three cutoffs. We do not understand completely their method of derivation of

these scalings, but we do note that some of their scaling estimates are inconsistent with

how the coefficients transform into one another under field redefinitions as discussed in

Section 4.3 above. They then proceed to drop some terms which their scalings indicate

are subdominant, and arrive at a final action [Eq. (1) in their paper] which differs from

ours, being parameterized by three free functions rather than nine.
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Appendix G

Equations of Motion for Reduced

Theory

In this appendix we compute the equations of motion for the final action in Chapter 4, given

by Eq. (4.4.5), with the e1 and e2 terms omitted. We start by using a transformation of the

form (4.3.2) with β̃2 = −2e−2αb2. This yields the action

S =

∫
d4x
√
−g
{
m2
p

2
R− 1

2
(∇φ)2 − U(φ) + a1(∇φ)4 + c1G

µν∇µφ∇νφ

+d3

(
R2 − 4RµνRµν +RµνσρR

µνσρ
)

+ d4ε
µνλρC αβ

µν Cλραβ
}

+ Sm

[
eα(φ)gµν

(
1 + β(∇φ)2

)
, ψm

]
. (G.1)

Here we have defined β = 2e−2αb2; this was denoted β2 in Chapter 4. We have also set ε = 1

for simplicity. The representation (G.1) is more convenient than (4.4.5) for computing the

equations of motion since it avoids varying of the stress-energy tensor.

Next, we vary the matter action in Eq. (G.1) using the definition (0.0.2) of the stress

energy tensor Tµν and the definition (4.2.4) of the Jordan metric ḡµν . This yields

δSm = −1

2

∫
d4x
√
−ge2α

{
δgµν

[
Tµν + 2Tµνβ(∇φ)2 − βT∇µφ∇νφ

]
+δφ

[
−α′T + 2α′βT (∇φ)2 + β′T (∇φ)2 + 2β∇µT∇µφ+ 2βT�φ

]}
. (G.2)
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Combining this with the variation of the gravitational action gives the equations of motion

�φ = U ′(φ)− 1

2
e2αα′T + 4a1

[
(∇φ)2�φ+ 2∇µ∇νφ∇µφ∇νφ

]
+ 3a′1(∇φ)4

+ c′1G
µν∇µφ∇νφ+ 2c1G

µν∇µ∇νφ− d′3
(
R2 − 4RµνRµν +RµνσρR

µνσρ
)

− d′4εµνλρC αβ
µν Cλραβ

+
1

2
e2α
[
2α′βT (∇φ)2 + β′T (∇φ)2 + 2β∇µT∇µφ+ 2βT�φ

]
, (G.3)

and

m2
pGµν = e2αTµν +∇µφ∇νφ−

[
1

2
(∇φ)2 + U(φ)

]
gµν − 4a1(∇φ)2∇µφ∇νφ

+ a1(∇φ)4gµν + gµνc1G
σλ∇σφ∇λφ− 4c1Rσ(µ∇ν)φ∇σφ+ c1Rµν(∇φ)2

+ c1R∇µφ∇νφ− gµν∇σ∇λ(c1∇σφ∇λφ) + gµν�[c1(∇φ)2]

+ 2∇λ∇(µ(c1∇ν)φ∇λφ)−∇µ∇ν [c1(∇φ)2]−�(c1∇µφ∇νφ)

+ 2R∇µ∇νd3 − 2gµνR�d3 + 4Rµν�d3 − 8Rσ
(µ∇ν)∇σd3

+ 4gµνRσρ∇σ∇ρd3 + 4Rρµνσ∇ρ∇σd3 + 16Cµν + 2e2αTµνβ(∇φ)2

− e2αβT∇µφ∇νφ. (G.4)

Here the tensor Cµν comes from the Chern-Simons term, and is defined by

Cµν = (∇σd4)εσλρ(µ∇ρR
ν)
λ + (∇σ∇λd4) R? λ(µν)σ (G.5)

where R? µνσλ = εσλρτRµν
ρτ/2. Note that the zeroth-order terms involving the stress-energy

tensor depend implicitly on β through the expression for the Jordan metric given in Eq.

(G.1).

The terms involving c1 are written in the most compact manner we could find. Although

it looks unlikely, the higher-order derivatives in these terms do cancel; the full expansion of
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these terms is

2c1gµνR
σλ∇σφ∇λφ−

1

2
c1gµνR(∇φ)2 − 4c1Rσ(µ∇ν)φ∇σφ+ c1Rµν(∇φ)2

+ gµν
[
c′1∇σφ∇λφ∇σ∇λφ+ c1∇σ∇λφ∇σ∇λφ− c′1(∇φ)2�φ− c1(�φ)2

]
− 2c1∇σ∇µφ∇σ∇νφ− 2c′1∇σφ∇(µφ∇ν)∇σφ+ c′1∇µ∇νφ(∇φ)2 + c′1∇µφ∇νφ�φ

+ 2c1∇µ∇νφ�φ+ 2c1∇λφ∇σφRσµνλ + c1R∇µφ∇νφ. (G.6)
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Appendix H

Scaling of Coefficients Obtained by

Integrating Out

Pseudo-Nambu-Goldstone Fields

In this appendix we give some more details of the derivation discussed in Section 4.5.I of the

scaling of the coefficients of the operators in the Lagrangian. We divide the pNGB fields ΦA

into two groups, a set χa with mass ∼ H0 and a set ψΓ with mass ∼M , where M � H0:

ΦA = (χa, ψΓ). (H.1)

We assume an action for these fields of the form

S =

∫
d4x
√
−g
{

1

2
R− 1

2
qAB(ΦA)∇µΦA∇νΦ

Bgµν −H2
0V

(
χa,

M

H0

ψΓ

)}
. (H.2)

This is the same as the action (4.5.3) of Section 4.5.I above, except that an extra factor has

been inserted into the potential to make the ψΓ fields have mass ∼M rather than ∼ H0, and

we have specialized to units where mP = 1. We assume that the target space coordinates

have been chosen so that the potential is minimized at ψΓ = 0, i.e.

V,Γ = 0 (H.3)

at ψΓ = 0.

We now want to let M become large and integrate out the fields ψΓ at tree level. This can
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be done by using Feynman diagrams and using power counting1, as in Ref. [84]. Alternatively

and more simply, it can be done by writing out the equations of motion for the fields ψΓ and

invoking an adiabatic approximation. At zeroth order in 1/M , the theory obtained for the

fields χa is a nonlinear sigma model where the potential is just the potential of the action

(H.2) evaluated on the surface ψΓ = 0, and the target space metric is just the metric induced

on the surface from the metric qAB.

To obtain the higher-order corrections we can proceed as follows. The equation of motion

for the fields ψΓ is

�ψΣ + ΓΣ
ab
~∇χa · ~∇χb + ΓΣ

ΘΥ
~∇ψΘ · ~∇ψΥ + 2ΓΣ

aΘ
~∇χa · ~∇ψΘ

= H2
0q

ΣaV,a +H0MqΣΘV,Θ. (H.4)

Here the connection coefficients are those of the target space metric qAB. We next expand

this equation to linear order in ψΓ and use the condition (H.3) to obtain

�ψΣ +
[
ΓΣ
ab,Θ

~∇χa · ~∇χb −H2
0q

Σa
,ΘV,a −M2qΣΥV,ΥΘ

]
ψΘ

+2ΓΣ
aΘ
~∇χa · ~∇ψΘ = −ΓΣ

ab
~∇χa · ~∇χb +H2

0q
ΣaV,a, (H.5)

where all the metric coefficients, connection coefficients and their derivatives are evaluated

at ψΓ = 0. Now in the large M or adiabatic limit, the dominant term on the left hand side

will be the term proportional to M2, and dropping the other terms gives a simple algebraic

equation for the leading order contribution to ψΓ:

[
qΣΥV,ΥΘ

]
ψΘ =

1

M2

[
ΓΣ
ab
~∇χa · ~∇χb −H2

0q
ΣaV,a

]
. (H.6)

Substituting the solution given by Eq. (H.6) into the action (H.2) gives the required, O(1/M2)

corrections to the action. The first term on the right hand side of Eq. (H.6) will give nonlinear

1We note that Burgess et al. [84] write down a scaling rule in their Eqs. (2.3) and (2.5)
which is identical to our scaling rule (4.5.5) except that it is suppressed by an overall factor
of M2/m2

P for d > 2, where d is the number of derivatives. They say in their footnote 2 that
this rule comes from integrating out a pNGB field of mass M . However we find that the
detailed power counting calculations given in the second example in their Section 2.2 actually
yield our scaling rule rather than theirs.
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corrections to the kinetic energy. (We assume that the second fundamental form or extrinsic

curvature of the surface ψΓ = 0 is nonzero, otherwise these corrections would vanish.)

As a simple example, consider the theory

L = −1

2
(∇χ)2 − 1

2
(∇ψ)2 − 1

2
M2ψ2 + ψ(∇χ)2/mP . (H.7)

The equation of motion for ψ is �ψ −M2ψ = (∇χ)2/mP with leading order solution ψ =

−(∇χ)2/(mPM
2). The corresponding corrections to the action for χ scale as (∇χ)4/(m2

PM
2),

in agreement with Eq. (4.5.5). The scaling (4.5.5) of other operators can be derived similarly.
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