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The Standard Model of particle physics, formulated in the 1970s, has been tremendously

successful in explaining almost all experimental results from high-energy colliders. Never-

theless, there are both theoretical and experimental reasons to look for a more fundamental

description of nature. With the Large Hadron Collider finally being online and delivering

data, we might soon be in a position to fathom the solutions to some of the most fundamen-

tal questions in our field, first and foremost the nature of electroweak symmetry breaking

and the solution to the hierarchy problem.

The research presented in this thesis represents the author’s contribution to the ongoing

theoretical effort to develop theories beyond the Standard Model, as well as new methods of

extracting information about the Lagrangian from experimental data.

We start by developing a realistic quark sector for Higgsless Randall-Sundrum models,

which show that this novel way of breaking the electroweak symmetry can be brought into

agreement with highly constraining data on flavor violating interactions. We then move on to

models involving supersymmetry, and construct a model of metastable SUSY-breaking that

avoids several problems that traditionally plague models of Direct Gauge Mediation: low

gaugino masses and loss of perturbative gauge coupling unification. Finally, we propose new

experimental measurements which could provide a non-trivial consistency check that SUSY

solves the hierarchy problem, and show for the first time how the family of MT2 kinematic

variables can be used in the presence of large combinatorics background.
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INTRODUCTION
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1.1 Opening Remarks

There are two main motivations for the research contained in this Ph.D. thesis. The first is to

contribute to the ongoing theoretical effort aimed at developing new models to (conceivably)

describe nature. These new frameworks have to be consistent with current experimental

data while improving on some of the shortcomings suffered by the Standard Model (SM) of

particle physics. The second motivation lies on the interface between theory and experiment,

and deals with the question of how to extract information about the basic particle masses and

interactions from experimental data. This is especially pertinent now that the CERN Large

Hadron Collider (LHC) has started taking data, and improving our methods of analysis and

model discrimination will be a major focus in our field for the foreseeable future.

We begin in this chapter with a brief introduction to the subject by first considering

its history and summing up the current state of affairs, before moving on to outline the

most pertinent theoretical challenges we aim to resolve in the near future. The next two

chapters will be devoted to outlining two model-building developments brought forth by the

author (and collaborators), one involving extra dimensions in Chapter 2 and one involving

supersymmetry in Chapter 3. Chapter 4 (also in collaboration) introduces a new potential

way to verify whether supersymmetry is realized in nature, and outlines how the associated

experimental measurements might be performed.

1.2 Historical Perspective

The field of particle physics in its modern form can trace its origins to the development

of quantum field theory (QFT) in the 1920’s, which was developed in an effort to formu-
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late a quantum mechanical description of electrodynamics that was compatible with special

relativity. There were three main motivations for such an endeavor:

1. The desire to describe processes where the number of particles changes, e.g. a transition

of an excited electron to a lower energy level via the emission of a photon;

2. proper treatment of the electromagnetic field would have to combine quantum mechan-

ics with special relativity, since classical electromagnetism is already Lorentz invariant;

3. finally, there was a need to handle the statistics of many-body systems, which required

treating particles differently based on their spin.

These (initial) challenges were addressed during the period of 1925 - 1933 by the pioneers of

modern physics, including Werner Heisenberg, Max Born, Pascal Jordan, Erwin Schrödinger,

Paul Dirac, Niels Bohr and Wolfgang Pauli. In quantum field theory, a field is associated

with each species of particle. The field has an infinite set of internal degrees of freedom,

represented as harmonic oscillators that can be canonically quantized – a process called

second quantization. Particles are regarded as excitations in their respective fields, making

non-conservation of particle number natural, and the fields transform under Lorentz trans-

formation as predicted by special relativity and classical electrodynamics. The creation and

annihilation operators of particles with even spin (bosons) commute, while those of odd spin

(fermions) anti-commute, reproducing the correct many-body statistics. Interactions were

included by perturbing around the known exact solutions of a free field theory, using the

small electron-photon coupling as an expansion parameter. All this lead to the success-

ful formulation of Quantum Electrodynamics (QED), a relativistic quantum field theory of

the electromagnetic field with fermionic charges that correctly described many nontrivial

processes at lowest order in perturbation theory.
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The period of the 1930s and 1940s that followed was a time of crisis for quantum field the-

ory. Calculations beyond leading order revealed infinities and seemingly nonsensical results

for physically relevant quantities like the energy shift of electron states in the presence of

an external electromagnetic field. These seeming inconsistencies lead some people to believe

that quantum mechanics could never be reconciled with special relativity. Furthermore, more

precise experimental measurements soon revealed discrepancies between the (first-order) pre-

dictions of QED and the observed energy levels of the hydrogen atom (Lamb shift & magnetic

moment of the electron).

The first hint at the missing piece of the puzzle was supplied by Hans Bethe in 1947,

when he computed the Lamb Shift of the hydrogen atom by absorbing the infinities in QED

into the parameters of the Lagrangian, fixing the observed mass and charge of the electron to

the experimental values. This intuition allowed Tomonaga, Schwinger, Dyson and Feynman

to formulate QED in a fully consistent and covariant manner, whereby the infinities were

absorbed into the ‘bare’ parameters of the Lagrangian, which in themselves, it was realized,

were not physically meaningful. Feynman also developed his famous diagrammatic method of

computing QFT amplitudes to any order in perturbation theory, which remains an invaluable

computational and conceptual tool to this day. By the late 1950’s QED was fully developed

and understood, with high-order calculations producing experimental predictions of stunning

precision.

QED was the first and simplest example of a fully understood and consistent quantum

field theory that describes a part of nature. Its formulation lay the groundwork for the

advances of the next two decades, which culminated in the formulation of the Standard

Model of particle physics.
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Weyl, Fock and London expressed QED as a U(1) gauge theory in the 1940’s. This

involved extending the global U(1) charge symmetry to a local symmetry with a position-

depend transformation parameter. To ensure that the Lagrangian remained invariant under

such an extended symmetry transformation, gauge fields had to be introduced, which cor-

respond to the electromagnetic field with photons as their discrete quanta. This framework

was generalized to non-abelian gauge groups like SU(2) by Chen Ning Yang and Robert Mills

in 1954, in an attempt to describe the strong interactions holding nuclei together. This was

unsuccessful, because the predicted long-range forces were not seen in experiments, but with

the discovery by Nambu, Goldstone and Jona-Lasinio in the early 1960’s that spontaneous

symmetry breaking can give mass to massless particles, Yang-Mills theory experienced a

surge in interest which ultimately led to the successful formulation of the electroweak and

strong sectors of the Standard Model.

The massless particles predicted by spontaneous symmetry breaking were not observed

in nature, with the exception of the light (though not massless) pions which could be seen

as the Nambu-Goldstone bosons of an approximate flavor symmetry of the quarks. In 1964

the generalization of spontaneous symmetry breaking to gauge symmetries was proposed by

several people, most famously Anderson and Higgs. This allowed massless gauge bosons

to acquire a mass by ‘eating’ the Nambbu-Goldstone boson of the broken gauge symmetry

to acquire the additional degree of freedom necessary to self-consistently describe massive

vectors.

Weak interactions, which are responsible for radioactive decay, were described via an

effective 4-fermion contact interaction by Fermi in the 1930s. The structure of the coupling

hinted at the possibility of a massive particle acting as the mediator of the interaction, and

in 1967 Salem, Glashow and Weinberg formulated their model of electroweak interactions

where electromagnetic and weak forces were unified into a single SU(2)×U(1) gauge theory.
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The gauge symmetry is broken by the vacuum expectation value (VEV) of a scalar, known

as the Higgs Field, to the diagonal U(1)em subgroup. This produces the massless photon

as well as the massive W±, Z bosons, accounting for the weakness of weak interactions at

low energies. By coupling the fermions to the Higgs via Yukawa interactions, the model also

provides a self-consistent mechanism for generating the masses and mixings of quarks and

leptons. The theory was validated in experimental measurements of neutral currents in 1973

by the Gargamelle bubble chamber experiment and the discovery of the W and Z bosons at

the UA1, UA2 detectors of the CERN Super Proton Synchrotron in 1983.

A somewhat different set of challenges had to be overcome to develop an understanding

of strong interactions, though of course there is much theoretical overlap with the ideas

necessary for formulating the electroweak sector. A bewildering multitude of hadrons and

mesons was observed in the 50’s and 60’s, and some way of understanding this zoology

was needed. In 1963 Gell-Mann and Ne’eman proposed the eightfold way of organizing the

hadrons into representations of SU(3). Later that year, Gell-Man and Zweig recognised that

this structure could emerge if the observed hadrons were made up of three light particles

transforming as a vector under that flavor symmetry: the up-, down- and strange-quarks.

This insight shed light onto the global symmetries of the particles participating in strong

interactions (though the picture was necessarily incomplete, lacking the then unknown three

heavier quarks which are now part of the Standard Model). However, it became clear that

an additional quantum number was needed to avoid a conflict with the Pauli exclusion

principle, and in 1965 Han, Nambu and Greenberg proposed what became the theory of

Quantum Chromodynamics (QCD), the idea that quarks are also charged under an SU(3)

gauge degree of freedom called color. This gauge symmetry would have to correspond to a

color-force holding the quarks together in tight bound states, and the view of quarks as real,

physical objects confined in hadrons was confirmed in deep inelastic scattering experiments
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at SLAC in 1969.

The final ingredient was the discovery of asymptotic freedom by Gross, Wilczek and

Politzer in 1973. They realized that the interactions of QCD (and indeed, many kinds of

conceivable gauge theories) become weaker at smaller distance scales. This allowed per-

turbative calculations to make relatively precise predictions for the behavior of QCD at

high-energy experiments, which were confirmed at PETRA and LEP. Asymptotic Freedom

also goes some way towards explaining, or at least making plausible, the puzzling confining

behavior of the strong force which seemed unique to QCD. At low energies, QCD becomes

so strong that its force lines become confined to flux tubes, binding quarks into tight bound

states. This idea explained the absence of any observed solitary quarks with their fractional

electric charges, since separating a single quark out of a bound state would require so much

energy that the snapping flux tube created a quark-anti-quark pair, creating two bound

states and never leaving a single quark to stand alone.

What we know today as the Standard Model is the assemblage of all these components

completed by the mid-1970s. The electroweak interactions and fermion masses are explained

by GWS theory, displaying spontaneous symmetry breaking via the Higgs mechanism, and

QCD with its asymptotic freedom and confining behavior accounts for the strong interactions.

The Standard Model stands to this day as a theoretical triumph that stood up to (almost)

all experimental enquiry (much to the chagrin of later generations of hungry theorists).

1.3 The Standard Model

This section is only meant to give the most cursory summary of the Standard Model’s key

features, to remind the reader of the details we need for the discussion of the research in this

7



thesis. More details can be found in many graduate-level particle physics and quantum field

theory textbooks such as [2], and reviews such as [3].

The Standard Model is an SU(3)c × SU(2)L × U(1)Y anomaly-free gauge theory with

gauge couplings gs, g, g
′ respectively and the following particle content:

leptons

quarks

Higgs

SU(3)c SU(2)L U(1)Y

Ei
L = (νe, eL) 1 −1

2

eiR 1 1 −1

Qi
L = (uL, dL) 1

6

uiR 1 2
3

diR 1 −1
3

φ 1 1
2

(1.3.1)

Here i = 1, 2, 3 is the generation index, and accounts for the fact that the SM particles come

in three generations or flavors. Different flavors of the same particle have identical gauge

interactions, but different Yukawa couplings to the Higgs:

Lyuk = −λeijE
i

L · φe
j
R − λ

d
ijQ

i

L · φd
j
R − λ

u
ijε

abQ
i

Laφ
†
bu
j
T + h.c. (1.3.2)

(a, b are SU(2)Y indices). There is also a Higgs potential,

LHiggs = −V (φ), V (φ) = −µ2|φ|2 +
λ

2
|φ|4, (1.3.3)

which generates a nonzero vacuum expectation value for the Higgs. Up to unitary rotations,

this is

〈φ〉 =
1√
2

 0

v

 with v =
µ√
λ
. (1.3.4)

This breaks electroweak symmetry breaking SU(2)L ×U(1)Y → U(1)em, which is generated

by Q = T 3 + Y , with T 3 being the diagonal SU(2)L generator.. The W± gauge bosons are

associated with the non-diagonal generators T± = T 1±iT 2 of SU(2)Y . The neutral Z0 boson
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is associated with T 3 − Y , while Q corresponds to the massless photon. The electroweak

gauge couplings of the fermions can then be expressed in the covariant derivative

Dµ = ∂µ − i
g√
2

(W+
µ T

+ +W−
µ T

−)− i g

cos θw
Zµ(T 3 − sin2 θwQ)− ieAuQ, (1.3.5)

where sin2 θw = g′2/(g2 + g′2) and is measured to be ≈ 0.23. In terms of the electromagnetic

coupling constant, g = e/ sin θw, and mW = mZ cos θw ≈ 80.4 GeV.

When the Higgs condenses, the Yukawa couplings to the fermions generate mass terms.

Given arbitrary Yukawa couplings as per eq. (1.3.2), one can diagonalize both the quark and

lepton mass matrices with unitary rotations, which makes the W± interactions to the quarks

non-diagonal. This is described by the Cabibbo-Kobayashi-Maskawa (CKM) matrix VCKM

in the current coupling to the W±:

Jµ+ =
1√
2
uiLγ

µV ij
CKMd

j
L. (1.3.6)

This leads to quark mixing via charge-changing interactions, or flavor-changing charged

currents (FCCC). There are no flavor-changing neutral currents (FCNC) in the Standard

Model. This is referred to as the Glashow-Iliopoulos-Maiani (GIM) mechanism.

The SU(3)c interaction becomes strong at the scale ΛQCD ∼ GeV. At energies lower

than ΛQCD, quarks become confined in bound states. Neutrons and Protons are the only

stable such states, but there is a rich spectrum of unstable mesons and baryons.

The gauge theories and particle content of the Standard Model result in a number of acci-

dental exact symmetries, which have important experimental consequences. Baryon number

as a whole is conserved, though the number of quarks of each generation are not separately

conserved. Not so for the leptons: the absence of a right-handed neutrino forbids any mixing

amongst the leptons, and leads to exact electron-, muon- and tau-number conservation.

The Standard Model has been tremendously successful in its agreement with experimental
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data. 19 free parameters are required to completely define the model, and the number

of separate experimental measurements that agree with the Standard Model predictions

far exceeds that number. The table of predicted SM particles has been filled out by the

discoveries of the τ lepton, W and Z bosons and the bottom and top quarks. The only

particle not yet observed is the Higgs. Precision data from the LEP and Tevatron colliders

verified the SM predictions for electroweak precision observables. Flavor physics experiments

at high-intensity low-energy colliders like charm- and B-factories show that the physics of

quark masses and mixings are in excellent agreement with SM predictions and the unitarity

of the CKM matrix, and lattice calculations are starting to produce sufficiently accurate

predictions for non-perturbative observables to start being competitive with experimental

measurements.

Nevertheless, we know that the Standard Model cannot be the complete description of

the physics governing the universe. There are two main contradicting experimental results.

• Various cosmological and astrophysical observations constrain the (current) make-up

of the universe to be 72% Dark Energy, 23% Dark Matter and only about 5% ordinary

atoms. The Standard Model only explains the last component. Dark Energy is some-

thing completely unknown, whereas Dark Matter could be interpreted as a massive

neutral particle that only interacts with ordinary matter gravitationally. While such a

particle can be incorporated into a theory in various ways, it is definitely not part of

the Standard Model.

• The observation of neutrino oscillations prove that neutrinos have mass, which is not

possible in the Standard Model.

In addition to concrete evidence, there are various theoretical considerations that lead one

to believe that there is a more general theory describing the universe, of which the Standard
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Model is merely a low-energy description valid up to about the electroweak scale. The most

important issues are:

• The Hierarchy Problem. The mass of elementary scalars are not stable with respect to

high-energy quantum corrections. In order to obtain a Higgs VEV near the electroweak

scale, the parameters of the Lagrangian at the Planck Scale, the fundamental energy

scale of gravity, would have to be tuned to one part in about 1032. Another way of

stating the problem is by asking why gravity is so weak compared to the other forces

of nature. Clearly the fine-tuning is unsatisfactory, and begs a more fundamental

explanation.

• The Flavor Problem. The Standard Model provides no explanation for the large range

of quark and lepton masses observed, which spans 5 orders of magnitude (not counting

neutrinos, which increase the hierarchy significantly). The Yukawa couplings are merely

inputs determined from data.

• Matter-Antimatter Asymmetry. The Standard Model has two sources of CP-violation.

One is the strong CP-angle discussed below, and the other is one phase in the CKM

matrix. However, this is by far insufficient to account for the large amount of matter

in the universe today, if we assume that there were equal amounts of matter and anti-

matter at the time of the Big Bang. In the absence of extremely fine-tuned initial

conditions, the Standard Model must be extended with additional mechanisms of CP-

violation

• The Strong-CP Problem. On a related note, it is very puzzling that the theoretically

allowed CP-violating parameter in QCD is zero, or so close to zero that we cannot tell

the difference.

• Gravity. This is the most fundamental problem. Quantum Field Theory appears to

be unable to provide us with a quantum-mechanical description of gravity that is both
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well-defined at high energy scales and Lorentz-invariant. The unification of quantum

mechanics with special relativity was achieved with quantum field theory, but to have

any hope of formulating a true “theory of everything” that describes all the known

forces in nature including gravity, we need to achieve unification with general relativity

as well.

The Standard Model in many ways can be called the crowning achievement of funda-

mental physics in the late 20thcentury, but its shortcomings are as obvious as its many

successes. Even so, these successes greatly constrains any model for physics beyond the

Standard Model that we might want to propose. Any new theory must not only fix some of

the above-mentioned problems, but also agree with the huge wealth of existing experimental

data that is so well explained by the Standard Model.

1.4 The LHC Era

The half-century between the 1920s and the formulation of the Standard Model was a time

of rapid theoretical progress, culminating in an almost complete description of all the basic

particle physics we observe today. In the four decades since then, theorists and experimental-

ists have been busy verifying countless predictions of the Standard Model and finding almost

universal agreement. This achievement is to be celebrated, but in some sense it is also a

cause for frustration. We have already outlined why we are sure that the Standard Model is

only an effective low-energy description of a much more complete and theoretically satisfying

theory, and there are some pieces of experimental evidence that unequivocally point towards

some kind of physics beyond the Standard Model (BSM). But beyond that there have been

precious few clues for what exactly that BSM physics might look like. This is about to

change. After 50 years of formulating the Standard Model and 40 years of verifying it, we
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are finally ready to move beyond it. This is the start of the LHC era.

The research contained in this Ph.D. thesis was produced in this context. History has

shown that new insight is always produced when experimental measurements probe some

new regime, and old theories that worked well on some scale are recognized as approximations

that are replaced by more complete descriptions at a more fundamental scale. We are about

to peel back the next layer of the onion, which is why the author chose to focus his theoretical

efforts on the TeV scale and the solution of the Hierarchy Problem.

Theoretical research at the TeV scale can be roughly divided into three categories, though

there is plenty of overlap. They range from the purely theoretical construction of new models,

to the phenomenological investigation into observable consequences of these theories to the

more practical aspects of collider physics, which is concerned with new methods of extracting

information about the Lagrangian from experimental data. To take full advantage of the

opportunities presented by the LHC, one must proceed on all three fronts.

The Hierarchy Problem has been known since the formulation of the Standard Model,

and a number of theoretical solutions have been proposed since then. The perhaps most

notable ones are

1. supersymmetry (SUSY),

2. extra dimensions,

3. strongly coupled new physics.

The next chapter will outline some ideas along the lines of extra dimensions, which can be

related to the third option via the AdS/CFT Correspondence. The subsequent chapters fall

within the SUSY-paradigm. Before moving on, let us briefly review some of the basics of

these ideas.
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Supersymmetry1

In 1967, Coleman and Mandula proved a ‘no-go’ theorem [6] which stated that the only

symmetries of the scattering matrix consistent with the Poincaré symmetries was a product

of the Paincare’ symmetry and internal symmetry groups. This restriction only applied to

symmetries with commuting generators. In the early 1970s, new nontrivial symmetry called

supersymmetry relating bosons and fermions was formulated by a few people, amongst them

Golfand and Likhtman [7]. The supersymmetry generators are fermionic instead of bosonic

and they anticommute, circumventing the restrictions of the original Coleman-Mandula the-

orem, and 1975 Haag et. al showed that SUSY is the only possible extension of the Poincaré

Algebra [8].

The simplest realization of supersymmetryin 4 dimensions (and by far the most useful

phenomenologically) is N = 1 SUSY with a single set of fermionic generators Qα, Q
†
α̇ which

commute with the usual Poincaré generators and obey the anticommutation relations

{Q,Q} = 0, {Q†, Q†} = 0, {Qα, Q
†
α̇} = 2σµαα̇Pmu, (1.4.7)

where σµαα̇ = (1, σi) and σi are the usual Pauli matrices. Fermions and Bosons fall into

complete SUSY-representations, most commonly chiral multiplets consisting of one Weyl

fermion and one complex scalar, and vector multiplets consisting of one massless vector and

one Weyl fermion.

SUSY is incredibly attractive because it allows for a natural solution to the hierarchy

problem. The existence of opposite-spin superpartners for all the known Standard Model

particles cancels out the divergent contributions to the Higgs mass, stabilizing the weak scale

against quantum corrections. The fact that superpartners have not already been observed

implies that SUSY is a broken symmetry, and to solve the hierarchy problem it has to be

restored at or just above the weak scale. This means the LHC should discover superpartners

1There are many great textbooks on supersymmetry, for example [4] and [5].
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if SUSY resolves the hierarchy problem. Supersymmetry is also a requirement for the formu-

lation of String Theory, which is currently the only known self-consistent theory of quantum

gravity.

The minimal supersymmetric extension to the Standard Model (MSSM) was written

down by Georgi and Dimopoulos in 1981 [9]. It contains a number of extremely desirable

features:

• stabilization of the electroweak scale against quantum corrections,

• unification of the strong and electroweak forces into a single SU(5) Grand Unified

Theory (GUT) [10] at a scale MGUT ∼ 1016 GeV.

• a natural dark matter candidate in the form of the lightest superpartner, the Lightest

Supersymmetric Particle (LSP), which has to be stable with mass around the weak

scale, consistent with the ‘WIMP-miracle’ of dark matter.

The MSSM (and its non-minimal cousins) in itself says nothing about how SUSY is

broken, instead parameterizing SUSY-breaking effects in an agnostic way via the inclusion of

soft terms. This leads to a large number of free parameters ( 100), which must be determined

from experiment and ideally explained by a theory of SUSY-breaking.

We know that SUSY breaking must take place in a different sector than the MSSM,

with breaking effects communicated via non-renormalizable interactions (otherwise there

would exist a superpartner that is lighter than its Standard Model counterpart). This leaves

two fundamental questions that must be addressed: how is SUSY broken, and how is that

breaking mediated to the supersymmetric Standard Model? Several options have been pro-

posed, amongst them gravity mediation, gauge mediation, gaugino mediation and anomaly

mediation. We will work with gauge mediation in Chapter 3.
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Another important question is how SUSY might be discovered and verified at a hadron

collider like the LHC, and how we could determine the masses and mixings of the super-

partners. The research presented in Chapter 4 attempts to make some headway in this

direction.

Extra Dimensions2

There is ample motivation to consider the existence of extra dimensions beyond the 3 + 1

we see around us. Like supersymmetry, their existence is required by String Theory. They

also offer a compelling way to solve the Hierarchy Problem that is fundamentally different

from supersymmetry. Finally, via the AdS/CFT correspondence models with warped extra

dimensions can be shown to be dual to certain Technicolor theories, providing us with a

way to obtain new results in strongly coupled theories that were calculationally inaccessible

previously.

One possible incarnation is the ADD model [11]. It postulates the existence of one or more

‘large’ additional dimensions through which gravity is free to propagate, while the SM fields

are confined to 3+1 dimensional branes. The extra dimensions are rolled up in some way, or

‘compactified’, so that the world appears 4-dimensional at large scales, with gravity much

weaker than the other forces. Below the compactification scale, the power law of gravity takes

on its fundamental higher-dimensional form. This allows the fundamental scale of gravity to

be much lower than the Planck Scale, meaning gravity becomes comparable in strength to

the other forces at small scales, only appearing weak at large scales. This elegant solution

of the hierarchy problem postulates a single ∼ mm-size extra dimension, with the required

size becoming smaller the more dimensions are added. Like any theory with additional

dimensions, the ADD model features a Kaluza-Klein (KK) spectrum for fields in the bulk,

in this case the graviton, but the large size of the extra dimension means the KK-spectrum

2Many reviews exist in the literature, one example being [14]
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would be almost continuous, and all the modes would only be extremely weakly coupled

to SM particles via gravitational interactions. By making the fundamental scale of gravity

accessible at colliders this model might put string theory within experimental reach, but this

also produces problems, for example unsuppressed TeV-scale gravity mediated operators for

proton decay, flavor violation and CP violation, though some of this might be ameliorated

in the split-fermion scenario. Recent LHC data severely constrains this model [12].

Another scenario that has received a lot of attention in the last decade is the Randall-

Sundrum (RS) Model [13]. Models with a flat extra dimensions ignore the backreaction of

gravity to the presence of the branes themselves, which is a good approximation if the branes

have small tensions. If instead we consider flat 4D branes with large tension along a single

extra dimension compactified on an interval or the S2/Z orbifold, solving the 5D Einstein

gravity action yields the metric

ds2 = e−2k|y|dxµdxνηµν − dy2, (1.4.8)

where ηµν is the flat 4D Minkowski metric and e−2k|y| is called the warp factor. If we place

a positive tension brane at y = 0 (gravity brane or UV brane) and a negative tension

brane at y = b (TeV brane or IR brane), then the 4D metric at a fixed point y along the

extra dimension is e−2k|y|ηµν . This means that the same coordinate distance on a 4D brane

corresponds to a larger and larger physical distance the further we move down the extra

dimension towards the negative tension brane. By the same token, a mass scale v near

the positive tension brane is warped down to e−2kbv on the negative tension brane. It is

this mechanism which allows for another solution to the hierarchy problem: the bare Higgs

VEV may well be v ∼ M∗, where M∗ is the 5D Planck scale, but if the Higgs is localized

on the negative tension brane its effective 4D-VEV will be veff = e−2kbv ∼ TeV. On the

other hand, the effective 4D Planck constant is almost unaffected by the warping, since the

graviton zero-mode is localized in the bulk near the positive-tension brane. In this picture,
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the reason for the weakness of gravity in the 4D effective theory compared to the other forces

is the localization of the graviton zero mode near the positive tension brane, giving it a small

exponential overlap with the negative tension brane.

If gauge fields are allowed to propagate in the bulk, their zero mode (which acquires a

mass from the Higgs VEV on the IR brane) will be (almost) flat along the extra dimension.

Allowing fermions to propagate in the bulk ameliorates problems with gravity-mediated

TeV-scale flavor-violating operators on the IR-brane, while also providing a very elegant

mechanism for generating large mass hierarchies: changing the bulk masses of the fermions

by O(1) factors changes their localization along the extra dimension, and exponentially

affects their overlap with the TeV-brane, where the zero modes get a mass via overlap with

the Higgs. Relatively small differences in bulk masses amongst the different generations of

fermions can thus account for the large hierarchy of masses and mixings observed amongst

quarks and leptons, while also suppressing flavor-changing neutral currents. This is called

the RS-GIM mechanism, in reference to the SM GIM mechanism which forbids FCNCs at

tree-level, though the RS version is not quite as effective at suppressing dangerous flavor-

violation. The KK-spectrum of RS-models is very different from ADD models. The extra

dimension in RS is much smaller than in ADD, making KK-modes much heavier ∼ TeV.

All KK-modes, including the graviton, are localized near the IR brane and couple with

electroweak-strength, making individual modes detectable at the LHC.

An interesting variety of the RS idea are Higgsless models. RS models suffer of a little

hierarchy problem, since the Higgs VEV is ∼ O(100GeV) compared to the TeV-scale of the

IR-brane, leading to a ∼ 1% fine tuning. One possible way to ameliorate this problem is by

letting the Higgs vev be comparable to the IR-brane-scale, which leads to very different phe-

nomenology. The Higgs decouples from the low-energy theory, WW -scattering is unitarized

by exchange of KK-modes and electroweak symmetry breaking effectively takes place via the
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boundary conditions for the electroweak gauge fields. Higgsless scenarios are also interesting

to consider to prepare for the eventuality that we might not see a Higgs at the LHC, which

is why this alternative mechanism of electroweak symmetry breaking will be the subject of

the next chapter.
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CHAPTER 2

A REALISTIC QUARK SECTOR FOR HIGGSLESS RS MODELS

Based on the 2009 article “A Flavor Protection for Warped Higgsless Models”, written in

collaboration with Csaba Csáki and published in Phys.Rev. D80 (2009) 015027.
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2.1 Introduction

The standard model Higgs mechanism provides ample motivation to come up with alter-

natives. As we have outlined towards the end of Chapter 1, an interesting new possibility

is provided by Higgsless models [15–19] with a warped extra dimension [13]. A Higgs field

localized on the IR brane of an RS background is decoupled by taking its VEV to be very

large, while the masses of the W and Z bosons remain finite and are set by the size of the

extra dimension. Unitarity of the gauge boson scattering amplitudes can then be ensured

via heavy KK gauge boson exchange. Such models would solve the little hierarchy problem

of Randall-Sundrum setups and have very distinctive phenomenological consequences. How-

ever, it is not clear whether these Higgsless RS models can be made completely viable: a

large correction to the S parameter makes it difficult to match electroweak precision data,

the cutoff scale has to be adequately raised to ensure unitarization happens at weak coupling,

and generically FCNC’s are not adequately suppressed. Many of these initial difficulties have

been at least partially addressed. One can tune the effective S-parameter away by making

the fermion left-handed fermion wave functions close to flat [20], and choosing the right

fermion representations can prevent the large top mass from introducing coupling deviations

in the Zbb-vertex [21, 22]. The cutoff scale can also be raised by lowering the curvature of

the extra dimension [20]. However, once the fermion wave functions are required to be close

to flat, the traditional anarchic RS approach to flavor [23–27] (where fermion wave function

overlaps generate fermion mass hierarchies and also give a protection called RS-GIM against

FCNC’s [25]) can no longer be applied. A possible resolution to this problem is to introduce

a genuine five-dimensional GIM mechanism, which uses bulk symmetries to suppress flavor

violation [28]. The trick is to impose global flavor symmetries on the bulk, with a large

subgroup left unbroken on the IR brane and flavor mixing forbidden anywhere except the
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UV brane. One can then construct a model where tree-level FCNC’s are genuinely vanish-

ing, with the downside that we are no longer trying to explain the quark mass and mixing

hierarchies, merely accommodating them.

The aim of this chapter is to examine the flavor bounds (similar to [29, 30] on Higgsless

models and to present a viable flavor construction for these theories (see [31, 32] for other

examples in an RS context). We have to circumvent the problems usually associated with

Higgsless models by ensuring that

• all FCNCs are sufficiently suppressed,

• all tree-level electroweak precision constraints are satisfied,

• the cutoff scale is sufficiently high.

We show that the simplest versions of such a model cannot be realistic: imposing an exact

GIM mechanism for all three generations either drives up the cutoff scale or prevents the

S-parameter from being cancelled. Instead, the realistic flavor model we propose will have

next-to minimal flavor violation (NMFV) [28], featuring a custodially protected quark rep-

resentation for the third generation, and an exact GIM mechanism implemented for the first

two generations only. This choice of representations allows us to isolate the lighter quarks

from the dangerous top mass and prevent a large S-parameter without having to increase the

bulk coupling and decrease the cutoff scale. Flavor-changing neutral currents are controlled

by two main mechanisms:

1. The surviving flavor symmetry between the first two generations forces all the mixing

to go through the third generation (hence NMFV), which is vital to reduce D and K

mixing.

2. Kinetic mixing terms on the UV confine the right-handed fermions to the UV brane

and reduce bulk contributions to the couplings, which are the source of off-diagonal
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neutral couplings. This results in an RS-GIM-like flavor suppression mechanism for

the right-handed fermions.

We also have some freedom to distribute the required charged-current mixing amongst the

up- and down-sectors, which reduces neutral-current mixing in each sector. All of this is

necessary to sufficiently suppress flavor violation. We find that experimental FCNC bounds

systematically constrain the down-sector mixing angles, forcing them to lie within a volume

of angle space that is enclosed by a well-defined surface. Assuming the UV kinetic mixing

terms obey a Cabibbo-type mixing hierarchy, this volume occupies ∼ O(5%) of available

angle space.

This chapter is structured as follows: in Section 2.2 we review the 5D GIM mechanism

and introduce the quark representations we will be using. In Section 2.3 we outline our

NMFV quark model and show compliance with electroweak precision data (EWPD). We

also examine in detail the errors introduced by the zero mode approximation, and find that

one can have zero S-parameter without flatness, provided there is a lot of KK mixing on the

IR brane. The flavor suppression mechanisms of the NMFV model are derived in Section

2.4 and demonstrated with the gluon KK contribution to FCNC’s in Section 2.5. Numerical

results for the mixing constraints are presented in Section 2.6, and we conclude with Section

2.7.

2.2 Setup

After briefly reviewing the gauge sector, we will discuss the full 5D GIM mechanism [28] and

how one could apply it to various simple quark models. This will motivate the construction

of our Next-to Minimal Flavor Violation Model in Section 2.3.
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2.2.1 Gauge Sector

We work on an AdS5 background and parameterize our space-time using conformal coordi-

nates

ds2 =

(
R

z

)2

(dxµdxνη
µν − dz2) (2.2.1)

where the UV and IR branes sit at z = R,R′ respectively. Our gauge sector takes the

standard RS form [33] with 〈H〉 → ∞ on the IR brane, as outlined in [34]. This means we

have an SU(3)c×SU(2)L×SU(2)R×U(1)X gauge group [33] in the bulk (where X = B−L),

which is broken by boundary conditions to SU(3)c × SU(2)L ×U(1)Y on the UV brane and

SU(3)c × SU(2)D × U(1)X on the IR brane. The custodial SU(2)R symmetry protects the

MW/MZ ratio from deviations at tree level, and the gauge boson mass is given by the size

of the extra dimension. For future convenience, let us define

L ≡ logR′/R. (2.2.2)

Then to leading order in L,

M2
W ≈

1

R′2L
. (2.2.3)

On a technical note, we include all brane-localized gauge kinetic terms (BKTs) that are

allowed by symmetries, and include their corrections due to 1-loop running effects on their

respective branes [35]. This means that the effective SU(2)L BKT on the UV brane can be

negative at the weak scale. We will also localize some fermions on the UV brane, making

the effective U(1)Y BKT always positive (but the effect is very small). Unless otherwise

mentioned, we set all effective BKTs to zero at the weak scale except for U(1)Y , for which

we set the bare term to zero. We also set the effective SU(3) BKTs to zero, but note that

they could be made negative at the weak scale.
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In addition to the BKTs, the free input parameters in the gauge sector are R and the

ratio g5R/g5L. The SM W,Z masses then determine R′ and g5X/g5L, while αEM and αs at the

weak scale set the overall size of the 5D couplings. All of our gauge bosons are canonically

normalized, with all electroweak coupling corrections (including S and T parameters) pushed

into interaction terms.

Our theory is valid up to a momentum cutoff, which in AdS5 space is given conservatively

by

Λcutoff ∼
16π2

g2
5

R

R′
(2.2.4)

where g5 is the largest 5-dimensional coupling. If we take g5L = g5R, then to leading order

in L the 4D coupling g can be expressed as g2 = g2
5/RL [34], which together with eq. (2.2.3)

gives

Λcutoff ∼
16π2

g2

MW√
L
≈ 29 TeV√

L
. (2.2.5)

If we had a physical Higgs on the IR brane we could freely choose our KK scale and make

the cutoff large, but in the Higgsless model we must choose a low curvature to unitarize

WW -scattering before the theory becomes strongly coupled. We set R−1 = 108GeV which

gives L ≈ 13 and Λcutoff ∼ 8 TeV . We also choose g5L = g5R, since gauge matching would

decrease the cutoff if we made the couplings different. The Z ′ mass is therefore fixed and of

order ∼ 700GeV .

2.2.2 The Fermion Sector

Our notation for a 5D Dirac fermion will be

Ψ =

 χ

ψ

 (2.2.6)
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where χ and ψ are both LH 2-component Weyl spinors, and hence ψ is a RH 2-component

spinor. We write the boundary conditions for each Dirac spinor as (±,±) at z = (R,R′),

where + means ψ = 0 and − means χ = 0. The normalized left-handed zero-mode profile is

given by

g0(z) = R′−1/2
( z
R

)2 ( z
R′

)−c
f(c), where f(c) =

√
1− 2c

1−
(
R′

R

)2c−1 (2.2.7)

is the RS flavor function. The right-handed profile f0(z) is defined identically, with c→ −c.

5D GIM Mechanism

For three generations of a given quark representation we can impose global flavor symmetries

that prevent FCNCs at tree-level while generating all the required masses and mixings [25].

In broad strokes, those symmetries must satisfy the following criteria:

1. We need to have enough freedom to generate 6 different 4D quark masses and reproduce

the CKM mixing matrix.

2. To ensure that flavor-violating operators are suppressed by the high scale 1/R, we

only allow flavor mixing on the UV brane, via right-handed kinetic terms for the up

and down sector independently. Left-handed mixing is assumed to be forbidden by

flavor symmetry, since otherwise the right- and left-handed kinetic terms cannot be

diagonalized simultaneously and there would be FCNCs.

3. If we switch off the charged-current interactions we should be able to use the symmetries

of the bulk and IR brane to diagonalize the UV mixing matrices. This makes the neutral

currents diagonal in the 4D mass basis and forbids tree-level FCNCs.

We will now see how this mechanism can be applied to various simple quark models.
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The Left-Right Symmetric Representation

The simplest potentially realistic quark representation is the left-right symmetric represen-

tation, which has been adopted in [16,20,34]:

QL =

 u

d


L

∼ (2, 1)1/6 QR =

 u

d


R

∼ (1, 2)1/6 (2.2.8)

We impose the boundary conditions (+,+) on uL and (−,−) on uR to obtain left-handed and

right-handed zero modes (similarly for d). On the IR brane, both QL and QR are SU(2)D

doublets, so we can write a Dirac mass mixing term [36] to lift the zero modes,

SIR =

∫
d5x

(
R

z

)4

δ(z −R′) MDR
′ QLQR + h.c. (2.2.9)

On the UV brane, the QR doublet breaks up into two SU(2)L singlets, allowing us to assign

brane-localized kinetic terms to uR and dR separately and supply the proper mass splitting.

If we want to implement the full 5D GIM mechanism using this representation, we

populate the bulk with three copies of QL, QR and impose flavor symmetries Gbulk =

SU(3)QL × SU(3)QR and GIR = SU(3)D. This makes the bulk masses cQL , cQR and the

IR Dirac mass MD flavor blind. On the UV brane we allow only kinetic mixing of the QR

fields, which take the form ∫
d5x

(
R

z

)4

δ(z −R)ψασµDµK
αβψ

β
(2.2.10)

for both uR and dR, where Ku, Kd are two independent hermitian matrices and α, β are flavor

indices. To forbid left-handed mixing, we impose the flavor symmetry GUV = SU(3)QL ×

U(1)uR × U(1)dR .

If we switch off the charged-current interactions, the u, d symmetries become independent

and GIR → SU(3)u × SU(3)d, similarly in the bulk. These symmetries are broken on the
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UV brane, but we can use them to diagonalize the Ku, Kd mixing matrices and end up

with GUV ⊃ U(1)3
u × U(1)3

d, which prevents tree-level FCNCs. Another way to see this is

as follows: since all other mass and kinetic terms in the action are flavor singlets, we can

go to the 4D mass basis by rotating the fermions in flavor space and diagonalizing Ku,d.

This pushes all the physical mixing into the charged-current couplings, giving us exactly the

standard model CKM structure.

The main problem with this model is the top quark. To make it heavy, we must localize

it close to the IR brane and make MD large. The flavor symmetry then forces all the quarks

to be close to the IR, generating a large negative S-parameter. The large flavor-blind MD

has two additional dangerous effects: Firstly, the L − R mixing causes left-handed quarks

to live partially in the R representation (and vice versa), which induces even more coupling

corrections since it has the wrong quantum numbers. Secondly, the KK mixing causes the

light quarks to live partially in KK modes, resulting in dangerously high couplings to gauge

KK modes.

One could try to address these problems by increasing the SU(2)D IR kinetic term, which

corresponds to adding a positive bare S parameter on the IR brane, but this is not viable.

The matching of gauge couplings would force the coupling in the bulk to increase, lowering

our cutoff to ∼ O(1 TeV ) and making the theory non-perturbative before the unitarization

mechanism of Higgsless RS models kicks in. We clearly need some way to protect the other

quarks from deviations due to the heavy top mass.

The Custodially Protected Representation

Focusing on the third generation only for a moment, the problem with the left-right sym-

metric representation is that the effects of the top mass are felt by the left-handed bottom
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(we can localize the right-handed bottom on the UV brane). Agashe et. al [21] realized that

deviations to those couplings could be avoided if

• the tR is not in the same representation as any field which can mix with bL, so that the

top can have a separate IR Dirac mass that is not communicated to the bottom, and

• the representations that house the left-handed b are symmetric under SU(2)L ↔

SU(2)R interchange. This ensures that the L and R couplings are the same, meaning

the bL couples to a linear combination of gauge bosons which is flat near the IR brane.

Its couplings are therefore protected from deviations due to the SU(2)L × SU(2)R →

SU(2)D breaking.

In the notation of [22], the simplest representation which (almost) satisfies these requirements

is:

ΨL =

 XL tL

TL bL

 ∼ (2, 2)2/3 ΨR =


XR

TR

bR

 ∼ (1, 3)2/3 tR ∼ (1, 1)2/3 (2.2.11)

For the t, b quarks we impose the same boundary conditions as for the quarks in the left-right

symmetric representation, while we make the exotic T , X quarks (with electric charge 2/3

and 5/3 respectively) heavy by imposing mixed boundary conditions (−,+) for XL, TL and

(+,−) for XR, TR.

On the IR brane, the ΨL bidoublet breaks down into an SU(2)D triplet and a singlet,

which can mix with ΨR and tR.

Ψtriplet
L =


XL

T̃L

bL

 ≡


XL

1√
2
(tL + TL)

bL

 , Ψsinglet
L = t̃L ≡ 1√

2
(tL − TL) (2.2.12)
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Hence the allowed Dirac mass term on the IR brane is

SIR =

∫
d5x

(
R

z

)4

δ(z −R′) R′
[
M3ΨRΨtriplet

L +M1tRΨsinglet
L + h.c.

]
, (2.2.13)

so we can make M1 large to get a heavy top without influencing any field with the quantum

numbers of the bottom. Also note that the custodial protection granted by this represen-

tation is not complete: KK-mixing via the M3 mass term causes the left-handed b to live

partially in bR, which is not part of a L ↔ R symmetric representation.1 This turns out

to be good thing, since the fully protected coupling is a few percent too large in Higgsless

models (just the effect of the S-parameter). We can reduce it by localizing the bR closer

to the UV brane, which increases M3 (for a given 4D bottom mass) and hence increases

KK-mixing. This in turn decreases the coupling, since it makes the LH bottom sensitive to

the gauge boson profiles near the IR brane.

The unique features of this representation allow us to implement the full 5D GIM mech-

anism in a rather different fashion from the previous case. To protect the up and charm

quarks from the heavy top, we make M1 different for each quark generation and forbid all

up-sector flavor mixing, including on the UV brane. The down sector symmetries, on the

other hand, are chosen very similarly to the left-right symmetric representation: M3 is flavor

blind and large enough to generate the bottom mass, and a kinetic mixing matrix Kd on the

UV brane generates quark mixing in the down sector (and hence all the physical quark mix-

ing). This amounts to imposing the flavor symmetry Gbulk = SU(3)ΨL×SU(3)ΨR×SU(3)uR ,

which gets broken down to GIR = SU(3)triplets × U(1)singlets on the IR brane, and GUV =

SU(3)ΨL ×U(1)dR × SU(3)uR on the UV brane (we also set all brane kinetic terms for X,T

fields to zero). FCNCs are prevented in the exact same fashion as for the left-right symmetric

model, except we now only have to diagonalize the down sector.

1To make it L↔ R symmetric we would have to extend ΨR to a (1, 3)⊕ (3, 1).
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Nevertheless, a Higgsless quark model using only the custodially protected representation

is not viable. ΨR must be close to the UV to match gdi`di` to the SM. This fixes cdR while

leaving the ΨL bulk mass cL unconstrained due to custodial protection. The problem is a

tension between the LH up-type couplings and the RH bottom coupling. gZui`ui` can only

be matched if ΨL → UV, since it is not protected and suffers large corrections near the IR

brane. gZbrbr has the opposite requirement. If M3 is the minimal value to give mb, bR lives

entirely in the bulk. It must therefore be close to the UV brane to make it insensitive to

the broken symmetry on the IR brane, which is not a problem. However, if bL ⊂ ΨL → UV,

then M3 must be very large to generate mb, which increases KK mixing and makes gZbrbr

sensitive to the IR brane again, reducing the coupling below SM. So while matching the LH

up-type couplings to the SM requires ΨL → UV, the RH bottom coupling requires ΨL → IR.

It is not possible to match both simultaneously. One might try to increase M3 and confine

the RH bottom to the UV brane, allowing ΨL to be closer to the UV, but this also increases

T -mixing with the up-type quarks, which forces ΨL even closer to the UV to get a match.

One cannot achieve overlap.

So while this model can protect the left-handed bottom couplings, the 5D GIM mechanism

forces all the up-type quarks to behave like the troublesome top, and their couplings cannot

be matched to the SM simultaneously with the RH bottom.

2.3 The NMFV Quark Model

The complete 5D GIM mechanism is too restrictive for Higgsless RS model-building. We

have to give up a some flavor protection in exchange for agreement with electroweak precision

data, while ensuring that FCNCs are still under control. This motivates us to combine both

representations in a single quark model with next-to minimal flavor violation, harnessing
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their complementing strengths while keeping as much flavor symmetry as possible.

2.3.1 Setup

Two copies of QL, QR with bulk masses cQL , cQR make up the first two generations, while

the third generation is contained in the custodially protected ΨL,ΨR, tR with bulk masses

cL, cbR , ctR . This protects the other quarks from the influence of the heavy top while enabling

us to match all fermion couplings to experimental data. (Note that the top couplings are

poorly constrained.) The form of the respective IR Dirac mass terms are given in equations

(2.2.9) and (2.2.13). We impose the flavor symmetry Gbulk = SU(2)QL × SU(2)QR in the

bulk, which is broken down to GIR = SU(2)D on the IR brane. This means that the first

two generations have the same IR Dirac mass MD and bulk masses. The third generation

has the IR Dirac masses M3 for the SU(2)D triplet (which includes the bottom) and M1 for

the singlet (which supplies mass to the top). To provide flavor mixing and differentiate the

quark masses of the first two generations, we must introduce general hermitian 3× 3 kinetic

mixing matrices Ku and Kd as in eq. (2.2.10). Therefore, the flavor symmetry on the UV

brane is GUV = SU(3)QL × U(1)uR × U(1)dR (where the third QL is contained in ΨL).

We can see immediately that there will be FCNCs in this model. The flavor symmetry

is explicitly broken by choosing a different quark representation for the third generation. If

we switch off the charged currents, we only have SU(2) symmetries available, which are not

enough to diagonalize the kinetic mixing matrices on the UV brane. However, as we will

see, this partial symmetry is enough to force all mixing to go ‘through the third generation’

and suppress 12-mixings.
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2.3.2 Going to 4D Mass Basis

We can solve the bulk equations with the appropriate BC’s to compute the entire KK tower

of fermion wave functions. After integrating out the 5th dimension, we end up with a 4D

action containing the following terms (using matrix notation in flavor/KK space):

4D mass terms ψu,dMu,dχu,d,

RH kinetic mixing terms ψu,d σ
µ(1 + fu,dKu,dfu,d)∂µψu,d ≡ ψu,d σ

µκu,d∂µψu,d,

coupling terms like χuσ
µZ

(n)
µ g

(n)
ZuLuL

χu,

(2.3.1)

where (n) is a gauge boson KK index, fu,d is a diagonal matrix of the right-handed fermion

wave functions evaluated at z = R, and Ku,d is the UV brane kinetic mixing matrix.

To go to 4D mass basis, we must first diagonalize and canonically normalize the kinetic

mixing term by rotating the RH spinors with a hermitian matrix H. Once the kinetic

terms are flavor singlets we can diagonalize the mass matrices with the usual biunitary

transformation. We will always distinguish quantities in the physical basis with a ‘mass’

superscript from quantities in the original flavor basis without superscript. The quark spinors

in the mass basis are related to the flavor basis in the following way:

χu = ULuχ
mass
u χd = ULdχ

mass
u

ψu = HuURuψ
mass

u ψd = HdURdψ
mass

d .
(2.3.2)

Applying this transformation to the the mass terms, the left/right-handed neutral couplings

(denoted generically by gL/gR), and the left/right-handed W couplings, we get:

Mmass
u = U †RuH

†
uMuULu Mmass

d = U †RdH
†
dMdULd

gmass
Lu = U †LugLuULu gmass

Ru = U †RuH
†
ugRuHuURu

gmass
Ld = U †LdgLdULd gmass

Rd = U †RdH
†
dgRdHdURd

gmass
WuLdL

= U †LugWuLdLULd gmass
WuRdR

= U †RuH
†
ugWuRdRHdURd

(2.3.3)
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There is a very useful relation which we will need later. We simply write out |Mmass|2 =

Mmass†Mmass = MmassMmass† (sinceMmass is diagonal). Keeping in mind that theH matrices

are hermitian and H2 = κ−1, we find

|Mmass
u |2 = U †Lu

(
M †

uκ
−1
u Mu

)
ULu = U †RuH

†
uMuM

†
uHuURu (2.3.4)

|Mmass
d |2 = U †Ld

(
M †

dκ
−1
d Md

)
ULd = U †RdH

†
dMdM

†
dHdURd.

The exotic X-quark with charge 5/3 is an interesting experimental signature of our model.

Its mass is roughly half a TeV and it couples to the top via charged-current interactions (in

the flavor basis) with coupling strength comparable to but generically less than g/
√

2. The

coupling in the mass basis is

gmass
WXLuL

= gWXLuLULu

gmass
WXRuR

= gWXRuRHuURu.
(2.3.5)

Detection could be possible at the LHC with less than 100 pb−1 of integrated luminosity [37].

2.3.3 Satisfying Electroweak Precision Data and CDF Bounds

It is not hard to see why this model can satisfy electroweak precision constraints. The heavy

top mass does not influence the other quarks, and the correct bottom couplings can be

achieved by moving ΨL ⊃ tL, bL and tR close to the IR brane, while the ΨR ⊃ bR is close to

the UV [22]. The top couplings will deviate from the SM value, but this is acceptable since

it is poorly constrained experimentally. The first- and second-generation couplings can be

made to agree with the SM by adjusting cQL , cQR ∼ 0.5, and we have enough freedom to

choose IR Dirac masses and UV kinetic terms to generate all the different quark masses and

mixings. It is worth noting that the QL,R bulk masses can take on a range of values, due to

the effect of KK-mixing which we will discuss in Section 2.3.5. We explicitly demonstrated
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EWPD compliance using two different numerical calculations. In the first, we assumed that

there is no flavor mixing and absorbed the diagonal boundary terms into BC’s. In the second

there was flavor mixing, and we followed the procedure of Section 2.3.2: using the zero mode

approximation in which the boundary terms act as mixing terms between zero modes and

KK modes.

One of the canonical signatures of Higgsless models are light gauge KK-modes with a mass

of ≈ 700GeV . This is low enough to warrant closer inspection of current CDF bounds [38–40]

to make sure our model is not already excluded. The CDF searches for heavy gauge bosons

focus on resonant pair production processes of the form (light quark pair) → (heavy gauge

boson) → (some fermion pair, e.g. ee, tb). Assuming that the coupling to the heavy gauge

boson is the same as to the SM counterpart for both the initial and final fermion states,

the CDF bounds are mW ′ ,mZ′ >∼ 800GeV . However, those bounds must be adjusted for

our model since the coupling of gauge KK modes is very suppressed for the first two quark

generations, and somewhat enhanced for the third generation.

quark generation approx. coupling as a multiple of SM

Z ′ W ′ G′

1, 2 (LH) < 1/5 1/100 < 1/4

1, 2 (RH) 1/5 1/100 1/4

3 2− 4 1 2

(2.3.6)

Since the light left-handed quarks are not UV-localized, their couplings depend sensitively on

the bulk masses and can be very small. Leptons in our model would have similar couplings

to the light quarks. It is clear that the coupling suppression increases the mW ′ ,mZ′ bounds

from leptonic and tb-channel searches way beyond our KK-scale of 700 GeV. Due to low

tt-detection efficiencies, the tt-channel also does not supply a meaningful mZ′ bound [39].

Only the constraints on mG′ from [40] require closer inspection. Their analysis assumed
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vector-like couplings to G′ which were parameterized as glight quarks = λqgs and gtop = λQgs.

The bounds on mG′ depend on λ = λgλQ and the width Γ of G′. If we assume that we can use

those bounds for our chiral couplings by simply averaging and setting λq = 1
2
(λqL + λqR) ≈

0.25− 0.5, we can extract an approximate bound of Γ/mG′ >∼ 0.2 on the width of our KK-

gluon if its mass is ≈ 700GeV . We have not calculated the width of the G′ since it depends

on several parameters that are not completely fixed in our model, but Γ/mG′ ∼ 0.2 is not

an atypical value for RS KK-gluons, see for example [41]. Furthermore, we can also decrease

λ by another factor of ∼ 4 by taking into account 1-loop RGE corrections to the SU(3)c

UV brane kinetic term, as outlined in Section 2.2.1. This alleviates any concern that our

model might be excluded by CDF bounds. However, the relatively light G′ should certainly

be detected at the LHC.

2.3.4 Counting Physical Parameters and the Meaning of Large

UV Kinetic Terms

Each N × N hermitian UV kinetic mixing matrix Ku, Kd is defined by N2 parameters,

N(N + 1) real elements and N(N − 1) complex phases. For N = 3, this gives a total of 12

real parameters and 6 phases. We can always do an SU(2) × U(1) flavor rotation, which

corresponds to eliminating unphysical parameters: it removes 1 angle and 3 phases. This

leaves us with 11 real parameters and 3 phases, which includes the 6 quark masses. Hence

the parameters in the flavor sector are 6 quark masses, 5 mixing angles and 3 phases, as well

as 3 IR Dirac masses MD,M1 and M3.

At this point a remark about the size of the UV kinetic terms is in order. The Ku,d

matrix elements will be very large, generically ∼ [O(102)−O(109)]R, but this is no cause for
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concern. After canonically normalizing, the magnitude of the K’s will merely specify what

fraction of the fermions lives on the UV brane (i.e. is elementary in the AdS/CFT picture),

and how much lives in the bulk (i.e. is composite). In our model the right-handed quarks

are almost entirely confined to the UV brane, only slightly dipping into the bulk to mix with

the left-handed quarks on the IR brane and generate a Dirac mass.

2.3.5 The Zero Mode Calculation

The fermion zero mode approximation enormously simplifies matching and mixing calcula-

tions, and we can use it to gain a great deal of insight into the flavor protection mechanisms

of our model. However, KK mixing is much more significant for Higgsless models than for

standard RS with multi-TeV KK masses, so we need to investigate the range of validity of

this approximation in detail if we want to trust our calculations.

Error Estimate

Consider a simple toy-model with a single generation of quarks in the left-right symmetric

representation eq. (2.2.8). There is a Dirac mass term on the IR brane (2.2.9) and a UV

boundary kinetic term for the right-handed fields (2.2.10). Focusing only on the left-handed

fields for the moment, we can incorporate the IR Dirac mass term into the z = R′ boundary

conditions of the 5D wave function profiles [36], eliminating KK-mixing on the IR brane:

guR = R′MDguL|z=R′ , (2.3.7)

similarly for the down sector. We will assume that the errors are small and cQL ,−cQR > 0.

If there was no IR mixing, guL would just be the zero mode g0
cQL

(i.e. g0 from eq. (2.2.7)

with c → cQL), and adding a small amount of mixing should not change the shape of that
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waveform significantly. The new mode that appears due to mixing is guR , and its shape

is also independent of the size of a small mass. Hence it should be the zero mode that is

normally projected out when the BC’s do not include any mixing, i.e. g0
cQR

(which is different

from the usual RH zero mode f 0
cQR

= g0
−cQR

). A simple ansatz to approximately solve the

exact BCs is therefore

guL = ag0
cQL

guR = bg0
cQR

. (2.3.8)

Using the fermion normalization condition
∫
dz(R/z)4(|guR |2 + |guL|2) = 1 as well as eq.

(2.3.7), we can solve for the coefficients a and b. Assuming the error is small, one obtains

a ≈ 1− 1

2

(
R′MD

f(cQL)

f(cQR)

)2

b ≈
(
R′MD

f(cQL)

f(cQR)

)
(2.3.9)

We can now estimate the deviation of a typical coupling to gauge boson Ψ compared to the

zero mode approximation:∫
dz

(
R

z

)4

|guL|2g5Ψ =

[
1−

(
R′MD

f(cQL)

f(cQR)

)2
]∫

dz

(
R

z

)4

|g0
uL
|2g5Ψ (2.3.10)

The correction due to including the gR is at most of similar order, and in fact much smaller

for electroweak couplings since |ΨR3| < |ΨL3| near the IR brane and g0
cQR

is extremely

IR localized. Hence the zero mode approximation overestimates left-handed couplings by

roughly

δL ∼
(
R′MD

f(cQL)

f(cQR)

)2

, (2.3.11)

which is a relative error independent of the gauge charge. By a similar procedure we obtain

the error for the right-handed couplings. It is simplest to not include the UV brane term in

the BCs and simply renormalize the bulk wave function. Thus we find that the zero mode

approximation overestimates right-handed couplings by

δR ∼

 R′MD√
1 +Kf 0

uR
(R)2

f(−cQR)

f(−cQL)

2

. (2.3.12)
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Figure 2.1: (a) shows the region of bulk masses that reproduces the SM cou-
plings for the first quark generation with varying magnitudes
of the IR brane mass. The three bands are for three values of
ρd = MD/M

min
D , where Mmin

D is the smallest possible IR brane
Dirac mass which can reproduce the first generation masses.
Darker (lighter) regions indicate that the coupling is up to 0.6%
below (above) SM value. The blue (horizontal) band for ρd = 1
is reproduced by the zero mode approximation, and shows that
QL must be almost flat and near the IR brane as expected. The
green and red bands (successively more curved upwards) corre-
spond to ρd = 600 and 1000, and we see significant shifts which
allow the quarks to be UV localized. (b) shows Mmin

D for the
first generation in MeV. It is clear that increasing those brane
terms by a factor of 1000 is not necessarily unreasonable, since
it corresponds to a TeV scale MD.

which is negligible unless the UV term is very small. Both of these error estimates have been

confirmed numerically. Using eq. (2.2.3) we can express them as

δL ∼
M2

D

M2
W logR′/R

f(cQL)2

f(cQR)2
δR ∼

1

1 +Kf 0
uR

(R)2

M2
D

M2
W logR′/R

f(−cQR)2

f(−cQL)2
. (2.3.13)

To demonstrate how significant those errors can be, we computed the couplings in our

toy model numerically for the first quark generation only, incorporating both UV and IR

brane terms into boundary conditions. As fig. 2.1 shows, we find that one can now have both

QL and QR localized near the UV brane without any S-parameter by turning up the value
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of MD! Thus one can get around the canonical assumption that fermions in Higgsless RS

models must be almost flat and near the IR brane. If there is significant KK mixing on the

IR brane, the fermions can be UV localized.

Using the Zero Mode Approximation for our Model

As we discussed in Section 2.3.3, we have used more accurate calculational methods to con-

firm that our model can satisfy electroweak precision constraints. The zero mode calculation

without fermion KK-modes will only be used to estimate FCNC suppression. We must ex-

pect percent-level errors for all diagonal couplings and masses that do not involve the top,

and O(1) errors for the top mass and off-diagonal couplings in the up sector. Going from

the zero mode calculation to full KK mixing preserves the general mixing hierarchy, but we

would have to restore a full CKM match by adjusting the up-sector mixing angles by order

unity. This level of accuracy is sufficient to estimate the tightly constrained down-sector

FCNCs to within a few percent. Our estimate for D-mixing, on the other hand, will only be

valid up to a factor of order unity, but this is enough to demonstrate our flavor suppression

mechanism.

2.4 Flavor Matching and Protection in the NMFV Model

We will now analyze the flavor-protection mechanisms of the NMFV model in the framework

of the zero-mode calculation. Our first task is to find the correct UV-localized right-handed

kinetic mixing matrices Ku and Kd which reproduce the 4D CKM matrix. After obtaining a

tree-level match to the Standard Model we proceed to find the off-diagonal neutral couplings

which give rise to dangerous tree-level FCNCs.
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2.4.1 Matching in the Zero Mode Approximation

Throughout this section we will drop the u, d subscripts whenever the derivations for the

up- and down-sectors are identical. The problem of matching the zero mode calculation to

the Standard Model factorizes into four steps:

1. Find bulk masses cQR , cQL , cbR , ctR and cL which give the correct quark couplings (not-

ing that some deviation from SM is permissable for the top).

2. Choose a set of unitary matrices ULu, ULd that match gmass
WuLdL

= U †LugWuLdLULd to the

experimental value of g√
2
VCKM. There is a lot of freedom to choose mixing matrices

here, and we shall address it in Section 2.6.

3. Choose IR Dirac masses MD,M3 and M1 which are at least big enough to supply the

charm, bottom and top masses, and bigger if we want to confine the RH quarks to the

UV brane.

4. Find the Ku, Kd kinetic matrices which are required to produce the SM masses and

mixings.

The fourth step works as follows. The total kinetic term is κ = 1+ fRKfR (see eqn. 2.3.1),

where fR = Diag(f 1
0 , f

2
0 , f

3
0 )|z=R′ is the diagonal matrix of RH quark zero modes evaluated

on the UV brane (note that f 1
0 = f 2

0 due to flavor symmetry). Using eq. (2.3.4) we can

express κ in terms of quantities that we know:

|Mmass|2 = U †L(M †κ−1M)UL =⇒ κ = MUL |Mmass|−2 U †LM
†. (2.4.1)

Hence we obtain an expression for the UV brane kinetic mixing matrix:

K = f−1
R

[
MUL |Mmass|−2 U †LM

† − 1
]
f−1
R (2.4.2)
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2.4.2 Flavor Protection

In the flavor basis, we can always write any left-handed neutral coupling as:

gL = (gΨ)L · 1 + gbulk
L , (2.4.3)

where (gΨ)L is the wave function of the gauge boson that the fermion couples to, evaluated

on the UV brane and multiplied by the appropriate gauge coupling (in the AdS/CFT picture,

this is the elementary part of the gauge boson). All the flavor non-universalities are contained

in the diagonal matrix gbulk
L which comes from bulk overlap integrals with the fermions (and

corresponds to the composite gauge boson coupling). For a right-handed neutral coupling

we also have the contribution from the UV kinetic term, which gives

gR = (gΨ)R · (1 + fRKfR) + gbulk
R = (gΨ)R · κ+ gbulk

R . (2.4.4)

The form of K is known from eq. (2.4.2), and we can obtain the right-handed rotation matrix

from eq. (2.3.3)

HUR =
(
MmassU †LM

−1
)†
. (2.4.5)

The left-handed couplings just rotate by UL. This is all the information we need to

transform the couplings into the physical basis, where the mass matrix is Mmass =

Diag(mSM
1 ,mSM

2 ,mSM
3 ).

Before we do that, however, it is useful to parameterize the IR Dirac masses in terms of

roughly how large we want the UV kinetic terms to be, i.e. how strongly we want to confine

the RH quarks to the UV brane. In the flavor basis, the mass matrix is

M = Diag(M1,M1,M3), (2.4.6)
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where the flavor symmetry forces the first two terms to be the same and

Mu,d
1 = f(−cQR)f(cQL)MD ≡ ρcmc

Md
3 = f(−cbR)f(cL)M3 ≡ ρbmb

Mu
3 = f(−ctR)f(cL)M1/

√
2 ≡ ρtmt.

(2.4.7)

ρc,b,t = 1 corresponds to choosing the minimal IR Dirac mass (and a correspondingly minimal

UV kinetic term) which can generate the c, b, t 4D mass. ρc,b,t > 1 simply corresponds to

increasing the IR Dirac mass by that factor, which also increases the UV kinetic term in

order to keep the quark mass constant. This localizes the RH quark on the UV brane.

Now we can apply the basis transformations UL and HUR to eqns. (2.4.3) and (2.4.4).

We obtain expressions for the physical 4D neutral couplings:

gmass
R = (gΨ)R · 1 +MmassU †LM

−1gbulk
R (M †)−1ULM

mass†

gmass
L = (gΨ)L · 1 + U †Lg

bulk
L UL (2.4.8)

All the off-diagonal terms come from the flavor non-universal bulk part of the coupling,

rotated by the appropriate transformation matrix.

Let us now find explicit expressions for these off-diagonal neutral coupling ele-

ments. Our flavor symmetry imposes gbulk
L ≡ Diag(gbulk1

L , gbulk1
L , gbulk3

L ) and gbulk
R ≡

Diag(gbulk1
R , gbulk1

R , gbulk3
R ). The most general form (ignoring phases) that UL can take is:

UL =


c12c13 c13s12 s13

−c23s12 − c12s13s23 c12c23 − s12s13s23 c13s23

−c12c23s13 + s12s23 −c23s12s13 − c12s23 c13c23

 (2.4.9)

If we assume completely anarchic UV mixing, the FCNC’s will generically be too large.

However, if one assumes Cabibbo-type hierarchies for both ULu and ULd mixing matrices,

s12 = O(1)× λ s23 = O(1)× λ2 s13 = O(1)× λ3 λ ∼ 0.2, (2.4.10)
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then the flavor-changing effects will get an additional Cabibbo-suppression. This amounts

to assuming that there is some systematic UV physics generating the mixing hierarchies.

Substituting all this into eq. (2.4.8) and expanding to lowest order in λ, we obtain simple

expressions for the off-diagonal neutral couplings. In the down sector,

gmass
Ld,ij ≈

[
gbulk3
Ld − gbulk1

Ld

]
U ji
Ld

gmass
Rd,ij ≈

[
gbulk3
Rd

ρ2
bm

2
b

− gbulk1
Rd

ρ2
cm

2
c

]
mj
dm

i
dU

ji
Ld

where i < j

and for (i, j) = (1, 2),

U ji
Ld → U32

LdU
31
Ld.

(2.4.11)

For the up sector just change subscripts d→ u and replace ρbmb by ρtmt.

The flavor protection of our model is now apparent. Firstly, the surviving flavor symmetry

between the first two generations forces all the mixing to go through the third generation

(hence NMFV). This is vital to push D and K mixing below the stringent experimental

bounds. Secondly, since we are free to increase ρ > 1, there is an RS-GIM-like flavor

suppression mechanism for the right-handed fermion couplings. This is due to the kinetic

mixing terms, which confine the right-handed quarks to the UV brane and suppress the bulk

contributions to the couplings, which are the source of flavor violation. Finally, since the

charged-current mixing matrix is made up of both the up- and down-sector mixing matrices,

we have some freedom to ‘divide up the mixing’ between the two sectors and reduce FCNCs

for each sector accordingly.

2.5 Estimating FCNCs for the NMFV Model

We are now in a position to estimate the FCNCs for our NMFV model and compare them

to experimental bounds, as well as to a standard RS setup with a KK scale of 3 TeV and
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anarchic Yukawa couplings, where the only flavor protection is due to RS-GIM (see for

example [29]).

2.5.1 4-Fermi Operators

∆F = 2 FCNCs are mediated by the 4-fermi operators C1,4,5. For the up sector (identically

for the down sector), the relevant terms in the effective Lagrangian are given by

H(u) = Cαβσλ
1L(u)(q

α
uLγµq

β
uL)(qσuLγ

µqλuL) + {L→ R}+

Cαβσλ
4(u) (qαuRq

β
uL)(qσuLq

λ
uR) + Cαβσλ

5(u) (qcαuRq
dβ
uL)(qdσuLq

cλ
uR),

where greek letters denote flavor indices and c, d are color indices (if not shown, then color

is contracted inside brackets). We will compute the FCNC operators by integrating out

the massive gauge bosons, then compare them to UTfit bounds [42]. The most relevant

constraints come from meson mixing processes, i.e. D mixing in the up sector and K, Bd

and Bs mixing in the down sector:

CD
1L = C1212

1L(u) CK
1L = C1212

1L(d) CBd
1L = C1313

1L(d) CBs
1L = C2323

1L(d) (2.5.1)

(similarly for C1R, C4, C5). Integrating out the massive gauge bosons in our model, we obtain:

Cαβαβ
1L(u) =− 1

3

∑
KK

1

m2
G

(
gαβGuLuL

)2

+
1

2

∑
KK

1

m2
Z

(
gαβZuLuL

)2

Cαβαβ
4(u) =−

∑
KK

1

m2
G

gαβGuRuRg
αβ
GuLuL

− 2
∑
KK

1

m2
Z

gαβZuRuRg
αβ
ZuLuL

Cαβσλ
5(u) =− 1

3

∑
KK

1

m2
G

gαβGuRuRg
αβ
GuLuL

(2.5.2)

where ”KK” indicates that we sum over gauge KK modes, including the SM Z boson. For

each operator, we define a suppression scale Λ by |C| = 1
Λ2 .
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2.5.2 G′ contributions to FCNCs

We want to write down expressions for the suppression scales of the C1,4,5 operators due to

contributions of the first gluon KK-mode, which dominate if Z-couplings are matched to the

SM and (almost) flavor universal. The mass of the first KK-gluon is given to 10% accuracy

by

mG′ ≈
x1

R′
≈ x1

√
LMW (2.5.3)

where we have used eq. (2.2.3), and x1 ≈ 2.4 is the first root of the bessel function J0(x1) = 0.

The bulk part of its coupling to a left-handed zero mode is approximately

gbulk
L ≈ gS∗f(ci)

2 γ(ci) ≡ gS∗F (c), (2.5.4)

where γ(c) =
√

2
J1(x1)

∫ 1

0
x1−2cJ1(x1x)dx ≈

√
2

J1(x1)
0.7

6−4c
(1 + ec/2) is an O(1) numerical correction

factor [29]1. Gauge matching sets gS∗ =
√

4παSL, and we find that numerically, mG′/gS∗ ≈

2MW .

Now put everything together by substituting eq. (2.5.4) into eq. (2.4.11), and using those

couplings in eq. (2.5.2). We obtain the following expressions for the down-sector flavor

suppression scales:

Λ
(d)ij
1L ≈ 2

√
3MW

U ij
Ld

|F (cQL)− F (cL)|−1

Λ
(d)ij
1R ≈ 2

√
3MW

U ij
Ld

∣∣∣∣mi
dm

j
d

[
F (−cQR)

m2
cρ

2
c

− F (−cbR)

m2
bρ

2
b

]∣∣∣∣−1

Λ
(d)ij
4 ≈ 2MW

U ij
Ld

∣∣∣∣mi
dm

j
d [F (cQL)− F (cL)]

[
F (−cQR)

m2
cρ

2
c

− F (−cbR)

m2
bρ

2
b

]∣∣∣∣−1/2

Λ
(d)ij
5 =

√
3Λ

(d)ij
4 (2.5.5)

1The accuracy of the approximate expression for γ(c) in [29] is somewhat improved by replacing x1 →
(1 + ec/2)
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where we replace U21
Ld → U31

LdU
32
Ld. For the up sector just change subscripts d→ u and replace

ρbmb, cbR by ρtmt, ctR .

To see that our model has sufficient flavor protection to satisfy FCNC constraints we

plug in some typical numbers and compare them to the RS-GIM suppression and the UTfit

experimental flavor bounds on BSM FCNC contributions [42]2. The results are shown in

Table 2.1 and demonstrate why we need all our suppression mechanisms. The RS-GIM-

like mechanism for the right-handed couplings, together with the flavor symmetry, ensures

that the C4 and C5 operators are easily below bounds, a great improvement on traditional

RS-GIM alone. The suppression scales of the C1 operators are set by Λ1L � Λ1R, which

are only Cabibbo suppressed, with the direct 12 contribution forbidden by the SU(2) flavor

symmetry. This is another reason why we need the flavor symmetry – breaking it would

increase 12-mixing by ∼ λ4 ∼ 500, immediately violating bounds. Even with the flavor

symmetry, the C1 operators are close to bounds and the greatest source of angle constraints

– indeed, we can see that most of the mixing will have to be in the up-sector.

2.5.3 Z contribution to FCNCs

We have not explicitly estimated FCNC contributions due to Z-exchange, however they are

included in the numerical scans in Section 2.6. They are negligible for the down sector, since

all three diagonal couplings are matched to the SM, but the top coupling deviates by O(40%)

in the full calculation, generating off-diagonal terms in the up-sector. The scale of the Z ′

contributions to FCNCs (more important for LH than RH couplings, since gZu`u` ≈ 2gZuruR)

2We evolve the UTfit bounds down to the KK scale using expressions in [43]. We thank Andreas Weiler
for supplying the necessary code.
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Parameter Λbound
F (3 TeV ) RS-GIM ΛF Λbound

F (0.7 TeV ) NMFV ΛF

ReC1
K 1.0 · 103 ∼ r/(

√
6 |VtdVts|f 2

q3
) = 23 · 103 1.1 · 103 44 · 103

ReC4
K 12 · 103 ∼ r(vY∗)/(

√
2mdms) = 22 · 103 11 · 103 19000 · 103

ReC5
K 10 · 103 ∼ r(vY∗)/(

√
6mdms) = 38 · 103 10 · 103 33000 · 103

ImC1
K 16 · 103 ∼ r/(

√
6 |VtdVts|f 2

q3
) = 23 · 103 17 · 103 44 · 103

ImC4
K 162 · 103 ∼ r(vY∗)/(

√
2mdms) = 22 · 103 150 · 103 19000 · 103

ImC5
K 147 · 103 ∼ r(vY∗)/(

√
6mdms) = 38 · 103 150 · 103 33000 · 103

|C1
D| 1.3 · 103 ∼ r/(

√
6 |VubVcb|f 2

q3
) = 25 · 103 1.3 · 103 1.8 · 103

|C4
D| 3.7 · 103 ∼ r(vY∗)/(

√
2mumc) = 12 · 103 3.5 · 103 200 · 103

|C5
D| 1.4 · 103 ∼ r(vY∗)/(

√
6mumc) = 21 · 103 1.5 · 103 500 · 103

|C1
Bd
| 0.22 · 103 ∼ r/(

√
6 |VtbVtd|f 2

q3
) = 1.2 · 103 0.22 · 103 0.35 · 103

|C4
Bd
| 1.7 · 103 ∼ r(vY∗)/(

√
2mbmd) = 3.1 · 103 1.6 · 103 24 · 103

|C5
Bd
| 1.3 · 103 ∼ r(vY∗)/(

√
6mbmd) = 5.4 · 103 1.4 · 103 41 · 103

|C1
Bs
| 31 ∼ r/(

√
6 |VtbVts|f 2

q3
) = 270 31 70

|C4
Bs
| 210 ∼ r(vY∗)/(

√
2mbms) = 780 190 1000

|C5
Bs
| 150 ∼ r(vY∗)/(

√
6mbms) = 1400 155 1800

Table 2.1: We compare lower bounds on the NP flavor scale ΛF (all in TeV)
for arbitrary NP flavor structure from the UTFit collaboration [42]
to the effective suppression scale in RS-GIM [29] and our Higgsless
NMFV model, see eq. (2.5.5). In this RS-GIM model, |Y∗| ∼ 3,
fq3 = 0.3 and r = mG/gs∗, with a KK scale of ∼ 3 TeV . For the
Higgsless model L ≈ 13 determines a KK scale mG ≈ 700GeV .
Setting ρc = 10 gives MD = 110GeV ∼ 1/R′, and (cQL , cQR) =
(0.48,−0.44) matches the couplings for the first two generations to
the SM. A third generation EWPD match is most easily obtained
for ρb,t = 1 and (cL, cbR , ctR) = (0.1,−0.73, 0). To satisfy the
flavor bounds, we need to push more mixing into the up-sector by
setting λ−1U13

L(d) ∼ U13
L(u) ∼ λ3 and λ−1U32

L(d) ∼ U32
L(u) ∼ λ2.

can be estimated using C1 ∼ (gL/mKK)2 and compared to the gluon KK contribution:

O(0.4)
gSM
Zt`t`

mZ

∼ 1

103GeV
− 1

102GeV
and

gS∗F (cL)

mG

∼ 1

102GeV
. (2.5.6)

Indeed, numerical scans in Section 2.6 show that Z contribution are negligible for all FCNC

operators except C1
D, where it does not invalidate the suppression mechanism but does supply

a competitive contribution. In comparing FCNC’s to experiment, one might worry that one

has to take into account that the Z contributes to FCNCs at a much lower scale than the
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KK modes. This is unnecessary, since the C1
D operator only changes by a few percent as we

evolve it from our KK scale to the weak scale.

2.5.4 Contribution to FCNCs from Higher-Dimensional Opera-

tors in the 5D Action

Since 5D gauge theories are not renormalizable, our fermion action could include terms of

the form ∫
d5x
√
g

ΨΨΨΨ

Λ3
, (2.5.7)

where Λ = 16π/g2
5 = ΛcutoffR

′/R (see eqn. 2.2.5) is the unwarped 5D cutoff. The SU(2)

flavor symmetry forbids contributions of this form to 12 mixing, but they do contribute for

13 and 23 mixing3. Since the right-handed quarks live almost entirely on the UV brane,

where the cutoff is very high, we only have to worry about the left-handed quarks. The

contribution to C1
Bs

and C1
Bd

is

∼ 1

Λ3
cutoff

∫
dz

(
R

z

)5(
R

R′

)
(gbLgdL)2 ∼ 1

(200− 500 TeV )2
, (2.5.8)

depending on fermion localization. Comparing this to the experimental bounds in Table 2.1

of 31 and 22 TeV respectively, it is clear that we can ignore contributions by these operators.

2.6 Numerical Results and Mixing Constraints

We will now perform numerical scans to verify the results of the zero mode calculation and

explicitly demonstrate that the Higgsless NMFV model can satisfy flavor constraints. This

3We thank Andreas Weiler for pointing this out.
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is necessary because, once we have chosen our gauge sector, fermion bulk masses and IR

brane terms, there is an overall rotation amongst the UV kinetic terms that is unconstrained

by electroweak precision data and determines the FCNCs.

Our method for this scan is as follows: we will first perform some calculations without

flavor mixing, which incorporate the diagonal brane terms into the boundary conditions to

capture all KK mixing effects and match the SM couplings. Assuming any small flavor

mixing would not change the diagonal couplings by much, we can use these calculations as a

guideline in choosing our bulk and IR masses for a fully mixed calculation. We then explicitly

calculate FCNCs for those input parameters by scanning over allowed down-sector mixing

angles. This initial scan will be performed in the zero mode calculation for computational

efficiency. Since there will likely be sizeable errors in the up-sector, we will take those points

which passed FCNC bounds and recalculate them with full KK- and T-mixing, discarding

those which now lie beyond bounds.

We should note that exact compliance with EWPD is not required for this scan, since

a small adjustment to the input parameters (to correct any small deviations) would not

change the FCNCs significantly. At any rate, using the zero mode calculation to match

flavor rotations introduces order unity errors into the charged-current mixing angles, which

would have to be corrected by readjusting the up-sector rotations. We can do without such

complications, since we only strive for Cabibbo-type mixing in our scan, and most of the

flavor constraints are in the down sector. If our scan indicates that FCNCs are under control

for a general Cabibbo-type mixing, then they should also be under control for an exact CKM

match.
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2.6.1 Input Parameters

For our gauge sector, we choose g5L = g5R, R−1 = 108GeV and set effective BKTs at the

weak scale to zero or as small as possible. This gives L ≈ 13 and the highest possible cutoff

scale.

In order to match the bottom couplings, we set both M1 and M3 to their minimum values

and move only the bR close to the UV. From an unmixed calculation with full BCs we find

the following values:

cbR = −0.73, ctR = 0, cL = 0.1, M1 = 600GeV , M3 = 140GeV . (2.6.1)

We also know that we need to ramp up MD beyond its minimum value to satisfy con-

straints on the C4,5 operators, so we choose ρc = 10. In order to pick bulk masses for the

first two generations, we run another unmixed calculation with full boundary conditions and

select three possible (cQL , cQR) values to run angle scans for:

Scan 1 2 3

cQR −0.37 −0.44 −0.57

cQL 0.48 0.48 0.57

MD (GeV ) 76 101 445
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2.6.2 Angle Scans

We will calculate FCNCs due to tree-level Z,Z ′, G′, G′′-exchange, for one million different

down-sector mixings per scan. We can parametrize the CKM mixing matrix as

V (s12, s23, s13, δ) =


c12c13 c13s12 s13e

−iδ

−c23s12 − c12s13s23e
−iδ c12c23 − s12s13s23e

−iδ c13s23

−c12c23s13e
−iδ + s12s23 −c23s12s13e

−iδ − c12s23 c13c23

 (2.6.2)

where, for example, (s12, s23, s13, δ)CKM = (0.227, 0.0425, 4 · 10−3, 0.939) would satisfy the

PDG constraints on VCKM [3]. Naively, we would think that we can obtain the correct CKM

matrix by defining our up- and down-sector LH rotations as

ULu = UV †CKM ULd = U, (2.6.3)

and letting U be an arbitrary unitary rotation matrix which gives the down-sector mixing.

This is sufficient for this scan, even though it only gives an order unity estimate of the

up-sector mixing angles. In this analysis we shall also ignore phases, since we are after

a scan of the magnitudes of the possible mixing matrices, and for our purposes we define

VCKM = V (sCKM
12 , sCKM

23 , sCKM
13 , 0) (otherwise we could never cancel this matrix with a real

rotation, introducing an up-mixing bias into our scan). To avoid obviously large FCNCs, we

will make the assumption that the mixing angles of U have a natural size comparable to those

of the final VCKM mixing matrix. We parametrize U with angle-coordinates (a, b, c) ∼ O(1):

U = V (s12, s23, s13, 0) where s12 = asCKM
12 s23 = bsCKM

23 s13 = csCKM
13 (2.6.4)

Note that (a, b, c) = (0, 0, 0) and (a, b, c) = (1, 1, 1) put all the mixing into the up- and

down-sector respectively, so to avoid a bias in our scan we define the range of the angle

coordinates to be a, b, c ∈ (−2, 3). Once we determine which points in angle-space satisfy

FCNCs in the zero mode calculation, we re-check those points using a full KK calculation.
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Figure 2.2: Left to right: Points in ULd angle space for scans 1, 2 and 3 that
satisfy FCNC constraints in the zero mode calculation, where
s12 = asCKM

12 , s23 = bsCKM
23 and s13 = csCKM

13 . Red (darker) points
are found to violate the bounds when taking into account KK
mixing.

2.6.3 Results

As we can see from the similar plots in fig. 2.2, the choice of bulk masses does not have a

great effect on the nature of constraints on the down-mixing angles. This is expected since

the C1 operators, which are the greatest bottleneck, are only weakly dependent on cQR , cQL

– the dominant contribution comes from the large F (cL), see eq. (2.5.5). In eliminating

points which do not satisfy FCNC bounds with full KK mixing, we only loose a few percent

of points in each scan. The zero mode calculation is therefore sufficient for estimating the

angle constraints.

The FCNC bounds impose entirely systematic constraints on the down-sector mixing

angles. This can be seen from fig. 2.3, where we take slices at different points on the b-axis

(i.e. s23) and project them onto an ac-plane. A point in angle-space satisfies FCNC bounds
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Figure 2.3: Slices of thickness 0.1 in the (a, c)-plane at different points along
the b-axis, from b = −0.5 to b = 0.5, for scan 2 (scans 1 and 3
are similar). Green (light) points satisfy FCNC constraints in the
zero mode calculation, and red (dark) points fail bounds when
KK mixing is taken into account. The points which fail FCNC
bounds in the zero mode calculation are not shown, but they
fill up the entire remaining volume of angle space. There is no
overlap between points satisfying FCNC bounds and points that
do not – they occupy well defined, mutually exclusive volumes.

if and only if it lies within a well-defined sub-volume, i.e. the constraints are systematic.

Assuming Cabibbo-type mixing, the good points occupy ∼ O(5%) of the total angle space.

This is not really ‘tuning’ in the usual sense, it merely means that whatever UV-scale mech-

anism generates the mixings should give a somewhat larger mixing in the up-sector than

in the down-sector. We note that while s12 and s13 are correlated, their range is fairly un-

constrained, whereas s23 must fall within strict limits to satisfy C1
Bs

constraints. Roughly

speaking, less than half the 23-mixing is allowed to be in the down sector.

We can conclude that our Higgsless NMFV model should have no trouble satisfying
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FCNC bounds as long as certain systematic constraints on the down-sector mixing angles

are met.

2.7 Conclusion

We examined various possibilities for Higgsless RS model-building, and constructed a model

with next-to-minimal flavor violation satisfying tree-level electroweak precision and meson-

mixing constraints, as well as CDF bounds. The theory has a sufficiently high cutoff of

∼ 8 TeV to unitarize WW -scattering at LHC energies, the third generation is in the custodial

quark representation to protect the bottom couplings, and a combination of flavor symmetries

and UV confinement of the right-handed quarks suppress FCNCs. Using numerical scans,

we were able to demonstrate that our model can satisfy flavor bounds as long as the down-

sector mixing angles are Cabibbo-type and satisfy systematic constraints. We also found

quantitative error estimates for the zero mode approximation, which are important for RS

model-building with a low KK scale.

This model has distinctive experimental signatures, allowing it to be excluded early on

at the LHC. Apart from the absence of the Higgs, the usual Higgsless RS signals include [44]

a relatively light G′ with a mass below 1 TeV, as well as Z ′ and W ′ which are harder to

detect (see Section 2.3.3). More specific to our setup is an exotic X-quark with charge 5/3

and a mass of ∼ 0.5 TeV , which could be detected with less than 100 pb−1 of data [37].

This makes discovery or exclusion of this model imminent. The NMFV model also predicts

non-zero correlated flavor-changing neutral currents, which lie relatively close to current

experimental bounds and would be detected in the next generation of flavor experiments.
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CHAPTER 3

SINGLET-STABILIZED MINIMAL GAUGE MEDIATION

Based on the 2010 article “Singlet-Stabilized Minimal Gauge Mediation”, written in

collaboration with Yuhsin Tsai and published in Phys.Rev. D83 (2011) 075005.
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3.1 Introduction

Supersymmetry (SUSY) is an extremely elegant proposed solution to the hierarchy problem

in the Standard Model (SM). However, the question of how SUSY is broken and how this

breaking is communicated to the Supersymmetric Standard Model (SSM) is far from settled.

Over the years many approaches have been proposed, and one of the most promising avenues

is Gauge Mediation [45, 46]. It automatically solves the SUSY flavor problem, since soft

terms are generated by flavor-blind SM gauge interactions, and has the additional advantage

of being calculable in many cases. The simplest GM models feature a single set of messengers

that are charged under the SM gauge groups and couple to a SUSY-breaking hidden sector,

generating the SSM soft masses through loop interactions (see [47] for a review). Many

generalizations of this minimal theme exist in the literature (see, for example, [45,46,48–55]).

For reasons of simplicity, models of Direct Gauge Mediation are particularly appealing since

they do not require a separate messenger sector; the SUSY-breaking sector talks directly

with the SSM [48, 49]. By defining General Gauge Mediation as any SUSY-breaking model

where the soft masses vanish as the SM gauge couplings are taken to zero, it is possible to

parametrize the effects of Gauge Mediation in a very model-independent fashion [54].

Gauge mediation does not answer the question of how SUSY is broken, and a large

variety of SUSY-breaking models can act as its hidden sector. The most desirable scenario

is a hidden sector which breaks supersymmetry dynamically.

Constructing models of dynamical SUSY breaking is extremely difficult, since the ab-

sence of any supersymmetric vacua imposes strong constraints on the theory [56]. Those

requirements can be relaxed if we allow for the possibility that our universe lives in a long-

lived meta-stable SUSY-breaking vacuum, and Intriligator, Seiberg and Shih (ISS) generated

58



enormous interest in 2006 when they demonstrated that such scenarios are fairly generic by

showing that simple SUSY QCD with light quark masses can have metastable SUSY-breaking

vacua near the origin of field space [53]. In the strict sense we speak of Dynamical SUSY

Breaking as scenarios where the small SUSY-breaking scale is generated dynamically, which

is not the case for ISS because the small electric quark mass has to be inserted by hand.

However, it does break SUSY non-perturbatively from the point of view of the UV theory

and is under full calculational control using the Seiberg Duality [57], which together with its

sheer simplicity makes it an extremely attractive model-building arena for exploring SUSY-

breaking and Direct Gauge Mediation, and several attempts were made to incorporate it

into phenomenologically realistic models [50,58–61].

The meta-stable ground state of the unmodified ISS model has an unbroken (approx-

imate) R-symmetry that forbids gaugino masses. Breaking that symmetry spontaneously

generates gaugino masses that are at least a factor of ∼ 10 lighter than the sfermion masses.

This is actually a generic feature of many Direct Gauge Mediation models, and the resulting

split-SUSY-type spectrum is phenomenologically very undesirable since it exacerbates the

little hierarchy problem. Explicit breaking [58, 59] can generate larger masses but creates

new SUSY vacua and often creates a tension between reasonably large gaugino masses and

stability of the ISS vacuum.

Recent work by Komargodski and Shih [62] sheds light on the issue. It was shown that

the leading-order gaugino mass vanishes if the SUSY-breaking vacuum is stable within the

renormalizable theory. This applies to unmodified ISS, where in the magnetic theory the

SUSY-vacua only show up far out in field space through non-perturbative effects. The

first example of a sufficiently destabilized ISS model was [58], and an existence-proof of an

‘uplifted’ model that is stabilized on a higher branch of the pseudomoduli space of massive

SQCD was presented in [63], with later variations by [64–67].
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This brings us to the motivation for this chapter. As is evident from the above discussion,

there exists a large variety of ISS-based models of direct gauge mediation, uplifted or not.

However, most of them share several shortcomings:

1. Landau pole in the SM gauge couplings below the GUT-scale due to (sometimes a very

large amount of) excess matter in the hidden sector.

2. The addition of nongeneric or seemingly contrived couplings and deformations, which

often break global symmetries. Often there is also an unexplained partial breaking of

the hidden sector flavor symmetry, both to stabilize the vacuum and to embed the SM

gauge group.

3. Often severe fine-tuning to stabilize the vacuum.

Putting aside the fine-tuning problem for the moment, we would like to address the first two

issues. We construct a Direct Gauge Mediation model with an absolutely minimal SQCD

sector which has no Landau Pole, no flavor symmetry breaking and (depending on one’s

judgement) no contrived deformations/couplings. The price we pay for this simplicity is the

addition of the singlet sector proposed by [68]. We call this model Singlet-Stabilized Minimal

Gauge Mediation. Our UV theory will be SU(4)C × SU(5)F s-confining SQCD [69] with a

single quark mass scale. The IR theory has trivial gauge group and the standard model

gauge group is identified with the SU(5)F . There are two pseudomoduli spaces, the ISS

branch with an SU(4) flavor symmetry and a single uplifted branch with unbroken SU(5).

The vacuum is stabilized on the uplifted branch by the singlet sector. The spectrum of soft

masses is precisely that of Minimal Gauge Mediation, the best possible solution from the

point of view of the gaugino mass problem.

We also address an issue that may have not been explicitly discussed in the past: stabi-

lizing an uplifted branch of massive SQCD requires two stabilization mechanisms: one each
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for the adjoint and singlet components of the meson. This makes it extremely hard to avoid

some meson deformations.

This chapter is laid out somewhat hierarchically. In Section 3.2 we outline the construc-

tion of our model and summarize all of the important results. Each summary refers to

one of the later sections for details, but the essence of our work is contained in this short

overview. The later chapters are organized as follows. A self-contained review of the ISS

framework and related model building development is given in Section 3.3. Based on the

need for two stabilization mechanisms we derive some guidelines for building uplifted ISS

models in Section 3.4. We then move on to slightly more detailed discussions of the overall

vacuum structure and spectrum (Section 3.5), implementation of Direct Gauge Mediation

to get ISS-based model of Minimal Gauge Mediation (Section 3.6) and the mechanism of

stabilizing the uplifted vacuum (Section 3.7). We conclude with Section 3.8.

3.2 Overview of the SSMGM Model

We would like to build a model of direct gauge mediation based on the ISS model [53] that

avoids both light gauginos and Landau Poles. A review of the ISS framework for metastable

SUSY braking and direct gauge mediation can be found in section Section 3.3. In this section

we summarize the highlights of our model and its main physical consequences, while the

details of the analysis are deferred to Sections 3.4 - 3.7.

In this chapter, we construct the smallest possible ISS model stabilized on the highest

possible pseudomoduli space to ensure that all messengers contribute to the gaugino mass

(i.e. we get Minimal Gauge Mediation). This model has no Landau Pole due to minimal

excess matter and no flavor breaking. The uplifted vacuum is stabilized via a separate singlet
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sector, so we call this setup Singlet-Stabilized Minimal Gauge Mediation (SSMGM).

Constructing the Magnetic Theory

We want a trivial low-energy gauge group and an SU(Nf ) = SU(5) flavor symmetry. This

means the electric theory must be s-confining [69], and strictly speaking it is inaccurate

to speak of a magnetic theory – at low energies we use a confined description, where the

fundamental degrees of freedom are just the baryons and mesons of the original theory.

However, s-confining SQCD displays similar metastable SUSY-breaking behavior as free

magnetic SQCD, so in the interest of using familiar ISS-terminology we shall refer to the

confined description as ‘magnetic’ and the baryons as ‘magnetic squarks’.

For this choice of electric theory, pseudomoduli space of the magnetic theory only has

two branches: the ISS vacuum corresponding to k = 1 (i.e. the magnetic squarks get a VEV)

and an uplifted branch corresponding to k = 0 (i.e. no squarks get a VEV). If we could

stabilize the uplifted branch we can identify the SM gauge group with the unbroken SU(5)

flavor group. The squarks would then act as a pair of Minimal Gauge Mediation messengers

and generate gaugino masses at leading order in SUSY-breaking. The authors of [63] have

shown that meson deformations alone cannot achieve this stabilizations for such a small

flavor group. Therefore, the price we pay for the pleasing minimality in the SQCD sector is

the addition of a singlet sector with its own U(1) gauge group, which spontaneously breaks

the U(1)R symmetry by the inverted hierarchy mechanism [70] and stabilizes the uplifted

vacuum.
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In the magnetic description of the ISS model, the field content is

SQCD sector

singlet sector

SU(Nf ) U(1)B U(1)R U(1)S

φi 1 0 0

φ̄j −1 0 0

M Adj + 1 0 2 0

S 1 0 0 1

S 1 0 0 −1

Z 1 0 2 1

Z 1 0 2 −1

(3.2.1)

where U(1)S is the gauge group of the singlet sector with coupling g. The complete super-

potential is

W = hφ̄iM
i
jφ

j + (−hf 2 + dSS̄)TrM +m′(ZS̄ + SZ̄)− a detM

|Λ|Nf−3
+madjTr(M ′2), (3.2.2)

where a, h are unknown positive O(1) numbers and f,m′ are mass scales (which can be

complex) much smaller than Λ. The instanton term breaks the approximate U(1)R symmetry

and restores SUSY for large meson VEVs. To explain the last term, decompose the meson

into singlet and adjoint components M = Msing+Madj. The M ′ denotes the traceless part of

the meson, meaning the deformation only gives a mass to Madj. This is necessary because the

singlet sector couples to Msing and stabilizes it away from the origin, but Madj is tachyonic

at the origin in the uplifted pseudomoduli space. Therefore, unfortunately, we must give it

a mass by hand – this is a general feature of uplifted ISS models. For the derivation of this

model-building requirement, please refer to Section 3.4.
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The Corresponding Electric Theory & Scales of the Model

The electric description is an augmented massive s-confining SQCD with gauge group

SU(Nf − 1) = SU(4) and superpotential

W =

(
f̃ +

d̃

ΛUV

SS̄

)
TrQQ̄+m′(ZS̄ + SZ̄) +

ã

ΛUV

Tr
(
QQ̄
)′2
, (3.2.3)

where ã is assumed to be some O(1) number. We make no attempt at explaining the origin of

the small quark mass term (see [61] for example). ΛUV > Λ is the scale of some UV-physics

which generates the non-renormalizable SSQQ, QQQQ terms. The natural sizes of the IR

parameters are therefore

d ∼ Λ

ΛUV

, h ∼ 1 madj ∼
Λ2

ΛUV

∼ dΛ. (3.2.4)

To protect the Seiberg Duality transition from the physics at scale ΛUV , we conservatively

require ΛUV >∼ 100Λ. The masses f and m′ are free parameters as long as they are both

smaller than ∼ Λ/100.

A natural choice for ΛUV would be either the GUT-scale or the Planck-scale, with Λ

at least two orders of magnitude below that. In Section 3.7.2 we show that decreasing Λ

much below ∼ ΛUV /100 makes it increasingly harder to construct uplifted metastable vacua.

One can understand this quite simply as the coupling between the singlet sector and the

SQCD sector becoming too weak to stabilize the magnetic meson against the effect of the

instanton term, which wants to push the meson towards a supersymmetric vacuum far out

in field space. This favors making Λ as large as possible and justifies choosing two plausible

scenarios for us to consider:

64



Λ ΛUV

Scenario 1 1016 1018

Scenario 2 1014 1016

(all masses in GeV), setting d ∼ 0.01.

The Uplifted Vacuum

Ignoring the instanton term near the origin, FM is given by

−F ∗M i
j

= hφ̄iφ
j − (hf 2 − dSS̄)δji . (3.2.5)

Since the first term has maximal rank 1 and the second term has maximal rank 5, some

F -terms must be nonzero, breaking SUSY by the rank condition. We want to live in the

uplifted vacuum, so we set 〈φφ〉 = 0. The singlets then obtain nonzero VEV whenever

r =
√
Nfhd f/m

′ > 1, in which case FZ , FZ 6= 0 so the singlets participate in the SUSY-

breaking. Some of the φ, φ are tachyonic for

〈|Msing|〉 <
m′√
hd
, (3.2.6)

but 1-loop corrections from the messengers and the singlet sector give the meson a VEV at

〈|Msing|〉 ∼
√
h

d
f, (3.2.7)

which is large enough to stabilize the messengers and give a viable uplifted vacuum. A

complete discussion of the vacuum structure and spectrum is given in Section 3.5.

Implementing Direct Gauge Mediation

If we identify the SU(5) flavor group with the SM GUT gauge group and live in the uplifted

vacuum, we obtain a model of direct gauge mediation with a single pair of (5+5) messengers
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φ, φ. Since the messengers are tachyonic for small VEVs of the meson M they generate

gaugino masses at lowest order in SUSY-breaking – in fact, this is just an uplifted-ISS

implementation of standard Minimal Gauge Mediation. There is no Landau pole, and the

singlet degrees of freedom are all heavier than the messengers (except for the pseudomodulus,

goldstino and R-axion). See Section 3.6 for details.

Stabilizing the Uplifted Vacuum

The one-loop potential from the messengers tries to push the pseudomodulus (and hence

the meson) towards the origin where the messengers are tachyonic, while the singlet sector

contribution pushes it away from the origin. To cancel these competing contributions and

create a local minimum it is necessary to adjust the ratio m′/f to a precision of roughly

∆ ∼
(

Λ

ΛUV

)2

, (3.2.8)

which is ∼ 10−4 in our two scenarios. The tuning could be significantly reduced if one were

less conservative about the separation of the two scales Λ,ΛUV .

In our scenarios the smallness of d compared to the other couplings raises the question

of whether a one-loop analysis can be trusted. We show that two-loop corrections involving

the larger couplings do not invalidate our analysis, because they neither influence the non-

trivial part of the effective potential which generates the minimum, nor make it impossible

to cancel the other smooth contributions to high enough precision so that this interesting

part survives. Therefore, the meson can always be stabilized away from the origin.

Finally one must check that decays of the uplifted vacuum to both the ISS and the SUSY

vacuum are suppressed enough to make the lifetime longer than the age of the universe. This

is indeed the case for our model, since the bounce actions for decay to the ISS and SUSY

vacua are enhanced by (ΛUV /Λ)2 and
√

Λ/f respectively.
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See Section 3.7 for a detailed discussion on stabilization of the uplifted vacuum, the effect

of two-loop corrections and calculation of the vacuum lifetime.

3.3 Reviewing the ISS Framework

This section provides a brief summary of the ISS framework and related model building

developments which form the basis of this chapter. After outlining the general need for

metastable SUSY-breaking in gauge mediation we review the original ISS model as well as

its more recent uplifted incarnations.

3.3.1 The necessity of metastable SUSY-breaking

The reasons for pursuing theories of meta-stable SUSY-breaking go beyond the significant

model-building simplifications they potentially afford.

One possible argument goes as follows: A generic theory that breaks SUSY in its ground

state must have an R-symmetry (see e.g. [71] for a review). Since this forbids gaugino

masses the R-symmetry must be broken. If the R-symmetry is only spontaneously broken

one might think that the massless R-axion causes cosmological and astrophysical problems,

necessitating explicit R-breaking. By the Nelson-Seiberg theorem [72], this causes super-

symmetric vacua to come in from infinity, making the SUSY-breaking vacuum metastable.

However, [73] show that supergravity effects give the R-axion a mass, provided that the cos-

mological constant is tuned away, even if R-symmetry is merely spontaneously broken in the

global SUSY theory. Therefore, avoiding a massless R-axion is not a reason for metastable

SUSY-breaking. (It is still possible that the R-breaking effects of gravity do in fact desta-
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bilize the SUSY-breaking vacuum, but it is not known whether the Nelson-Seiberg theorem

applies in this case.)1

Within the framework of Direct Gauge Mediation there is, however, another very good

reason for believing in meta-stable SUSY-breaking. As first noticed in [49], many models of

Direct Gauge Mediation suffer from very small gaugino masses compared to the sfermions.

This resuls in a split-SUSY-type spectrum which reintroduces fine tuning into the Higgs

Sector. Komargodski and Shih [62] explored this issue in a relatively model-independent

way by examining generalized O’Raifeartaigh models (renormalizable Wess-Zumino models

which break supersymmetry and have canonical Kahler potentials)2. These theories form

the low-energy effective description for the hidden sector of many direct gauge mediation

scenarios.

Any generalized O’Raifeartaigh model features tree-level flat directions called pseudo-

moduli emanating from the SUSY-breaking vacuum. The pseudomodulus is the superpart-

ner of the Goldstino, and is stabilized somewhere on the pseudomoduli space by quantum

corrections. One can always write the model in the form

W = fX + (λX +m)ijψ
iψj +O(ψ3) (3.3.1)

where the scalar part of X is the pseudomodulus. If we take the ψ’s to come in 5 + 5̄ pairs

of SU(5) then this is an example of Extra-Ordinary Gauge Mediation [55]. To leading order

in the SUSY-breaking parameter F/X2, the gaugino mass is given by

mλ ∝ f
∂

∂X
log det(λX +m)messengers. (3.3.2)

One can show that if there are no tachyons for any choice of X (i.e. the pseudomoduli space is

locally stable everywhere), then det(λX+m) = detm. Therefore, if the pseudomoduli space

1We thank Zohar Komargodski and Jesse Thaler for pointing this out to us.
2 [74] and [75] extend this discussion to semi-Direct Gauge Mediation and models with non-canonical

Kahler terms, respectively.
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is stable everywhere, the gaugino masses vanish at leading order. Since sfermion masses are

created at leading order, we have a split-SUSY spectrum.

This shows that in models of Direct Gauge Mediation, the problem of the anomalously

small gaugino mass is related to the vacuum structure of the theory. In order to have a

gaugino mass at leading order in SUSY-breaking, it is necessary to live in a metastable

vacuum from which lower-lying vacua (SUSY-breaking or not) are accessible within the

renormalizable theory. SUSY-vacua created by non-perturbative effects far out in field space

do not generate a large gaugino mass. (Notice that Minimal Gauge Mediation corresponds

to m = 0 and a single messenger pair, so the messengers are tachyonic for X2 < F and large

gaugino masses are generated.)

Since the gaugino mass formula eq. (3.3.2) is only valid to lowest order in F/X2 one

might think that sizeable gaugino masses could be generated for large SUSY-breaking. We

conducted a small study within the framework of Extra-Ordinary Gauge Mediation using

both analytical and numerical techniques, and like many before us [47,76], we conclude that

the gaugino-to-sfermion mass ratio mλ/mf̃ can not be tuned to be larger than ∼ 1/10 due

to a curious numerical suppression of the subleading terms.

3.3.2 The ISS Model

The authors of [53] considered UV-free SQCD with an SU(Nc) gauge group and Nf flavors

of electric quarks with a small mass term

W = mQiQ̄i (3.3.3)

where m � Λ, denoting Λ as the strong coupling scale of the theory. In the free magnetic

phase Nc < Nf <
3
2
Nc, the low-energy theory can be studied using Seiberg Duality [57] and
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is simply IR-free SQCD with an SU(Nf − Nc) gauge group, a gauge singlet meson Φ and

Nf flavors of magnetic quarks q, q̄, as well as a Landau Pole at scale Λm.

Writing N = Nf −Nc <
1
3
Nf , the symmetries of the IR theory are [SU(N)]×SU(Nf )×

U(1)B×U(1)R (gauged symmetries in square brackets)3. The fields have charges Φ: (1,Adj+

1)0,2, q: (N, N̄f )1,0 and q̄: (N̄ ,Nf )−1,0. The Kahler terms of the low-energy effective degrees

of freedom are canonical and the superpotential is

W = hqai Φ
i
j q̄
j
a − hµ2Φi

i (3.3.4)

where a, b, . . . are gauge indices and i, j, . . . are flavor indices and µ ∼
√

Λm.

The Φ F-terms are

−F ∗Φij = hqai q̄
j
a − hµ2δij. (3.3.5)

They cannot all be zero, since the first term has rank at most N and the second term has

rank Nf ≥ 3N , so supersymmetry is broken by the rank condition. Expanding around the

vacuum, the fields can be written as

Φ =

N NF−N V Y

Y Z

 N

NF−N

q =
N NF−N(
µ+ χ1 ρ1

)
N

q =

N µ+ χ1

ρ1

 N

NF−N

(3.3.6)

with matrix dimensions indicated. (Writing the squark fields with a subscript 1 will be useful

for comparison to the uplifted ISS case.) The gauge symmetry is completely higgsed by the

squark VEVs, and the surviving global symmetry is SU(N)diag × SU(Nf − N) × U(1)B′ ×

U(1)R. The spectrum divides into distinct sectors. (We take µ to be real for simplicity, and

prime denotes traceless part.)

3We emphasize that this U(1)R symmetry is anomalous under magnetic gauge interactions, which leads
to the non-perturbative restoration of supersymmetry discussed below.
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1. V and (χ1 + χ̄1) get mass ∼ |hµ| whereas (χ1 − χ̄1)′ gets eaten by the magnetic

gauge supermultiplet via the superHiggs mechanism. This part of the spectrum is

supersymmetric at tree-level.

2. Tr(χ1 − χ̄1): the fermion is massless at tree level and the real part of the scalar is a

classically flat direction (a pseudomodulus) which gets stabilized at zero. Both these

fields obtain a mass at loop-level. The imaginary part of the scalar is the Goldstone

boson of a broken U(1) symmetry (a mixture of U(1)B and a diagonal SU(Nf ) gener-

ator) and is massless to all orders. This part of the spectrum can be made massive by

gauging the U(1) symmetry.

3. Z is another pseudomodulus which gets stabilized at the origin and obtains a loop-

suppressed mass.

4. Y, Ȳ , Im(ρ1 + ρ̄1),Re(ρ1− ρ̄1) get masses ∼ |hµ|. Re(ρ1 + ρ̄1), Im(ρ1− ρ̄1) are goldstone

bosons of the broken flavor symmetry and massless

In the original ISS model as it is defined above, both pseudomoduli are stabilized at the origin

by quantum corrections and get a loop-suppressed mass. This leaves the R-symmetry un-

broken and forbids gaugino masses, so for use in realistic scenarios of direct gauge mediation

the ISS model must be modified somehow to break R-symmetry.

In the magnetic theory supersymmetry is restored non-perturbatively: for large Φ the

squarks get a large mass and can be integrated out, leaving a pure SYM theory which

undergoes gaugino condensation and has SUSY-vacua at

〈q〉 = 0, 〈q̄〉 = 0, 〈Φ〉SUSY = Λm

(
µ

Λm

)2N/Nf−N

1. (3.3.7)

This makes the SUSY-breaking vacuum at the orgin meta-stable, but the smallness of the

ratio µ/Λm guarantees that the false vacuum is parametrically long-lived.
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We can understand this metastability in terms of the connection between R-symmetry

and SUSY-breaking. The UV theory does not have an exact R-symmetry, but it emerges as

an accidental symmetry near the origin of the IR theory. That U(1)R is anomalous under

gauge interactions and hence SUSY is restored by non-perturbative operators far out in

field space. The ’smallness’ of the explicit R-breaking near the origin guarantees that the

SUSY-breaking vacuum is long-lived.

Since it will be of special interest to us later we should make a comment about the s-

confining case of Nf = Nc + 1 [69]. The magnetic gauge group is trivial, but SUSY is still

restored far out in field space. This is due to the slightly modified dual superpotential, which

includes what looks like an instanton term:

W = hTrqΦq̄ − hTrµ2Φ + c
1

ΛNf−3
det Φ. (3.3.8)

Modifying the ISS model for Direct Gauge Mediation

The ISS model looks like a promising framework for models of Direct Gauge Mediation.

For example, one could gauge the unbroken SU(Nf − N) flavor symmetry and embed the

SM gauge group, which would give gauge charges to the (anti-)fundamentals ρ1, ρ̄1, Y, Ȳ and

make them Extra-Ordinary Gauge Mediation [55] messengers, as well as the Adjoint+Singlet

Z. The main obstacle to such a construction is the unbroken R-symmetry in the original ISS

model. (Many variations which break U(1)R spontaneously or explicitly have been proposed,

and this discussion is not meant to be exhaustive.) Models with meson deformations [58,59]

add operators of the form ∼ 1
ΛUV

QQ̄QQ̄ in the UV theory which gives operators ∼ Φ2 in the

IR theory with suppressed coefficients. This explicitly breaks the R-symmetry and gives the

singlet component of the meson a VEV, generating a gaugino mass. These deformations also

make the (shifted) ISS-vacuum more unstable because new SUSY-vacua are introduced. This
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is per se desirable, since a nonzero gaugino mass at leading order in SUSY-breaking requires

the existence of lower-lying vacua within the renormalizable theory, however there is a strong

tension between making the gaugino mass somewhat comparable to the sfermion mass and

making the vacuum too unstable. Another possibility is adding a baryon deformation to the

superpotential, which in the example of [60] involves adding a Λ2
UV -suppressed operator in

the UV theory and breaking R-symmetry spontaneously, generating a very small gaugino

mass. A third possibility is the addition of a singlet-sector with its own U(1) gauge symmetry

to break R-symmetry spontaneously [61,68] via the Inverted Hierarchy Mechanism [70]. This

again gives a small gaugino mass, and the parameters have to be fine-tuned to stabilize the

vacuum.

A common problem with these embeddings is the existence of a Landau Pole, primarily

due to the existence of the SM-charged adjoint meson, and some of them also feature non-

generic couplings or deformations with somewhat non-trivial flavor contractions.

3.3.3 Uplifting the ISS Model

It would be desirable to obtain a large gaugino mass in a direct gauge mediation model

derived from massive SQCD (mSQCD). Adding meson deformations introduces new vacua

and generates a gaugino mass at leading order, but the strong tension between stability and

sizeable gaugino masses motivates the search for a different kind of metastability: finding a

new stable vacuum in a higher branch of the pseudomoduli space of mSQCD (‘uplifting’ the

vacuum). This possibility was first realized by Giveon, Katz and Komargodski [63], and we

will sketch out their results below.

We start with the same UV theory as the standard ISS model eq. (3.3.3). In the ISS
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vacuum, the squark VEV matrix has rank〈qq̄〉 = N . However, there are higher, unstable

pseudomoduli spaces with rank〈qq̄〉 = k, with k = 0, 1, 2, . . . N − 1. If we assume the squark

VEV matrix has rank k < N the surviving symmetry is [SU(N − k)]× SU(k)D × SU(Nf −

k) × U(1)B′ × U(1)B′′ . (As we will see we must assume that the meson is stabilized at a

nonzero value, breaking the U(1)R symmetry.) We expand around the squark VEV and split

the fields into representations of the unbroken symmetries:

Φ =

k NF−k V Y

Y Z

 k

NF−k

q =

k NF−k µ+ χ1 ρ1

χ2 ρ2

 k

N−k

q =

k N−k µ+ χ1 χ2

ρ1 ρ2

 k

NF−k

(3.3.9)

The spectrum can again be described in terms of a few separate sectors:

1. (χ2 ± χ̄2), (χ1 − χ̄1) get eaten by the massive gauge supermultiplets. Notice how

Tr(χ1 − χ̄1) is no longer massless at tree-level because the broken U(1) is a mixture

between a gauged diagonal generator and the U(1)B.

2. V , (χ1 + χ̄1) get F -term mass ∼ |hµ|

3. The Y, ρ, Z-type fields can be analyzed separately. The (Y, Ȳ , ρ1, ρ̄1) fields obtain Z-

dependent masses and contain 2k(Nf − k) flavor goldstone bosons. In a scenario of

Extra-Ordinary Gauge Mediation, these fields constitute messengers that are stable

for all Z and hence do not contribute to the gaugino mass. The (ρ2, ρ̄2) scalars are

tachyonic for |Z| < |µ|, as we would expect from living on an uplifted pseudomoduli

space, but if Z can be stabilized at a large-enough value they too are stable and act

as messengers which do contribute to the gaugino mass at leading order.

The model-building quest is now to break R-symmetry and stabilize the Z at a large enough

value to ensure that all scalars are non-tachyonic. The authors of [63] show that in a
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renormalizable Wess-Zumino model, no stable SUSY-breaking minimum exists for VEVs

much above the highest mass scale of the theory. Hence stabilizing Z > µ is not feasible

in the original model. They circumvent this problem by introducing a mass hierarchy into

the quark masses, with the first k flavors having mass µ1 and the remaining Nf − k flavors

having a much smaller mass µ2. This means that the ρ2, ρ̄2 fields are tachyonic for Z <

µ2 � µ1, so stabilizing the meson VEV in the region µ2 < Z < µ1 is possible. They achieve

this stabilization for large flavor groups and k close to N by adding finely-tuned meson

deformations Tr(Z2), (TrZ)2. This model is a very important proof-of-principle and it does

achieve sizeable gaugino masses as desired, but its drawbacks (Landau pole & non-minimal

hidden sector, imposed flavor-breaking mass hierarchies and meson deformations) motivated

further research into stabilizing an uplifted ISS model.

Further Developments in Stabilizing Uplifted ISS

There have since been other attempts at stabilizing the uplifted ISS model. [65] examined

the equivalent case for SO(10)-unified Direct Gauge Mediation, [64] considered stabilization

using SUGRA, and issues of cosmological vacuum selection were discussed in [66]. Stabiliza-

tion of an uplifted ISS model via baryon deformations was investigated in [67], and while a

stable vacuum can be achieved this way for much smaller flavor groups than the proof-of-

principle case discussed above, that model also features many non-renormalizable operators

with non-trivial flavor contractions and non-generic couplings, as well as an explicit breaking

of the hidden sector flavor symmetry. It is in this context that we are motivated to construct

an uplifted ISS model with a minimal hidden sector.
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3.4 The Adjoint Instability

Before introducing our minimal uplifted ISS model in the next section we examine the general

requirements for stabilizing a higher pseudomoduli space of massive SQCD (mSQCD). We

emphasize a hitherto neglected point: there must actually be two stabilization mechanisms,

one for the singlet and one for the adjoint component of the SU(Nf − k) meson Z. This

in turn yields to some very general requirements on model building, which suggest that

single-trace meson deformations are very hard to avoid in uplifted ISS models.

3.4.1 The messenger contribution to Veff(Z)

Let us examine an uplifted pseudomoduli space in the unmodified ISS model. (We will later

add some structure to stabilize it.) The SU(Nf − k) meson Z is a pseudomodulus which is

flat at tree-level. The leading contribution to its potential arises from one-loop corrections

to the vacuum energy and can be computed using the Coleman-Weinberg formula

VCW =
1

64π2
STrM4 log

M2

Λ2
m

(3.4.1)

where Λm is the cutoff of the magnetic theory. Since the tree-level spectrum of the magnetic

gauge vector multiplet is supersymmetric it does not contribute at one-loop level, and by

inspecting the superpotential it is clear that the masses of V, (χ1 + χ̄1) do not depend on Z

at tree-level. Therefore, we only need to consider the dependence of the ρ, Y -type spectrum

on Z to determine its 1-loop potential. The relevant part of the superpotential is

1

h
WZ = −µ2

2Z
i
i + ρ2jZ

j
i ρ̄

i
2 + ρ1jZ

j
i ρ̄

i
1 + µ1(ρ1iȲ

i + Yiρ̄
i
1) (3.4.2)

where i, j are SU(Nf − k) flavor indices and we hide the trivial color contractions. We have

also implemented the flavor-breaking of [63] for generality.
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Since VCW due to messengers is generated by single planar Z-loops, it can only depend

on single-trace combinations of the form Tr[(ZZ†)n]. Furthermore, even if 〈Z〉 breaks the

flavor symmetry, we can use broken SU(Nf − k) generators to diagonalize 〈Z〉. Therefore it

is justified to diagonalize Z and treat the diagonal components separately. It is then easy to

verify that V mess
CW slopes towards the region where ρ2, ρ̄2 become tachyonic.

It is instructive to phrase this familiar argument in a slightly different way. Decompose

the meson Z into adjoint and singlet components:

Zi
j = ZA

adjT
Ai

j + ZsingTS (3.4.3)

where TA are the usual SU(NF − k)-generators with a slightly modified canonical normal-

ization due to the Z being a complex scalar: TrTATB = δAB, TS = 1√
NF−k

1. Our basic

dynamical degrees of freedom are then the (Nf − k)2 − 1 complex fields ZA
adj and the flavor

singlet complex field Zsing.

We can do a flavor transformation and push all the VEV of the adjoint into one of the

diagonal generators. Call this generator T̃adj and the associated meson component Z̃adj.

Then

〈Z〉 = 〈Z̃adj〉T̃adj + 〈Zsing〉TS (3.4.4)

Replacing Z → Z̃adjT̃adj +ZsingTS in Tr[(ZZ†)n] we can see that the expression is symmetric

under exchange of Z̃adj and Zsing, since the generators satisfy TrTST̃adj = 0 and TrT 2 = 1.

The single-trace condition is therefore equivalent to saying that the adjoint and the singlet

components make identical contributions to VCW. Hence the behavior of V mess
CW is dictated by

its dependence on the singlet component.
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3.4.2 Model Building Requirements for Stabilizing Z

This reasoning shows that uplifted ISS models really need two stabilization mechanisms:

(i) Zsing must be stabilized at a nonzero VEV large enough to make the messengers non-

tachyonic, and (ii) Zadj must be stabilized at zero VEV. If the effective potential is a single-

trace object then both requirements are automatically satisfied. However, if only the singlet

is stabilized (separately from the adjoint) then the vacuum will be unstable along the Zadj

direction and the fields roll towards the lower-lying ISS vacuum. We call this phenomenon

the Adjoint Instability, and it has direct model building implications. Stabilizing the adjoint

in an uplifted vacuum can be done in two ways.

1. Add an additional flavor adjoint. This would allow us to give Zadj a mass (either at

tree-level or, more indirectly, at 1-loop).

2. Alternatively, to obtain an effective Z2
adj term we can do one of the following:

(a) Break R-symmetry explicitly by adding meson deformations like (TrZ)2,Tr(Z2).

(b) Break R-symmetry spontaneously, e.g. by introducing a field A with R-charge

−2 which somehow gets a VEV and gives a mass to the adjoint via the coupling

W ⊃ AMM .

Adding a flavor adjoint would greatly exacerbate the Landau Pole Problem, and Option 2 (b)

is not very attractive because the corresponding operators in the UV would be even more

non-renormalizable than meson deformations. (Not to mention the additional machinery

required to give A its VEV.) 2 (a) seems like the best solution.

This was also the path taken by the authors of [63]. They stabilize the vacuum by

effectively adding a single-trace deformation Tr(Z2). This deformation treats the singlet

and the adjoint equally, and therefore stabilizing the singlet also stabilizes the adjoint. To
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lift the mass of Zadj and avoid a Landau Pole below Λm without destabilizing the nonzero

singlet VEV they must then add another single-trace deformation Tr(Z2
adj). [67] must also

include a single-trace meson deformation to stabilize the meson.

This leads us to conclude that meson deformations ∼ 1
ΛUV

QQ̄QQ̄ are extremely hard to

avoid in mSQCD models with meta-stable SUSY-breaking vacua on uplifted pseudomoduli

spaces.

3.5 Vacuum Structure & Spectrum

Near the origin of field space there are two branches of the pseudomoduli space for this

model. One is the ISS vacuum, where k = rank〈φ̄φ〉 = 1 and the flavor symmetry is broken

down to SU(Nf − 1). The other is the uplifted vacuum where k = rank〈φ̄φ〉 = 0, i.e. no

squark VEV. To solve the gaugino mass problem we must stabilize the uplifted vacuum.

Before we can analyze that stabilization, we must understand the structure of the vacuum

manifold at tree-level.

3.5.1 The Uplifted Vacuum (k = 0)

We want to live in this uplifted vacuum without squark VEVs to solve the gaugino mass prob-

lem. With the meson decomposed into singlet and adjoint components, the superpotential

79



is

W = h φ̄ ·Madj · φ+madjTr(M2
adj)

+

[
hφ̄φ√
Nf

+
√
Nf

(
−hf 2 + dSS̄

)]
Msing +m′(ZS̄ + SZ̄)

− a

N
Nf/2

f

M
Nf
sing

|Λ|Nf−3
+ . . . (3.5.1)

where we have omitted Λ-suppressed interactions of Madj. For simplicity, let f , m′ and Λ as

well as a, h be real and positive throughout this analysis. For now we simply assume that the

singlet sector stabilizes Msing at large enough VEV to make the messengers non-tachyonic,

and we postpone the detailed discussion of stabilizing the uplifted vacuum to Section 3.7.

Tree-level VEVs near origin of field space

Close to the origin of field space we can ignore the instanton term in determining the VEVs

of the fields. For 〈Mad〉 = 0 and 〈φ̄φ〉 = 0 we then only need to analyze the second line of

eq. (3.5.1) and the tree-level potential for the singlet scalar VEVs becomes

Vtree →
1

2
g2
(
|S|2 + |Z|2 − |S̄|2 − |Z̄|2

)
+
∣∣∣d√NfMsingS +m′Z

∣∣∣2 +
∣∣∣d√NfMsingS̄ +m′Z̄

∣∣∣2
+Nf

∣∣dSS̄ − hf 2
∣∣2 + |m′S|2 +

∣∣m′S̄∣∣2 (3.5.2)

The first line is the D-term potential for the singlet U(1)S gauge group, and can be set to

zero by imposing |S| = |S̄|, |Z| = |Z̄|. The FS,S̄-terms in the second line vanish for

〈Z〉 = −d
√
Nf
〈MsingS〉

m′
, 〈Z̄〉 = −d

√
Nf
〈MsingS̄〉

m′
. (3.5.3)

This leaves the last line as the potential for S, S̄, which implies

〈SS̄〉 =
hf 2

d
− m′2

d2Nf

whenever r > 1 where r =
√
Nfhd

f

m′
. (3.5.4)
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(Often it is convenient to parametrize f in terms of r, as we will see below.) We will assume

that this condition is satisfied so that the singlets get a VEV and break the U(1)S gauge

symmetry, which in turn can lead to spontaneous R-symmetry breaking via the inverted

hierarchy mechanism. The only nonzero F-terms are

〈FMsing
〉 = − m′2

d
√
Nf

, 〈FZ,Z̄〉 =
m′2

d
√
Nf

√
hf 2dNf

m′2
− 1, (3.5.5)

and the total vacuum energy is

〈V k=0
0 〉 = 2hf 2m

′2

d
− m′4

d2Nf

(3.5.6)

To be precise we decompose all the complex scalar singlets into amplitudes and phases:

S = σSe
i
πS
〈σS〉 , Z = σZe

i
πZ
〈σZ〉 , Msing = σMsing

e
i
πMsing
〈σMsing 〉 , etc. (3.5.7)

This reveals that of the 5 phases, three are fixed at tree-level whereas the other two are the

U(1)S Nambu-Goldstone boson and the R-axion

πR =
1

Ftot

(
|FMsing

|πMsing
+ |FZ |πZ + |FZ̄ |πZ̄

)
∝ 〈σMsing

〉πMsing
+〈σZ〉πZ +〈σZ̄〉πZ̄ (3.5.8)

respectively. Of the 5 amplitudes, one combination

σPM =
1

Ftot

(
|FMsing

|σMsing
+ |FZ |σZ + |FZ̄ |σZ̄

)
(3.5.9)

is undetermined at tree-level. This is the pseudomodulus, part of the scalar superpartner of

the Goldstino, and since its value affects the masses of the other particles this flat direction

is lifted at 1-loop, see eq. (3.4.1).

Tree-level spectrum

The Madj has mass madj. The messenger fermion and scalar masses are

mφ =
h√
Nf

Msing m2
φ̃

= m2
φ ±

h

dNf

m′
2
. (3.5.10)
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Quantum corrections need to stabilize Msing in a region where the messengers are not tachy-

onic, hence we require

〈|Msing|〉 >
m′√
hd
. (3.5.11)

We define the singlet sector to mean the superfields S, S̄, Z, Z̄,Msing and the vector

superfield of the U(1)S. The singlet spectrum is complicated and we discuss it in detail

when analyzing the stabilization of the uplifted vacuum in Section 3.7. The vector multiplet

eats a chiral multiplet via the superHiggs mechanism and two (one) chiral multiplets get an

F -term (D-term) mass. One multiplet is massless at tree-level: it contains the Goldstino,

the pseudomodulus and the R-axion.

Effect of instanton term

Turning on the instanton term creates SUSY-vacua far out in field space. The additional

terms in FMsing
are easily accounted for by replacing hf 2 → hf̃ 2 in eq. (3.5.2), where

hf̃ 2 = hf 2 − a

N
(Nf−1)/2

f

M
Nf−1
sing

ΛNf−3
. (3.5.12)

(Some of the previously undetermined phases now also get a non-zero VEV, but this does

not affect the one-loop stabilization of the pseudomodulus.) As Msing increases hf̃ 2 → 0 and

hence S, S̄, Z, Z̄ → 0. Hence

〈Msing〉SUSY ∼ f

(
Λ

f

)(Nf−3)/(Nf−1)
=

Nf→5

√
fΛ. (3.5.13)

The small value of f/Λ is crucial for guaranteeing longevity of the uplifted vacuum. The effect

of these R-breaking terms as well as the stabilization of the uplifted vacuum via quantum

corrections is illustrated in fig. 3.1.

Near the origin of field space we care about the changed behavior of the R-axion and the

pseudomodulus. The explicit breaking of the R-symmetry gives a small mass to the R-axion.
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(a) (b) (c)

Figure 3.1: (a) The tree-level potential without the instanton term as a
function of |Msing| and S, where we have enforced tree-level VEVs
|S̄| = |S| and Z = Z̄ = −d

√
NfMsingS/m

′. The valley marked
with a green band is perfectly flat in the |Msing| direction and
shows that the potential has a SUSY-breaking minimum for S2 =
hf2

d
− m′2

d2Nf
. Note that the messengers are tachyonic for |Msing| <

m′/
√
dh. (b) The same potential with the instanton term added.

The minimum along the S-direction is approximately unchanged
close to the origin but is significantly shifted as we move outwards
along the |Msing| direction. As we walk along the the valley in the
|Msing| direction (which now tilts slightly away from the origin)
we eventually reach the SUSY-minimum at |Msing| ∼

√
Λf and

S,Z = 0. (c) We compute quantum corrections to the potential
along the pseudomodulus direction, i.e. the green band in (b), by
setting all fields to their VEVs in terms of |Msing|. The vacuum

is stabilized at |Msing| ∼
√
h/d f −→ Z, Z̄ ∼

√
h/d f 2/m′.

The parameters used for these plots in units of m′ were Nf = 5,
Λ = 3.8× 109, f = 63 and (g, d, h) = (0.02513, 0.02, 1).

Note that even though the large adjoint mass represents a very large explicit R-breaking,

since the adjoint does not get a VEV it is not part of the axion. The pseudomodulus is no

longer a flat direction at tree-level, but is slightly tilted away from the origin.
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Tree-level zero modes

The fermionic component of the tree-level zero mode multiplet is the Goldstino, which is

eaten by the Gravitino once SUSY is gauged and gets the familiar mass

mG̃ =
Ftot√
3M∗

pl

≈ 0.4
r

d

m′2

M∗
pl

+O(r−1) for Nf = 5 , (3.5.14)

where M∗
pl = (8πGN)−1/2 = 2.4 × 1018GeV is the reduced Planck Mass. (Since r =√

hdNff/m
′ > 1 and d� 1, it is often instructive to expand for large r or large f/m′.) The

scalar components are the pseudomodulus and the R-axion (eqns 3.5.8, 3.5.9). To compute

the 1-loop potential for the pseudoflat direction we set all their phases to their tree-level

VEV or zero and express 〈Z〉, 〈Z̄〉 in terms of Msing, which gives VCW(Msing). We emphasize

that |Msing| is not the pure pseudomodulus, but its value parametrizes where we are along

the pseudo-flat direction in field space.1 This gives Veff (Msing) = Vtree(Msing)+VCW(Msing).

As per the discussion above, the first term is nonzero if we include the instanton term.

Minimizing Veff gives 〈Msing〉 and hence 〈Z〉, 〈Z̄〉, 〈S〉, 〈S̄〉. To compute the derivative Veff

along the flat direction we differentiate with respect to Msing and multiply by a scaling fac-

tor FMsing
/Ftot to account for the fact that moving by δ along the Msing axis moves us by

δ
√

(FZ/FMsing
)2 + (FZ̄/FMsing

)2 + 1 along the pseudo-flat direction. Hence we obtain the

pseudomodulus mass as

m2
PM =

(
FMsing

Ftot

)2
d2Veff

d(Msing)2
. (3.5.15)

A similar argument holds for the R-axion mass if we restore the undetermined phases in the

tree-level potential. To ensure that we move along the correct direction in field space we

impose πZ,Z̄ = FZ
FMsing

πMsing
, differentiate with respect to πMsing

and apply the same scaling

factor.

1To avoid clutter, we omit the absolute value signs around Msing from now on – they are understood
when we talk about Msing as parameterizing the pseudomodulus direction.
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These masses can be readily estimated. As we will see in Section 3.7, Msing is stabilized

at ∼
√
d/hf . Therefore it is is convenient to parametrize

〈Msing〉 = b

√
h

d
f, where b ∼ O(1). (3.5.16)

To obtain the R-axion mass we differentiate the tree-level potential with all VEVs subbed

in. To lowest order in 1/r and 1/Λ we find that

FMsing

Ftot
≈ − 1√

2dhNf

m′

f
−→ mR ≈ 0.2 b

√
a

d3

m′2

Λ
for Nf = 5. (3.5.17)

To estimate the mass of the pseudomodulus we pre-empt another result from Section 3.7.

The rough scale of the second derivative of the 1-loop potential is∣∣∣∣ d2VCW

d(Msing)2

∣∣∣∣ ∼ 1

16π2

m′4

〈Msing〉2
(3.5.18)

(where Z, Z̄ → Z(Msing) = −d
√
NfMsing〈S〉/m′). To lowest order in 1/r this yields

mPM ∼
1√

32Nf π

m′

bh

(
m′

f

)2

≈ 0.1
d

b

m′

r2
for Nf = 5. (3.5.19)

Notice the m′/f suppression, simply due to the fact that if f � m′ then FMsing
� 〈Msing〉2

(similarly for Z, Z̄) and SUSY-breaking is weak. (Effectively this can also be seen as a

suppression for small d, since decreasing d increases the minimum size of f to ensure eq.

(3.5.4) is satisfied.)

3.5.2 The ISS Vacuum (k = 1)

Since this is very similar to a standard (N,Nf ) = (1, 5) ISS vacuum we will use the notation

of Section 3.3.2 (except for renaming the SU(Nf − N) meson Z → M̃ to avoid confusion

with the singlets Z̄, Z) and split up the meson according to eq. (3.4.3). The squark VEV

〈χ̄1χ1〉 = f 2− d
h
SS̄ sets FV = 0, with all other SQCD-sector VEVs zero (except M̃sing). This
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gives the same singlet potential as eq. (3.5.2) with Nf → Nf − 1. Therefore the VEVs at

tree-level close to the origin are 〈|S|〉 = 〈|S̄|〉, 〈|Z|〉 = 〈|Z̄|〉, 〈Z〉 = −
√
Nf − 1

〈M̃singS〉
m′

, and

〈SS̄〉 =
hf 2

d
− m′2

d2(Nf − 1)
whenever hf 2 >

m′2

(Nf − 1)d
. (3.5.20)

If this condition is not satisfied the singlets do not get a VEV and we have a standard

ISS vacuum. If we assume the condition holds (slightly stronger than eq. (3.5.4)), then

〈χ̄1χ1〉 = m′2/(dhNf − 1), meaning the scale of the squark VEV is given by m′ instead of f .

The total vacuum energy is

〈V k=1
0 〉 = 2hf 2m

′2

d
− m′4

d2(Nf − 1)
(3.5.21)

The SQCD spectrum is the same as ISS with mass scale ∼ m′, and the singlet spectrum

looks very similar to the uplifted case. We will not dwell on analyzing this vacuum, we only

needed to know the potential difference

∆V0 ≡ 〈V k=0
0 〉 − 〈V k=1

0 〉 =
m′4

d2

1

Nf (Nf − 1)
(3.5.22)

to calculate the uplifted vacuum lifetime in Section 3.7.4.

3.6 Direct Gauge Mediation

If we weakly gauge the SU(5) flavor group and identify it with the SM GUT gauge group,

this model realizes Minimal Gauge Mediation with a single 5⊕ 5̄ messenger pair:

Weff = Xφ̄iφ
i, (3.6.1)

where the SUSY-breaking spurions X = X + θ2F is given by

X =
h√
Nf

Msing → F =
h√
Nf

FMsing
= − h

dNf

m′
2
. (3.6.2)
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Gaugino and sfermion masses are generated via the well-known 1- and 2-loop diagrams

and are parametrically the same size, solving the Gaugino Mass Problem. Using equations

(3.2.4), (3.5.16) and (3.5.4) we can see that SUSY-breaking is weak:∣∣∣∣X2

F

∣∣∣∣ =

(
f

m′

)2

h2b2 >
hb2

dNf

� 1, (3.6.3)

and therefore the soft masses are given by the usual simple expression

msoft ∼
α

4π

∣∣∣∣FX
∣∣∣∣ . (3.6.4)

Requiring TeV-scale soft masses sets |F/X| ∼ 100 TeV . This determines the scale of m′

(and hence f):

m′ ∼
∣∣∣∣FX
∣∣∣∣ br, (3.6.5)

which sets the messenger mass at

X ∼ b2r2 h

dNf

∣∣∣∣FX
∣∣∣∣ ∼ r2 0.01

d
× (107GeV ) (3.6.6)

in the scenarios we are considering. The pseudomodulus, and Goldstino mass scales are

mPM ∼ 1

r

(
d

0.01

)
× (10GeV ) (3.6.7)

mG̃ ∼ b2 r3

(
0.01

d

)
× ( keV ). (3.6.8)

The field theory contribution to the R-axion mass is

mR ∼ b3 r2

(
0.01

d

)3/2
ΛGUT

Λ
× (100 keV ). (3.6.9)

Depending on the size of r and b as well as the choice of scenario, this can be smaller or

larger than the BPR contribution [73].

Again using results from the next section for convenience, the mass of the singlet vector

multiplet is similar to the messenger mass whereas the other singlets (with the exception of
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the tree-level zero modes) obtain a smaller mass ∼ r2|F/X|. Stabilizing the uplifted vacuum

in scenarios 1 and 2 requires r <∼ 102 and r <∼ 101 respectively, but saturating the former

bound gives a very heavy gravitino and reintroduces the SUSY flavor problem. Therefore

1 < r <∼ 101 is the relevant parameter range for our model.

Since the adjoint meson gets a mass that is only a few orders of magnitude below the

duality transition scale Λ, which itself is either at or close to the GUT-scale, there is no

Landau Pole in our model. (Scenario 2 is also an example of deflected unification [77].)

However, we emphasize that due to the minimality of this hidden sector such a heavy adjoint

is not required to solve the Landau Pole Problem – if the adjoint mass was generated by

some other mechanism it could be as low as ∼ 10− 100 TeV .

3.7 Stabilizing the Uplifted Vacuum

We now examine how the singlet sector originally proposed in [68] stabilizes the uplifted

vacuum. The stabilization is possible due to the singlet sector’s U(1)S gauge group [70],

which can supply a negative coefficient to the logarithmic dependence of VCW and push the

minimum away from the origin beyond the region where the messengers are tachyonic. We

perform this analysis to 1-loop order even though d� h and 2-loop effects from h might be

competitive. This will be justified in Section 3.7.3. For simplicity we set a = 1 throughout.

The effective potential is given by

Veff = Vtree + VCW, (3.7.1)

where all tree-level VEVs and masses are expressed as functions of Msing, which parametrizes
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the pseudomodulus VEV. Vtree is easily obtained by combining equations (3.5.6) and (3.5.12).

Vtree =
2hf 2m′2

d
− m′4

d2Nf

− 2m′2

d

a

N
(Nf−1)/2

f

M
Nf−1
sing

ΛNf−3
. (3.7.2)

This slopes away from the origin due to the effect of the instanton term. VCW is computed by

obtaining the mass spectrum without the effects of the instanton term1 and using eq. (3.4.1).

3.7.1 Organizing the Spectrum & Contributions to VCW

All nonzero tree-level masses depend on the value of the pseudomodulus, parametrized by

the value of Msing by imposing Z = Z̄ = −d
√
NfSMsing/m

′. It is helpful to express all

masses in units of m′ and define the following set of parameters:

x = d
√
Nf
|Msing|
m′

, r =
√
hdNf

f

m′
, q =

4

Nf

g2

d2
(r2 − 1) , p =

h

dNf

. (3.7.3)

In this parametrization, h just rescales the other variables. r > 1 is required for singlet

VEVs. This parametrization has the advantage that the masses in every split supermultiplet

depend only on x and one of the r, q, p parameters. This allows us to study the different

VCW contributions independently as functions of just two variables each.

• The messenger masses can be written as m2
F = p2x2 and m2

S = p2x2±p, and are tachy-

onic for x < 1/
√
p (recall that we use m′ as our unit of mass in this parameterization).

In the leading-log approximation for large x their contribution to the 1-loop potential

is V mess
CW ≈ 1

64π2 8Nfp
2 log x. (We will ignore additive constants to the potential.)

• Two singlet chiral supermultiplets have F -term masses that depend only on r and x.

For large x their masses go as ∼ x and ∼ 1/x, so we denote them Rheavy and Rlight

1If the instanton term is so large that its backreaction significantly affects the 1-loop potential, its tree-
contribution will be so large as to erase any minima created by VCW anyway.
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respectively. The contribution V Rheavy
CW stands out because it is the only one that always

has a local minimum, located at x ≈ 1.3r − 1 to a very good approximation.

For most values of the parameters the other contributions to the 1-loop potential wash

out this minimum and the uplifted pseudomoduli space is not stabilized. However, if

the other components cancel to high enough precision then the minimum survives and

is located at 〈x〉 ∼ r > 1 (see eq. (3.5.4)). This justifies the parametrization

〈Msing〉 = b

√
h

d
f where b = O(1). (3.7.4)

For large x the light multiplet does not contribute to VCW, whereas V Rheavy
CW ≈

1
64π2 4 log x. Near the local minimum of the total 1-loop potential, their masses to

lowest order in 1/r are m2
Rheavy
Rlight

≈ 1
2

(
4 + b2 ± b

√
8 + b2

)
r2.

• One chiral and one vector multiplet get masses from the U(1)S D-term, both ∼ x for

large x. Call them Qvector and Qchiral. In the leading-log approximation the contribu-

tions to the 1-loop potential are V Qvector
CW ≈ 1

64π2 (−8q) log x and V Qchiral
CW ≈ 1

64π2 4 log x.

Near the local minimum of VCW, their masses to lowest order in 1/r are

m2
Qvector ≈ 4b2g2r4/(d2Nf ) and m2

Qchiral ≈ b2r2.

Adding all the contributions together, we see that the total 1-loop potential in the leading

log approximation valid for ‘large’ field values of Msing corresponding to x >∼ O(1)� 1/
√
p

is

VCW ≈
1

8π2
(1− t) log x, (3.7.5)

where it will be convenient to define

t = q −Nfp
2. (3.7.6)
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3.7.2 Conditions for local minimum

The leading-log approximation is excellent for V mess
CW and V Q

CW, even as close to the origin as

x ∼ 〈x〉. Hence we can understand the tuning required for stabilizing the uplifted vacuum as

follows. Imagine starting out with a choice of parameters for which there is a local minimum

of VCW. If we then increase t, the coefficient of the logarithm in the potential decreases

until the minimum is wiped out and the potential just slopes towards the SUSY-minimum.

Conversely, if we decrease t the coefficient of the logarithm increases and the minimum gets

pushed towards the origin, eventually disappearing into the region where the messengers

are tachyonic. Therefore having a local minimum requires t ∈ (tmin, tmax), where tmin,max

are O(1) functions of the other parameters. Expressing the singlet-sector gauge coupling in

terms of t,

g(t)2 =
h2 + d2Nf t

4(r2 − 1)
, (3.7.7)

translates this condition into a required tuning for g. However, it is more instructive to

recast the stabilization requirement as a constraint on the mass ratio(
m′

f

)2

= 4g2Nf
d

h

(
1− d2

h2
Nf t

)
+O(g4) +O(d5). (3.7.8)

We can see immediately that even if t is allowed to take on an O(1)-range of values to

guarantee a local minimum, m′/f must actually be adjusted to a precision of

∆ ∼ d2

h2
∼
(

Λ

ΛUV

)2

. (3.7.9)

This is ∼ 10−4 in the two scenarios we are considering but could be significantly larger if

one were less conservative about the separation of scales for Λ,ΛUV . Tuning of this order of

severity is typical in uplifted models that are stabilized by 1-loop corrections, and we make

no attempt to explain it here. It would be very interesting to investigate whether such a

91



mass ratio might be generated by some kind of UV-completion, but it lies beyond the scope

of this chapter.

What is the actual allowed range of t? If we switch off the instanton term then there

can be no minima of VCW if the coefficient of the logarithm is negative for large x. Hence

tapproxmax = 1. To find the smallest allowed value of t we numerically investigate the behavior

of VCW and we find that tapproxmin ≥ 1/2, with the inequality becoming saturated for r >∼ 10.

Switching on the instanton term has the effect of reducing tmax from the approximate value

of 1, since the Vtree contribution has negative slope and increasing t beyond tmin causes the

overall potential to have negative slope before we reach t = 1. This effect is more pronounced

for larger r, since increasing f/Λ increases the effect of the instanton term.

To understand this in more detail we studied the complete Veff numerically. By fixing

|F/X| in eq. (3.6.4) at 100 TeV one can find tmin, tmax as functions of r for various values

of d and h in scenarios 1 and 2, see fig. 3.2. As expected the instanton term does not have

a significant effect on tmin but decreases tmax from 1 with increasing severity for larger r.

This effectively defines a maximum value of r for which there can still be a local minimum

of Veff , and rmax appears approximately ∝ d for fixed Λ, ΛUV .

We can explain this behavior of rmax analytically. For fixed other parameters, rmax is

approximately the value of r for which the scale of the gradient of VCW near the minimum

becomes smaller than the scale of the gradient of Vtree (eq. (3.7.2)). Therefore, we can

roughly estimate rmax by equating the gradient of the leading log approximation to VCW (eq.

(3.7.5)) to the gradient of Vtree for Msing ∼
√
h/df and t ∼ 0.5. This yields

rmax ∼ d5/6

(
Λ

|F/X|

)1/3

(3.7.10)

and explains the approximate linear dependence of rmax on d observed numerically. For

Scenarios 1 and 2 this gives rmax ∼ 102 and ∼ 101, depending on the exact value of d. This
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(a) (b)

Figure 3.2: (a) For |F/X| = 100 TeV and d = 0.04 = 4×Λ/ΛUV in Scenario
1, Veff has a local minimum in area of the r-t plane enclosed by
the green curve. For Scenario 2 this area shrinks down to the
shaded region due to the increased effect of the instanton term.
(b) Areas of the r-t plane where Veff has a local minimum for d =
0.04, 0.02, 0.01 (green/light, blue/medium, red/dark) in Scenario
1. rmax ∝ d5/6, so decreasing d from 0.04 to 0.01 decreases the
area where there is a minimum. These areas do not depend
significantly on h.

agrees with our numerical results to ∼ 30%.

In Figure 3.3 we illustrate the range of allowed r-values by plotting the approximate rmax

from eq. (3.7.10) as a function of Λ and ΛUV . Since r > 1 is required for singlet VEVs, the

shrinking of rmax with decreasing Λ effectively defines a minimum allowed value of Λ/ΛUV ,

and for Λ <∼ ΛUV /1000 it becomes very difficult to find a metastable uplifted vacuum

because the allowed range of r shrinks to nothing. This means that Λ as large as possible is

favored in our model, and justifies considering only our two scenarios with Λ/ΛUV ∼ 1/100.

Finally, we can also use these ideas to get a rough estimate of the pseudomodulus mass

scale. Simply differentiating eq. (3.7.5) and setting t ∼ 0.5 yields eq. (3.5.18).
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d̃ = 1 d̃ = 4

(a) (b)

Figure 3.3: Estimate of log10 rmax for two possible values of d̃ = d
Λ/ΛUV

. The

upper and lower regions are excluded to satisfy Λ < ΛUV /100
and r > 1 respectively. This demonstrates that the allowed range
for r shrinks to nothing for Λ/ΛUV � 1/1000, making large Λ
heavily favored in our model.

3.7.3 Validity of 1-loop calculation

The smallness of d ∼ 0.01 compared to h ∼ 1 and g (depending on the size of r) might

cause us to suspect that all these results would be invalidated by 2-loop corrections. For-

tunately, this naive expectation is not realized due to the nature of contributions to the

effective potential. The leading-log approximation to the 1-loop potential eq. (3.7.5) is a

very good approximation for the complete contributions from messengers (loops involving

the h-coupling) and singlets with D-term masses (involving the g-coupling), as well as the

logarithmic contributions from singlets with F -term masses. The only components not in-

cluded are the small-x contributions from singlets with F -term masses, and those are the
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contributions with non-trivial features required to generate the minimum.

The tuning can be understood as canceling the smooth logarithmic contributions to the

effective potential to high enough precision so that the minimum created by the contributions

from singlets with F -term masses survives. Since d is so small, this local minimum is pushed

out to rather large field values Msing ∼
√
h/d f where the leading log approximation for the

‘uninteresting’ contributions is excellent. This makes the two-loop corrections involving two

h and g couplings (messengers and singlets with D-term masses, respectively) very smooth

as well, meaning they do not introduce any gross new features to the effective potential.

Therefore they just generate a smooth correction to eq. (3.7.5), which can be compensated

for by slightly adjusting the gauge coupling g (or the ratio m′/f) and should not significantly

affect the existence of local minima or the severity of tuning (though eq. (3.7.8) might have

to be slightly adjusted). Therefore the important features of our analysis are valid.

3.7.4 Lifetime Constraints on Uplifted Vacuum Stabilization

We now check that the uplifted vacuum is stable enough to have not decayed in the lifetime

of the universe. For each decay path across the potential landscape we estimate the Bounce

Action B which exponentially suppresses the decay width [78]. We require B >∼ 103 [79].

For rough estimates of the bounce action we approximate the potential along the decay path

as a triangular barrier, which yields very simple analytical expressions for B [80].

There are two decay paths that are only forbidden by loop-sized effects. As illustrated

in fig. 3.1, Msing can either tunnel towards the origin, in which case the messengers become

tachyonic and the fields roll towards the ISS vacuum, or it can tunnel away from the origin

and roll towards the SUSY-minimum.
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To estimate the bounce action for decay to the ISS vacuum along the pseudoflat direction

we take limit where the height of the potential barrier and the distance from the edge of the

barrier to the ISS vacuum goes to zero. This underestimates B and gives

BISS > 2π2Nf − 1

Nf

r4(2r2 − 1)2

(d/b2)2
∼ 8π2

5︸︷︷︸
∼15

(
ΛUV

Λ

)2

︸ ︷︷ ︸
>104

b4 r4
(
2r2 − 1

)2︸ ︷︷ ︸
>1

� 103 (3.7.11)

Turning to the bounce action for decay to the SUSY vacuum along the pseudoflat direction

we again take the height of the potential barrier to zero and neglect several unknown or

parametrically smaller contributions to the length of the decay path. Using ∆V 0 from eq.

(3.5.22) as the depth of the potential well on the other side of the barrier we obtain (neglecting

O(1) factors)

BSUSY >
32π2

3

√
Λ

f

1

d3/2
� 103 (3.7.12)

Both decays are sufficiently suppressed.

3.8 Conclusions

The ISS framework [53] is an extremely appealing model building arena for exploring non-

perturbative meta-stable SUSY-breaking. However, previous ISS-based models of Direct

Gauge Mediation are plagued by several problems, both aesthetic and phenomenological,

which include small gaugino masses (exacerbating the little hierarchy problem), Landau

Poles and non-renormalizable operators with somewhat contrived flavor contractions. Since

the issue of small gaugino masses has been understood to be related to the vacuum structure

of the theory [63], one model-building challenge is the formulation of plausible uplifted ISS

models.

We first outlined some simple but general model-building guidelines for stabilizing up-
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lifted ISS models, which lead us to conclude that meson-deformations are required (or at

least heavily favored) to stabilize the adjoint component of the magnetic meson in the hidden

sector. However, the singlet can be stabilized by a variety of mechanisms, which makes it

possible that an uplifted hidden sector with minimal flavor group might be viable.

This lead us to propose Singlet Stabilized Minimal Gauge Mediation as a simple ISS-based

model of Direct Gauge Mediation which avoids both light gauginos and Landau Poles. The

hidden sector has trivial magnetic gauge group and minimal unbroken SU(5) flavor group,

while the uplifted vacuum is stabilized by a singlet sector with its own U(1) gauge symmetry,

generating a nonzero VEV for the singlet meson via the inverted hierarchy mechanism.

The stabilization mechanism used in our model necessitates adjusting parameters to

a precision of ∼ (Λ/ΛUV )2 ∼ 10−4, a common problem with quantum-stabilized models.

While this tuning can be reduced by being less conservative about the separation of scales,

one might question the advantage of this tuning compared to the tuning in the MSSM

Higgs-sector associated with a split-SUSY spectrum. Apart from the fact that a split-SUSY

spectrum might not be experimentally observed, the key is that a split-SUSY spectrum

cannot be avoided in most models of Direct Gauge Mediation that are in the ground state,

in particular standard ISS1. This chapter shows that it is possible to stabilize an uplifted

ISS model with very small flavor group, a necessary condition for avoiding Landau Poles of

the SM gauge couplings, and while the current stabilization mechanism requires said tuning

it seems plausible that an alternative mechanism with generically stabilized uplifted vacua

exists. That makes our stabilization-tuning preferable to the ‘unavoidable’ Higgs-sector

tuning from a split-SUSY spectrum.

1One might have an independent suppression mechanism for the sfermion masses, see for example [81]
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CHAPTER 4

THE SUSY-YUKAWA SUM RULE AND MT2 COMBINATORICS

Based on the 2010 article “SUSY-Yukawa Sum Rule at the LHC”, written in collaboration

with Monika Blanke and Maxim Perelstein and published in Phys.Rev. D82 (2010) 035020.
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4.1 Introduction

Experiments at the Large Hadron Collider (LHC) have begun probing physics at the TeV

scale. The primary goal of these experiments is to understand the mechanism of electroweak

symmetry breaking (EWSB), and since supersymmetry provides such an elegant solution to

the hierarchy problem, searches for SUSY will be one of the main directions pursued by the

LHC experiments.

Assuming that some of the signatures predicted by SUSY models are seen at the LHC,

the next major task for the experiments will be to determine the nature of the new particles

involved, such as their masses and spins. In addition, there is a large number of couplings

involving the new particles that one can attempt to measure. Among those, there is a small

set of couplings that is, in our opinion, truly special, and deserves special attention. These

are the couplings that ensure the cancellation of the quadratically divergent diagrams con-

tributing to the Higgs mass parameter at one loop. Specific relations between these couplings

and the SM gauge and Yukawa couplings are required to solve the hierarchy problem, and

SUSY guarantees that these relations are satisfied. Testing these relations experimentally

would clearly demonstrate the role of SUSY in restoring naturalness to the EWSB sector.

The first goal of this chapter is to suggest a simple sum rule, which follows unambiguously

from one such coupling relation, and involves only physically measurable quantities. The

second goal is to outline the set of measurements that would need to be performed to test

this sum rule, and evaluate the prospects for these measurements at the LHC. While a test

of the sum rule will have to await a next-generation lepton collider, we find that the LHC

may be able to measure several ingredients of the sum rule. Within the framework of SUSY,

the sum rule can then be used to infer parameters, such as stop and sbottom mixing angles,

which will be difficult or impossible to measure directly. This analysis also includes the first
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Figure 4.1: Quadratically divergent one-loop contribution to the Higgs mass
parameter in the SM (a), cancelled by scalar superpartner con-
tributions in a SUSY model (b).

serious attempt to perform mass measurements using the MT2 family of kinematic variables

in the presence of large combinatorics background. We show that these variables remain

useful in such scenarios, though much extra work must be done to extract their information.

4.2 SUSY-Yukawa Sum Rule

The strongest coupling of the SM Higgs boson is the top Yukawa. At the one-loop level,

this coupling introduces a quadratically divergent contribution to the Higgs mass parameter,

via the diagram in Fig. fig. 4.1 (a). In SUSY models, this contribution is canceled by the

diagrams in fig. 4.1 (b), with the stops, scalar superpartners of the top quark, running in

the loop. The cancellation relies on the precise relation between the top Yukawa and the

stop-Higgs quartic coupling, shown in the figure, which is enforced by SUSY. We would

like to test this relation experimentally. The most direct test, measuring the stop-Higgs

quartic vertex, appears impossible at the LHC due to extreme smallness of all cross sections

involving this vertex. However, once the Higgs gets a vacuum expectation value (vev), the

quartic vertex generates a contribution to stop masses, which are in principle measurable.

The challenge is to isolate this term from other contributions to the stop mass matrix.

SUSY makes two kinds of predictions: (1) it dictates a particular particle content (i.e.

superpartners to the SM fields), and (2) it imposes certain relations between couplings of the

fields, such as the relation in Fig. fig. 4.1. We want to separate the two, fixing the particle
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content (which we assume could be tested by independent observations), while attempting

to test the coupling relation.

Start with a SUSY-like particle content for the 3rd generation, i.e. a set of scalars with

gauge charges  t̃L

b̃L

 ∼ (3, 2)1/6, t̃R ∼ (3, 1)2/3, b̃R ∼ (3, 1)−1/3. (4.2.1)

Leaving the SU(2)L × U(1)Y gauge symmetry unbroken and working in the (t̃L, t̃R)-basis,

the only allowed mass terms are

M2
t̃ =

 M2
L

M2
t

 , M2
b̃

=

 M2
L

M2
b

 (4.2.2)

(in the MSSM these are just the soft masses). Within the chosen particle content, we can

parameterize EWSB model-independently by inserting spurions Y t,b. The (1, 1) entries of

the top- and bottom-partner mass matrices become

(M2
t̃ )11 = M2

L + v2Y t
11 , (M2

b̃
)11 = M2

L + v2Y b
11 (4.2.3)

where v = 246 GeV. Let us define an observable

Υ ≡ 1

v2

(
m2
t1c

2
t +m2

t2s
2
t −m2

b1c
2
b −m2

b2s
2
b

)
, (4.2.4)

where the top-partner eigenmasses mt1 < mt2, the bottom-partner eigenmasses mb1 < mb2,

and the mixing angles θt and θb are all, in principle, measurable. (We use the notation

ct,b ≡ cos θt,b, st,b ≡ sin θt,b.) Writing the top-partner mass matrix in terms of these quantities:

M2
t̃ =

 m2
t1c

2
t +m2

t2s
2
t ctst(m

2
t1 −m2

t2)

ctst(m
2
t1 −m2

t2) m2
t1s

2
t +m2

t2c
2
t

 , (4.2.5)

(similarly for M2
b̃
) and canceling the soft mass M2

L by evaluating (M2
t̃
)11− (M2

b̃
)11, we obtain
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Figure 4.2: Distribution of Υ for a SuSpect random scan of pMSSM
parameter space. Scanning range was tan β ∈ (5, 40);
MA,M1 ∈ (100, 500) GeV; M2,M3, |µ|,MQL,MtR,MbR ∈ (M1 +
50 GeV, 2 TeV); |At|, |Ab| < 1.5 TeV; random sign(µ). EWSB,
neutralino LSP, and experimental constraints (mH ,∆ρ, b → sγ,
aµ, mχ̃±1

bounds) were enforced.

Υ = Y t
11 − Y b

11 . (4.2.6)

In other words, Υ probes the spurions only. Note, however, that Eq. eq. (4.2.6) will receive

non-trivial corrections beyond the tree level, since Υ is defined in terms of physical (pole)

masses, while in the above derivation all masses are evaluated at the same scale.

At tree level, SUSY makes a definite prediction for Υ. Using the standard sfermion

tree-level mass matrices (see e.g. [82]) and neglecting flavor mixing, we obtain

Υtree
SUSY =

1

v2

(
m̂2
t − m̂2

b +m2
Z cos2 θW cos 2β

)
=

 0.39 for tan β = 1

0.28 for tan β →∞
(4.2.7)

Here the hats denote tree-level (or “bare”) masses. The numerical values assume the renor-

malization scale Q = 600 GeV (so that i.e. m̂t ≈ 153 GeV), but do not depend strongly on

the precise value of Q. This prediction, which we call the SUSY-Yukawa sum rule, relies on

the same relation between the fermion and scalar Higgs couplings which leads to the cance-

lation in Fig. fig. 4.1. Measuring Υ would therefore provide a powerful, if somewhat indirect
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method of testing whether it is SUSY that solves the hierarchy problem. (This argument is

conceptually similar to the tests of the Little Higgs cancellation mechanism, proposed in [83].

Earlier examples of SUSY sum rules, devised within the mSUGRA framework, can be found

in [84].)

Radiative corrections to the SUSY prediction for Υ can be important, since the sum

rule typically involves a rather delicate cancellation between stop and sbottom mass terms.

The full analytical expressions for the radiative corrections to superpartner masses within

the MSSM can be found in [82], and a convenient numerical implementation is provided by

the SuSpect package [85]. The corrections depend on a large number of MSSM parameters.

To estimate their effect on Υ, we conducted several scans of the MSSM parameter space

using SuSpect. We did not assume a particular model of SUSY breaking, but allowed the

weak-scale soft terms to vary independently. A representative result for the distribution of Υ

is shown in Fig. fig. 4.2. (As usual, the reader must exercise caution in interpreting this plot,

since it necessarily reflects our sampling bias of parameter space.) It shows that radiative

corrections can change the value of Υ significantly from its tree level prediction (eq. (4.2.7)).

However, a measurement of |Υ| > O(1) would disfavor TeV-scale SUSY as the solution to the

hierarchy problem. It should be noted that in a generic theory with the particle content of

Eq. (4.2.1), the scalar-Higgs quartic couplings are only constrained by perturbativity, leading

to the possible range of −16π2 <∼ Υ <∼ 16π2. Moreover, if some of the parameters in the

sum rule are misidentified, an even broader range is possible. For example, if the mixing

angle measurements were off by π/2, the right-hand side of Eq. eq. (4.2.4) would contain the

right-right elements of the squark mass matrices, which are of course independent for stop

and sbottom, so any value of Υ is in principle possible. Thus, even with radiative corrections

included, the SUSY-Yukawa sum rule presents a useful and non-trivial consistency check on

SUSY.
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(a) (b) (c)

Figure 4.3: Scatter plot of pMSSM parameter points produced by the
SuSpect scan from fig. 4.2, showing the correlations between the
stop and sbottom mixing angles for different ranges of Υ′. Each
0.005 × 0.005 bin is colored according to the number of scan
points contained in it, with hot (bright) and cold (dark) colors
indicating high and low scan point density, and unpopulated bins
left uncolored. These correlations are a direct consequence of the
SUSY-Yukawa Sum Rule, and any measurement of Υ′ >∼ 0 pro-
vides valuable information about the sbottom mixing angle.

It is also interesting to ask if the sum rule can be used as a tool for model discrimination.

Recently, several SUSY “look-alikes”, i.e. models whose LHC signatures are similar to

SUSY but arise from completely different underlying physics, have been studied. The most

studied examples are universal extra dimensions (UED) [86] and little Higgs with T-parity

(LHT) [87] models. These models contain particles with the quantum numbers of Eq. (4.2.1),

but instead of scalars, they are spin-1/2 fermions. (The minimal LHT model does not contain

a b̃R counterpart; however, such a particle can easily be added.) This leads to a different

Higgs coupling structure: for example, the 4-point coupling in Fig. 1 (b) does not exist, at

renormalizable level, in these theories. As a result, UED and LHT predictions for Υ are

generically different from SUSY, at least at the tree level. As an example, the tree-level

prediction of the minimal LHT model is

Υtree
LHT = − g′

2
√

10

mbH

mAH

+O
(
v2

f 2

)
, (4.2.8)
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where mbH and mAH are the masses of the heavy, T-odd partners of the left-handed b quarks

and the hypercharge gauge boson, respectively. In contrast to SUSY, Υ is always negative

at tree level in the LHT; for typical parameter values Υ ≈ −0.5. Unfortunately, radiative

corrections can shift Υ in SUSY significantly, including changing the sign, as can be seen in

Fig. fig. 4.2. Presumably, the LHT prediction will also receive important loop corrections,

although they have not yet been calculated. Depending on the resulting ranges and on the

measured value of Υ, the measurement may be interpreted as supporting one or the other

model, but it seems unlikely that a sharp model-discriminating statement could be made.

On the other hand, one should keep in mind that a measurement of parameters not directly

entering the sum rule (such as the gluino mass) would generally shrink the range of possible

Υ values in each model by constraining the possible radiative corrections, improving the

model-discriminating power of this observable.

Measuring all the ingredients of Υ is very difficult at a hadron collider, and the determi-

nation of the complete 3rd-generation sfermion spectrum and mixing angles will most likely

have to be performed at a future lepton machine. However, for favorable MSSM parameters,

some progress can be made at the LHC. In particular, if some of the ingredients of the sum

rule can be measured, and the sum rule is assumed to be valid, it can be used to put inter-

esting constraints on the remaining ingredients. The easiest terms to measure at the LHC

are the masses of the lightest stop and sbottom squarks. To understand the implications of

such a measurement, let us rewrite Υ as

Υ =
1

v2

(
m2
t1 −m2

b1

)︸ ︷︷ ︸
Υ′

+
s2
t

v2

(
m2
t2 −m2

t1

)︸ ︷︷ ︸
∆Υt

− s2
b

v2

(
m2
b2 −m2

b1

)︸ ︷︷ ︸
∆Υb

. (4.2.9)

Assuming that the SUSY framework is correct, a measurement of Υ′ together with the sum

rule can be used to constrain the third-generation mixing angles, even if nothing is known

about the masses of the heavier superpartners t̃2 and b̃2. This is illustrated by the scatter
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plots in Fig. fig. 4.3. If Υ′ is small, then either both t̃1 and b̃1 must be mostly left-handed so

that ∆Υt,b is small, or the two ∆Υ’s must precisely cancel each other. (Obviously, the second

possibility is less likely, as reflected in the distribution of points in Fig. fig. 4.3 (b).) A large

and negative Υ′ would require a right-handed t̃1, whereas a large and positive Υ′ requires

a right-handed b̃1. Thus, mass measurements together with the sum rule can provide non-

trivial information on the mixing angles, which are difficult or impossible to measure directly

at the LHC. (For some proposals for measuring the stop mixing angle, see Refs. [88,89].)

4.3 Prospects at the LHC: a Case Study

The MSSM parameter point we will consider is defined by the following weak-scale inputs

(from here on all masses in GeV unless otherwise noted):

tan β M1 M2 M3 µ MA MQ3L MtR At

10 100 450 450 400 600 310.6 778.1 392.6

with all other A-terms zero and all other sfermion soft masses set at 1 TeV . The relevant

spectrum (calculated with SuSpect) is

mt1 mt2 st mb1 mb2 sb mg̃ mχ̃0
1

371 800 -0.095 341 1000 -0.011 525 98

At this benchmark point, Υ = 0.423, and Υ′ = 0.350. We will show below that the LHC can

measure Υ′ rather accurately.

To measure the t̃1 and b̃1 masses, we propose to use kinematic edges, the classical MT2

variable [90], and recently proposed “subsystem-MT2” variables [91] to analyze the two
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processes

(I) g̃ → b̃1b→ bbχ0
1 via gluino pair production,

(II) t̃1 → tχ0
1 via stop pair production

(where we omit antiparticle indices). For our benchmark point each of the above decays

has 100% branching fraction, completely eliminating irreducible SUSY backgrounds to the

measurements discussed below. The process (I) yields the g̃, b̃1, and χ0
1 masses, and the

process (II) provides mt1. Below, we briefly outline these measurements, and estimate their

accuracy; the details of this analysis will be presented in [92].

We ignore issues related to hadronization and ISR by performing the analysis at leading

order in αs and at parton level. We use MadGraph/MadEvent ( MGME) package [93]

to simulate gluino and stop production, and BRIDGE [94] to simulate decays. We use

the CTEQ6l1 [95] parton distribution functions throughout, with the MGME default (pT -

dependent) factorization/renormalization scale choice. To roughly model detector response

to jets and electrons, we introduce a Gaussian smearing of their energies according to [96]

∆Ej
Ej

=
50%√
EGeV

⊕ 3% ,
∆Ee
Ee

=
10%√
EGeV

⊕ 0.7% . (4.3.10)

4.3.1 Measuring the b̃1, g̃, χ̃
0
1 masses

We study gluino pair production with subsequent decay into 4b + 2χ̃0
1 at the LHC with

√
s = 14 TeV and 10 fb−1 of integrated luminosity. The selection cuts are as follows: (a)

E/T > 200GeV , (b) exactly 4 tagged b-jets, (c) pmax
T > 100GeV , (d) pb−jet

T > 40GeV , (e)

|η| < 2.5,∆R > 0.4. The gluino pair production cross section is σg̃g̃ ≈ 11.6 pb. We

assumed a b-tag efficiency of 0.6 and b-mistag rates for c-, τ -, and light quark/gluon jets

of 0.1, 0.1 and 0.01, respectively, leaving about 1.5 pb of fully b-tagged signal. The other
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(a) (b) (c)

Figure 4.4: M210
T2 (0) distributions. The analytical prediction for the edge

position is 320.9GeV . We emphasize that even though we show
the linear kink fits only over a certain range, K depends very
little on the fit domain.

kinematic cuts (a, c-e) have an efficiency of 32%, yielding 480 fb, or about 4800 signal events

at 10 fb−1.

We computed the cross sections of the two main SM background processes, 4j + Z with

Z → νν̄, and tt̄ with one or both tops decaying leptonically. The cross sections, including

efficiencies of the cuts (a-e), are <∼ 10 fb and 25 fb, respectively. Thus, we conclude that the

SM backgrounds can be effectively eliminated by cuts, and do not take them into account

further in the mass determination analysis.

The main background for mass determination comes from combinatorics. Consider the

dijet invariant mass Mbb. If both b’s come from the same decay chain, the distribution has

a kinematic edge at

Mmax
bb =

√
(m2

g̃ −m2
b1)(m2

b1 −m2
χ̃0
1
)

m2
b1

= 382.3GeV . (4.3.11)

For each event, there are three possible ways to assign 4 b’s to two decay chains, and the Mbb

distributions of the wrong combinations extend well beyond Mmax
bb . If all combinations are

included, the edge is washed out. We find that the combinatoric background can be reduced

with simple cuts: very generally, the directions of jets from the same decay chain should

be correlated, and the pairings with the largest invariant masses are likely to be incorrect.
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Denoting the two b’s assigned to each decay chain as (1,2) and (3,4) respectively, we drop the

combination with the largest Max[M12,M34] in each event, and require Max[∆R12,∆R34] <

2.5. The resulting distribution shows a clear edge. We fit to it with a simple trial-PDF, the

linear kink function, which we will use throughout this analysis:

x1 K x2

1

rK
r2

An unbinned maximum-likelihood fit reliably finds the edge position K, yielding a measure-

ment of the kinematic edge position Mbb
max
meas = (395 ± 5)GeV . This is quite close to the

correct value, Eq. (4.3.11), but the use of the simple linear fit function clearly does introduce

a systematic error into the edge measurement. To account for this effect, we will simply

assume a systematic error of 3 times the statistical error for each edge measurement; this is

sufficient to bring across the main points of our analysis. More sophisticated methods for

kinematic edge extraction exist in the literature (e.g. [88]), and would be used in practice.

The position of the kinematic edge provides one function of the three unknown masses;

two more are required to solve for the spectrum. These can be obtained from the endpoints

of distributions of events in MT2-subsystem variables [91] M220
T2 (0) and M210

T2 (0), predicted

to be at

M210
T2 (0)

max
=

[(m2
b1 −m2

χ̃0
1
)(m2

g̃ −m2
χ̃0
1
)]1/2

mg̃

= 320.9GeV ,

M220
T2 (0)

max
= mg̃ −m2

χ̃0
1
/mg̃ = 506.7GeV . (4.3.12)

Of the several possible MT2 variables for this system, these two show the clearest edges,

allowing precise mass determination; the complete analysis of all MT2 variables will be

presented in [92].

To calculate M210
T2 for each event, we must divide the four b’s into an upstream and a

downstream pair, giving 6 possible combinations. fig. 4.4 (a) shows the complete M210
T2 (0)
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distribution; the edge is completely washed out. It turns out that of the 5 possible wrong

pairings, the two where b’s from the same decay chain are put into up- and down-stream

pairs are the most problematic, since their M210
T2 distributions extend significantly beyond the

edge. Based on this observation, we developed two techniques to reduce the combinatorial

error. Firstly, for each event we can simply drop the two largest MT2’s. The corresponding

distribution is shown in fig. 4.4 (b). Secondly, we can use our measurement of the kinematic

edge. For each event there are three possible ways to assign the 4 b’s to two decay chains. For

some events (about 30% in our sample) we find that for two of these combinations, at least one

same-chain invariant mass is larger than Mmax
bb , whereas for the other combination both same-

chain invariant masses are smaller – this combination must be the correct one. Using only

those events and keeping only the correct decay chain assignments, we obtain the distribution

of M210
T2 (0) shown in fig. 4.4 (c). We performed linear kink fits on the distributions in fig. 4.4

(b) and (c), and found that they are in agreement, indicating the robustness of our approach.

Combining the two fits yields M210
T2 (0)

max
meas = (314.0±4.6)GeV . We used a similar method to

extract the M220
T2 edge, and obtained M220

T2 (0)
max
meas = (492.1± 4.8)GeV . As for the kinematic

edge, the linear fit function works rather well, but it does introduce some systematic error

into the edge measurements, which we again model by inflating the error bars by a factor of

3. To summarize, the measured edges are:

Mbb
max
meas = (395± 15)GeV ,

M210
T2 (0)

max

meas = (314± 14)GeV ,

M220
T2 (0)

max

meas = (492± 14)GeV . (4.3.13)

Each of these edges defines a subvolume of (mg̃,mχ̃0
1
,mb1)-space, which yields the mass

measurements given in Table 4.1.
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mass theory median mean 68% c.l. 95% c.l. process
mb1 341 324 332 (316, 356) (308, 432) I
mg̃ 525 514 525 (508, 552) (500, 634) I
mχ̃0

1
98 – – (45, 115) (45, 179) I + LEP

mt1 371 354 375 (356, 414) (352, 516) I + II

Table 4.1: Mass measurements (all in GeV), assuming Gaussian edge mea-
surement uncertainties. We imposed the lower bound mχ̃0

1
>

45GeV , which generically follows from the LEP invisible Z de-
cay width measurement [98].

4.3.2 Measuring the t̃1-mass

We simulate pp→ t̃1t̃
∗
1 → tt̄+ 2χ̃0

1 for 100 fb−1 integrated luminosity. The signal production

cross section is 2 pb. The dominant irreducible background is (Z → νν)tt̄ with σBG = 135

fb. Following [97], we demand two fully reconstructed hadronic tops in each event, in order

to use the classical MT2 variable [90]. Our signal cuts are (a) exactly 2 tagged b-jets and at

least 4 other jets with pT > 30GeV and |η| > 2.5 (b) lepton veto (c) ∆R > 0.4 between all

the b- and light jets (d) E/T > 100GeV (e) HT > 500GeV (e) pmax
T > 100GeV (f) require 4j to

reconstruct to two W ’s with a mass window of (60, 100)GeV and the two W ’s to reconstruct

with the two b’s to two tops with a mass window of (140, 200)GeV . After cuts we are left

with 1481 signal and 105 background events. Plotting the classical MT2 distribution we see

a clear edge, and using the linear kink fit trial PDF with error scaling yields

MT2(0)max
meas = (340± 4)GeV . (4.3.14)

Compare this to the analytical prediction [99] MT2(0)max = 336.7GeV . Combined with the

mχ̃0
1

measurement from (I), this yields the stop mass mt1, see Table 4.1. Taking into account

all correlations, we find:

Υ′meas =
1

v2

(
m2
t1 −m2

b1

)
= 0.525+0.20

−0.15 , (4.3.15)

112



in good agreement with the theoretical value Υ′ = 0.350. As explained above, a measure-

ment of Υ′ does not by itself provide a consistency check of SUSY, or help in discriminating

it from other models. However, if the SUSY-Yukawa sum rule is assumed to be valid, this

measurement can be used to place a constraint on the 3rd generation squark mixing. The

measurement in Eq. (??) corresponds to the range of Υ′ assumed in Fig. fig. 4.3 (b). Thus,

even without using information from any other measurements, one could conclude that, most

likely, the stop and sbottom mixing angles are rather small and the observed light stop and

sbottom states are mostly left-handed (although right-handed light states, with an accidental

cancellation of ∆Υb and ∆Υt, would remain as a logical possibility at this point).

4.4 Discussion and Conclusions

We proposed the SUSY Yukawa sum rule with direct connection to the cancelation of

quadratic Higgs mass divergence, and introduce an observable Υ that can be used to test

it. This constitutes a significant check on TeV-scale SUSY as the solution to the hierar-

chy problem. While full measurement of Υ will have to be left to a future lepton machine,

we have demonstrated that progress could already be made at the LHC. In particular,

we showed that, for the MSSM benchmark point we chose, two masses entering the sum

rule, mt1 mb1, can be measured. Given these measurements, one could then use the sum

rule (within the SUSY framework) to put interesting constraints on other parameters, such

as third-generation squark mixing angles, whose direct measurement would be difficult or

impossible.

In the course of the analysis we developed new techniques for reducing combinatorial

background for MT2-measurements, allowing for complete mass determination of t̃1, b̃1, g̃ and

χ̃0
1. At this point, we performed the analysis at the parton level, with only a crude Gaussian
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smearing to account for detector effects. It is important to confirm the proposed techniques

with more detailed simulations including initial and final state radiation, showering and

fragmentation, and better detector modeling. Results of a study including some of these

effects will be presented in Ref. [92]. In the future, it will also be interesting to assess the

abilities of the LHC to test the sum rule (fully or partially) in the MSSM parameter regions

with spectra different from our benchmark point, as well as to study in detail how the sum

rule tests can be completed at a future lepton collider.
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CHAPTER 5

CONCLUSION
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The dawn of the LHC era is an exciting time to be a theoretical particle physicist. After

four decades of relative experimental deprivation we will finally receive new clues about the

physics that must lie beyond the Standard Model. Much theoretical effort has been invested

in preparing for the influx of experimental data, and many models for potential BSM physics

have been proposed. The research in this thesis represents the author’s effort to contribute

to this preparation, by furthering the development of RS and SUSY models and developing

new ways to extract information from experimental data.

Of course, a major motivation for our current ideas for physics beyond the Standard

Model was always the few existing experimental inconsistencies that we already know about.

But we are also guided by purely theoretical considerations, which are ultimately rooted in

our belief in a beautiful universe. There is historical justification for this belief. Whenever a

supposedly fundamental theory requires finely tuned parameters or initial conditions we often

found it to be some approximation to a more complete theory where the tuning is explained

by some deep principle. This precedent gives us reason to hope for truly fundamental

discoveries at the Large Hadron Collider.

The task facing us is fundamentally different to the work of the previous generation of

theorists. With a constant stream of new data coming in we might be able to assemble the

‘next’ Standard Model in almost real-time, on historical time scales. We might find evidence

for one of the scenarios proposed decades ago, or we might get lucky and find that nature

begs for an entirely new explanation. Either way, I am thrilled and humbled to be a part of

it. It is a privilege to be contributing to this monumental effort, the attempt of furthering

humanity’s understanding of the fundamental laws governing the universe.
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