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We study the semileptonic decays D+ → η′e+ν and D+ → ηe+ν using 818 pb−1 of e+e−

collisions recorded by the CLEO-c detector located at the Cornell Electron Storage Ring.

We employ a technique that uses the detector hermeticity to reconstruct the neutrino as

missing energy and momentum. We improve the neutrino resolution by developing a

generic algorithm to reconstruct the non-signal D, and constrain systematic uncertainties

in the efficiency by using the algorithm to measure the branching fractions of D+ and

D0 hadronic decays. We observe and measure the branching fractions of 67 hadronic

decays, 32 of which are not listed in the PDG 2008. We find B(D+ → η′e+ν) = (2.16 ±

0.53 ± 0.05 ± 0.05) × 10−4 and B(D+ → ηe+ν) = (11.7 ± 0.98 ± 0.34 ± 0.26) × 10−4.

Among the 67 D hadronic branching fractions observed in this analysis, we discover the

decay B(D+ → π+ηη) = (0.34±0.06±0.032)% which is unexpectedly large considering

the limited phase space available to the decay.
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CHAPTER 1

INTRODUCTION

1.1 Motivation from B→ η(′)X and B→ η(′)`ν decays

Experimental motivation for the study of heavy quark decays to η and η′ mesons began

over a decade ago with CLEO measurements of the B → η(′)X branching fractions [1].

The size of the branching fractions were completely unexpected. The early simplistic

calculations were as much as 300 times smaller than the measurements [2], and even

today, modern calculations of many of these decays can be a factor of 2 or more in

disagreement with data [23].

Semileptonic decays involving the η and η′ are useful probes of the mechanisms that

could be at work. The fact that the lepton and neutrino in the decays do not exchange

gluons with the quarks in the η(′) enables us to cleanly isolate the B→ η(′) form factors.

Previous CLEO measurements of B → η`ν and B → η′`ν gave evidence for gluonic

contributions in this form factor by seeing a very large B → η′`ν branching fraction at

the 3σ level [3]. (Note that BABAR’s measurement of B → η′`ν did not see evidence

for this decay [4].)

Aside from mass related effects, QCD is flavor blind, and therefore the decays D+ →

η`+ν and D+ → η′`+ν provide a similar probe for enhancement of decays involving η′.

1.1.1 Unexpected B→ η′X Decays

In 1997 CLEO published results for a study of rare B meson decays to two charmless

pseudoscalar mesons [1]. The results of that study, specifically those including the η′,

gave theorists much to be excited about.

Prior to the CLEO measurements, much smaller branching fractions were expected

for these charmless decay modes. In a theoretical paper published in 1995, [5], two

1



years before the publication of CLEO results, decays involving b → cc̄s and b → uūs

were expected to be dominated by tree-level W-mediated decays. If contributions from

gluonic penguins are ignored, one would expect huge differences between charmed and

charmless branching fractions due to CKM suppression.

For example, consider the comparison of the decays B → η′ + Xs and the decay

B → ηc(1S ) + Xs, where ηc is a nearly pure cc̄ state. The ratio of the decay rates for

these two modes is

Γ(B→ η′ + Xs)
Γ(B→ ηc(1S ) + Xs)

∼
(Vub)2

(Vcb)2

| < η′|ūγµγ5u|0 >< Xs|s̄γµ(1 + γ5)b|B > |2

| < ηc|c̄γµγ5c|0 >< Xs|s̄γµ(1 + γ5)b|B > |2
ΩB→η′+X

ΩB→ηc+X
,

(1.1)

[2], where Ω represents the available phase space for each mode given the masses of the

different daughters. This equation reduces to

Γ(B→ η′ + Xs)
Γ(B→ ηc(1S ) + Xs)

∼
1
3

(Vub)2

(Vcb)2

( fη′)2

( fηc)2

(1 − m2
η′/m

2
b)2

(1 − m2
ηc
/m2

b)2
∼ 3 × 10−4, (1.2)

[2].

The ratio of the measured branching fractions of the modes B+ → η′K+ and B+ →

ηcK+ is
Br(B+ → η′K+)
Br(B+ → ηcK+)

=
(7.02) × 10−5

(9.1) × 10−4 = 0.077, (1.3)

as of 2008. Clearly, the assumptions and approximations that were made in the initial

round of calculations were insufficient.

There are several ways to account for this huge disparity. First, the gluon penguin

diagrams were not included, and today we know that they may not be negligible. It has

also been suggested that the content of the η′ may be to blame. The η′ could have a

significant charm component that would greatly reduce the CKM suppression. Or, the

η′ may have a strong coupling to gluons due to the QCD Anomaly. The QCD anomaly

contributions are discussed in the subsequent sections of this paper.
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1.1.2 QCD Anomaly

The concept of the QCD Anomaly is central to the discussion the η′, so definition and

derivation of the phenomenon is in order. The QCD Anomaly is a symmetry dependent

contribution to the divergence of the axial vector current in the presence of gauge fields.

These contributions are proportional to the contraction of the gauge field strength tensor

and the gauge field strength tensor dual. The axial vector current, jµ5 = Ψ̄γµγ5Ψ, is

the difference between the right handed current, jµR = Ψ̄γ
µ
(

1+γ5

2

)
Ψ, and the left handed

current, jµL = Ψ̄γ
µ
(

1−γ5

2

)
Ψ. If the divergence of the axial vector current is non zero,

it means that the left and right handed components are not conserved. Much of the

discussion in this section follows chapters 3 and 19 of Peskin and Schroeder [6].

For a quantum field Ψ, we can construct two currents, jµa(x) and jµa5(x), the vector

and axial vector currents,

jµa ≡ ¯Ψ(x)γµτaΨ(x), (1.4)

jµa5
≡ ¯Ψ(x)γµγ5τaΨ(x). (1.5)

In the above equations, the matrix τa is a generator of whatever symmetry is intrinsic to

the field Ψ.

As an example we calculate the divergence of these two currents in the case of no

gauge fields and a U(1) symmetry, or τa ≡ 1. Note that if Ψ is a solution to the dirac

equation, then ∂µγµΨ = −imΨ. The divergences of the currents for this case are

∂µ jµ = (∂µΨ̄γµ)Ψ + Ψ̄γµ∂µΨ = (imΨ̄)Ψ + Ψ̄(−imΨ) = 0, (1.6)

∂µ jµ5 = (∂µΨ̄γµ)γ5Ψ − Ψ̄γ5(∂µγµΨ) = imΨ̄γ5Ψ + imΨ̄γ5Ψ = 2imΨ̄γ5Ψ. (1.7)

The divergence of jµ is zero, so jµ is conserved, and implies conservation of particles, or

that the number of particles that enter a surface in space is the same number that leave

the surface. However, the axial current jµ5 is only conserved if the mass of the particle
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is zero. This indicates that the fraction of left and right handedness is not conserved if a

field has mass.

We now derive the Anomalous contribution to the axial vector current for the case of

a massless dirac field Ψ with a symmetry given by generators τa and a gauge field Ac
µ(x).

Gauge invariance requires that we replace the derivative ∂µ with the covariant derivative

Dµ = ∂µ − igAc
µt

c. For QCD tc are the color matrices.

When we take the derivative of a product of operators, such as in jµa5, we must be

careful to take into account how the gauge field changes as well. To calculate this we

take the the symmetric limit

slimε→0[Ψ̄(xν + εν/2)γµγ5τaU(x − ε/2, x + ε/2)Ψ(xν − εν/2)], (1.8)

where the Wilson Line

U(x − ε/2, x + ε/2) = exp(−ig
∫ x+ε/2

x−ε/2
dZαAc

α(Z)tc) (1.9)

propagates the gauge from one point to another.

Given the equations of motion for a massless field,

∂µγ
µΨ = −igγµAc

µt
cΨ (1.10)

and

∂µΨ̄γ
µ = −igΨ̄γµAc

µt
c, (1.11)

and noting

Aµ(x + ε/2) − Aµ(x − ε/2) = εν∂νAµ(x), (1.12)

we may solve for the divergence of the axial vector current

∂µ jµa5 = slimε→0Ψ̄(x+ε/2)igtc[Ac
µ(x+ε/2)−Ac

µ(x−ε/2)−ενγµ∂µAc
ν(x)]γµγ5τaΨ(x−ε/2),

(1.13)

∂µ jµa5 = slimε→0Ψ̄(x + ε/2)[−igγµεν(∂µAc
ν − ∂νA

c
µ)t

c]γ5τaΨ(x − ε/2), (1.14)
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∂µ jµa5 = slimε→0Ψ̄(x + ε/2)[−igtcγµγ5ενGc
µν]Ψ(x − ε/2), (1.15)

[6].

We solve the limit and write the divergence in terms of the field strength tensor and

its dual by using the relation

contraction(Ψ(x + ε/2), Ψ̄(x − ε/2)) = 2gεαβµγGd
αβ(x)td −iεγ

8π2ε2 , (1.16)

and inserting it into equation 1.15. The final expression for the anomalous contribution

to the axial current divergence is

∂µ jµa5 = −
g2

16π2 G̃µνcGd
µνtr[τa]tr[tctd], (1.17)

where Gc
µν is the gluon field strength tensor, and G̃µν ≡ εαβµνGαβ.

If the vector current jµa5 were for a singlet combination of quarks, where the matrix

τa is replaced by a unit matrix, the trace of that matrix would be non zero and the state

would have couplings to to the gauge field strength tensor (gluons for QCD). If the

combination of quarks were not in a singlet state, then the trace of the τa matrix would

be zero, and there would be no couplings to the gauge field strength tensor.

1.1.3 The Octet η8 and Singlet η0

We now discuss the η8 octet and η0 singlet that mix to form the primary components

of the η and η′. The QCD Anomaly contributes to the axial vector current divergence

in the singlet, η0, but does not contribute in the octet, η8. As an example, the quark

combinations of the pion states are determined using simple symmetry arguments, then

the same steps are used to infer the composition of η8 and η0. This discussion of the η8

and η0 quark content is based on the discussion in [7].

By definition the pions form an SU(2) isospin triplet where π+, π0, π− correspond to

I = 1 and mI = 1, 0,−1 respectively. Let qi be the wave function of a quark with isospin
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I = 1/2, (i=1 for u or i=2 for d). Let U i
j be a unitary S U(2) triplet transformation matrix

defined by

q′i ≡ U j
i q j, (1.18)

where q1 = ū q1 = u, q2 = d̄ and q2 = d. The state q′iq
′i is invariant under our

transformation matrix as shown by

qi′qi
′ = q jU i

jU
k
i qk = q jδk

jqk = qiqi, (1.19)

and is therefore our singlet state, uū + dd̄. Non-singlet states of this transformation are

defined by the elements of the traceless matrix

T i
j = qiq j − δ

i
j
1
2

(qkqk), (1.20)

where there is an implicit sum over the k index. We find 3 linearly independant quark

combinations:

π+ = T 2
1 = d̄u (1.21)

π− = T 1
2 = ūd (1.22)

π0 =
1
√

2
T 1

1 = −
1
√

2
T 2

2 =
1
√

2
(ūu − d̄d). (1.23)

We define the quarks u, d, and s to form an S U(3) octet, and extend our definition

of qi and qi such that q3 = s and q3 = s̄. Let U3 be a unitary SU(3) transformation

matrix. As in the case of SU(2) we find qiqi to be invariant under our transformation and

to therefore be the singlet of this symmetry. We define

η0 ≡
1
√

3
(ūu + d̄d + s̄s) (1.24)

to be the S U(3) singlet. We define the matrix

Ai
j = qiq j − δ

i
j
1
3

(ūu + d̄d + s̄s) = qiq j −
1
√

3
η0 (1.25)

where the elements are members of the SU(3) octet. The off diagonal elements of this

matrix give the quark content of π+, π−, K+, K−, K0, and K̄0. The diagonal elements
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are composed of linear combinations of, π0 (defined in the S U(2) isospin case) and A3
3,

given by − 1
3 (ūu + d̄d − 2s̄s). We define η8 as −

√
6

2 A3
3.

We now have a singlet u,s,d quark combination η0 given by equation 1.24 that has a

QCD anomaly contribution, and the triplet combination η8 given by

η8 ≡
1
√

6
(ūu + d̄d − 2s̄s) (1.26)

that does not have a QCD anomaly contribution. Given the fact that the η is closer in

mass to the off diagonal elements of the Ai
j matrix than the η′, we assume that the η is

mostly the octet of the SU(3) symmetry, η8, and the η′ is mostly the singlet, η0.

1.1.4 The Mixing of η, η′, and ηc

This section follows Feldman, Kroll, and Stech [10]. Neglecting charm contributions, a

unitary transformation,

U(α) ≡

 cos(α) −sin(α)

sin(α) cos(α)

 , (1.27)

can be used to mix the η0 and η8 states into the physical η and η′ states by η

η′

 = U(θ)

 η
0

η8

 . (1.28)

The η0 and η8 basis is a natural choice considering the SU(3) u,d,s symmetry. However,

the SU(3) symmetry is broken by the large mass difference between the s quark and the

light u and d quarks. This symmetry breaking is evidenced by the fact that in this basis 3

different mixing angles are required to describe the wave functions and decay constants

of the η and η′. For example, the decay constants f 8
η , f 8

η′ , f 0
η , f 0

η′ , defined by

< 0| ji
µ5|X >= i f i

X pXµ, (1.29)
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are described by 4 parameters ( f 8, f 0,θ8,θ0) as

f 8
η = f8cos(θ), f 0

η = − f0sin(θ)

f 8
η′ = f8sin(θ), f 0

η′ = f0cos(θ)
. (1.30)

In addition to the other parameters, another angle α is necessary to describe the mixing

of the wave functions. The fact that a new free parameter is needed to describe every

aspect of the system indicates that we are not using a fundamental basis to describe the

system.

Feldman, Kroll, and Stech (FKS) proposed a different basis that separates the s quark

from the light u and d quarks. The FKS basis is ηq =
1
√

2
(uū + dd̄) and ηs = ss̄. This

basis requires only 1 mixing angle, φ, to mix the ηq and ηs into the physical η and η′ via η

η′

 = U(φ)

 η
q

ηs

 , (1.31)

as well as mixing the decay constants f q and f s into the f q
η , f q

η′ , f s
η and f s

η′ via

f q
η = fqcos(φ), f s

η = − fssin(φ)

f q
η′ = fqsin(φ), f s

η′ = fscos(φ)
. (1.32)

The FKS basis decreases the number of free parameters that are needed to describe data

from 5 to 3, indicating that this is a superior way to describe the η/η′ system. Further,

flavor symmetry allows us to relate the ηq basis state to the π0, meaning that fq ∼ fπ.

As an example of the use of this basis in relation to the QCD Anomaly we write the

mass matrix in the FKS basis and show that the off diagonal elements relate the differ-

ence in mass squared between the η′ and η to the anomaly contribution. The elements

of the mass matrix are defined by

< 0|∂µJi
µ5|η

i >= M2
ηi fi (1.33)

and the mass matrix in the q and s basis is

M2
qs =

 m2
qq +

√
2

fq
< 0|αs

4πGG̃|ηq > 1
fs
< 0|αs

4πGG̃|ηq >
√

2
fq
< 0|αs

4πGG̃|ηs > m2
ss +

1
fs
< 0|αs

4πGG̃|ηs >

 . (1.34)
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In the physical η, η′ basis the mass matrix is

M2
physical =

 M2
η 0

0 M2
η′

 . (1.35)

We can convert the physical η and η′ mass matrix to the q and s basis by the transforma-

tion

M2
qs = U†(φ)M2

physicalU(φ), (1.36)

that yields the result,

M2
qs =

 M2
ηcos2(φ) + M2

η′ sin2(φ) −sin(φ)cos(φ)(M2
η′ − M2

η)

−sin(φ)cos(φ)(M2
η′ − M2

η) M2
η sin2(φ) + M2

η′cos2(φ)

 . (1.37)

The two different ways of writing the mass matrix in the q and s basis shows that the

mass squared difference between the η′ and η is proportional to the QCD anomaly com-

ponent.

The validity of the FKS basis and the single mixing angle was tested by defining

several quantities that could both be extracted from measurements and predicted by the

FKS paramterization. The FKS predictions rely on the assertion that flavor symmetry

requires m2
qq = M2

π and m2
ss = 2M2

K − M2
π. The quantities and ratios used are:

y =
√

2
< 0|αs

4πGG̃|ηs >

< 0|αs
4πGG̃|ηq >

=
fq

fs
, (1.38)

a2 =
1
√

2 fq

< 0|
αs

4π
GG̃|ηq >, (1.39)

Γ[J/Ψ→ η′ρ]
Γ[J/Ψ→ ηρ]

= tan2(φ)
(
kη′
kη

)3

, (1.40)

Γ[a2 → η′π]
Γ[a2 → ηπ]

= tan2(φ)
(
kη′
kη

)3

, (1.41)

σ[π−P→η′n]
σ[π−P→ηn] = tan2(φ), (s � M2

P) , (1.42)

Γ[J/Ψ→ η′γ]
Γ[J/Ψ→ ηγ]

= tan2(φ)
M4

η′

M4
η

(
kη′
kη

)3

, (1.43)
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Table 1.1: Theoretical (to first order of flavor symmetry breaking) and phe-
nomenological values of mixing parameters for η and η′ in the FKS
basis. This has been reproduced from reference [10].

Source fq/ fπ fs/ fπ φ y a2[GeV2]

Th. 1.00 1.41 42.4◦ 0.78 0.281

Phen. 1.07 ± 0.02 1.34 ± 0.06 39.3◦ ± 1.0 0.81 ± 0.03 0.265 ± 0.010

where the variable kX is the magnitude of the 3 momentum of meson X in the restframe

of the parent particle. The results of the FKS studies of these quantities are listed in

Table 1.1

The large branching fractions involving η′ could also be caused by a large charm

component in the η′ that would reduce the CKM suppression. Studies to determine the

contributions of ηq, ηs, and ηc to the physical η, η′, and ηc find

|η >= 0.77|ηq > −0.63|ηs > −0.006|ηc0 >

|η′ >= 0.63|ηq > +0.77|ηs > −0.016|ηc0 >

|ηc >= 0.015|ηq > −0.008|ηs > +|ηc0 > .

(1.44)

The charm contributions to η and η′ correspond to decay constants f c
η = −(2.4 ±

0.2) MeV and f c
η′ = −(6.3 ± 0.6) MeV. We estimate the ratio of the charm and q

contributions to the B→ Kη′ branching fraction to be approximately

(Vcb)2

(Vub)2

( f c
η′)

2

( f q
η′)2
∼

(0.04)2

(0.00317)2

(6.3 MeV)2

(∼ 115 MeV)2 = 0.48. (1.45)

This means that after accounting for CKM suppression factors, the small charm compo-

nent could increase the branching fraction by as much as a factor of 3. This is far from

the factor of 300 required to account for the observations.

In this section we have shown that it is better to use the ηq and ηs FKS basis to

describe η and η′ mixing and decay constants rather than the η0 and η8 basis, that requires

two additional mixing angles to be consistent with data. The FKS basis also allows us
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to relate the decay constants and masses of the basis states to the values for the π and

K. Therefore this basis is useful when trying to make predictions for how the QCD

Anomaly might affect branching fractions involving η′. We have also shown that the

charm component of the η′ does not account for the large B→ Kη′ branching fraction.

1.1.5 B→ η(′) Form Factor with a Singlet Contribution

The contribution to the divergence of the axial vector current from the anomaly produces

a two gluon coupling to the η0 component of the η′. In order for this two gluon coupling

to contribute to the B → Kη′ there must be a mechanism where the B produces two

gluons. In this section we examine two gluon production in B → Kη′ and B → η′`ν.

We parametrize the anomalous two gluon contribution to these decays using the FKS

basis.

There are two types of diagrams in the B → η′K decay that would involve the two

gluon coupling of the QCD anomaly, b → sgg or b → sg. The diagrams involving

b → sgg are shown in Figure 1.1. The diagram involving b → sg is shown in Figure

1.2, where the spectator quark emits the second gluon in u→ ug, known as the spectator

scattering mechanism.

Numerical estimates [13] [12] [14] for spectator and b → sgg contributions to the

B → Kη′ decay rate indicate that, depending on the model, they can account for the

large branching fraction of B → η′K to within a factor of 2 or 3. Predictions for some

of the branching fractions and the experimental results are given in Table 1.2.

The semileptonic decay of B→ η′`ν or D→ η′`ν can help to clarify the mechanisms

involved in the B → η′K decay. Unlike a fully hadronic final state, such as B → Kη′,

the B → η′ component of the semileptonic differential decay rate can be factored out

from the leptonic `ν component. Because of this property, the semileptonic B → η′`ν

decay can measure the size of the two gluon couplings to the η′. In the case of a small
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Figure 1.1: Feynman Diagram for the b → sgg decay. This drawing was taken
from reference [12].

Figure 1.2: Feynman Diagram for the spectator scattering decay. This drawing
was taken from reference [13]

Table 1.2: : A comparison of experiment with predicted branching fractions. The
branching fractions from Beneke and Neubert were done including
both b→ sgg and spectator, with the two gluon component of the form
factor, Fgg(q2 = 0) arbitrarily set to 0.1, [14]. The branching fractions
from A. Ali were calculated using only b → sgg with the momentum
fraction of the spectator quark equal to zero, [12].

Mode Beneke,

Neubert(10−6)

A. Ali(10−6) Experiment(10−6)

B− → K−η′ 56+19−31
−14−13 27 − 36 72.2 ± 5.3

B̄0 → K̄0η′ 56+18+30
−13−13 30 − 37 54.8 ± 10.1
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lepton mass, the differential decay rate for a semileptonic decay of B to a psuedoscalar

is ([15] [16])
dΓB→Plν

dydcos(θwl)
= |Vub|

2 G2
Fk3

PM2
B

32π3 sin2(θwl)| f1(q2)|2, (1.46)

where y is the ratio q2/M2
B, MB is the mass of the B meson, GF is the fermi constant, kP

is the 3 momentum of the daughter meson, and θwl is the angle between the lepton and

the W in the W rest frame. The form factor f1(q2) embodies the sum of all diagrams

contributing to the B→ η′ transition.

For the B→ η′`ν there is an enhancement channel due to the QCD anomaly through

spectator gluon emission shown in Figure 1.3. Using the FKS basis, ηq and ηs, and

relating the B → ηq form factor contribution to the B → π form factor, we may write

the B→ η′ form factor as [17]

f1(q2) =
1
√

2

f q
η′

fπ
FB→π

1 (q2) +
(
√

2 f q
η′ + f s

η′)
√

3 fπ
F singlet

1 (q2), (1.47)

where f q
η′ and f s

η′ are the FKS decay constants, FB→π
1 is the form factor from B → π`ν

decays, and F singlet
1 describes the two gluon contribution from the spectator scattering

and the QCD Anomaly. Tables 1.3 and 1.4 summarize the expected branching fractions

of B → η′`ν and B → η`ν for different FB→π models and values of F singlet(q2 = 0).

Following [17] we use the FB→π q2 dependance to describe F singlet.

Using the FKS basis, we have shown that the B → η′`ν branching fraction is par-

ticularly sensitive to the singlet contribution to the B → η′ form factor. Measurement

of the B → η′`ν branching fraction can help determine the singlet contribution to the

B→ Kη′ branching fraction.

1.1.6 B→ η(′)`ν Measurement

The branching fractions B(B → η′`ν) and B(B → η`ν) were measured using the com-

plete set of Υ(4S ) data taken by the CLEO-2, CLEO-2.5, and CLEO-3 detectors, and is
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Figure 1.3: Feynman Diagram for the b→ `νgg semileptonic decay. This drawing
was taken from reference [17]

.

Table 1.3: The predicted branching fraction for B → η`ν as a function of
F singlet
+ (0) for several models. The branching fractions are given in units

of 10−5. This table was reproduced from reference [17].

F singlet
+ (0) 0 0.2 0.4 0.6

Lattice I 3.68+1.57
−1.29 5.70+2.43

−2.00 8.16+3.48
−2.86 11.06+4.72

−3.88

Lattice II 4.43+1.89
−1.55 6.67+2.85

−2.34 9.37+4.00
−3.29 12.52+5.34

−4.39

LCSR 4.04+1.72
−1.42 6.08+2.59

−2.14 8.53+3.64
−2.99 11.41+4.86

−4.01

Average 4.00 ± 0.99 6.10 ± 1.50 8.63 ± 2.13 11.60 ± 2.86
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Table 1.4: : The predicted branching fraction for B → η′lν as a function of
F singlet
+ (0) for several models. The branching fractions are given in units

of 10−5. This table was reproduced from reference [17].

F singlet
+ (0) 0 0.2 0.4 0.6

Lattice I 1.80+0.76
−0.64 14.576.22

−5.11 39.63+16.91
−13.91 79.96+32.84

−24.02

Lattice II 2.14+0.92
−0.75 15.81+6.75

−5.55 42.12+17.97
−14.79 81.0534.59

−28.45

LCSR 1.99+0.85
−0.21 14.72+6.28

−5.17 39.20+16.72
−13.76 75.43+32.19

−26.67

fully described in [24]. This section outlines that analysis, the results, and the potential

implications.

The B(B → η′`ν) and B(B → η`ν) were measured as part of an analysis that also

studied the branching fractions and q2 distributions of the decays B → π`ν, B → π0`ν,

B → ρ`ν, B → ρ0`ν, and B → ω`ν. This analysis used the method of neutrino re-

construction where the excellent detector hermiticity and the well known energy of the

electron beam allow for the neutrino four-vector to be determined from energy and mo-

mentum conservation. The missing four-vector is determined by subtracting the total

four-vector of all measured particles from the initial four-vector of the colliding e+e−.

If there are no other missing particles, the missing four-vector is the four-vector of the

neutrino.

If the event appears to be consistent with one neutrino and no other missing particles

the neutrino four-vector is combined with the lepton and meson candidates in the event

that make the best B → X`ν candidate. Events are deemed consistent with 1 neutrino

if the missing mass is consistent with zero, the total charge is zero (no missing or extra

tracks), and there is only one charged lepton in the event (number of charged leptons is

generally equal to number of neutrinos).

The η is reconstructed through both the γγ and the π+π−π0 decay modes. The η′ is

reconstructed through η′ → ππη(γγ) and η′ → ρ0γ. We accept η′ → ρ0γ candidates
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Figure 1.4: The shape of the mass of the ρ in B → ρ`ν and η′ → ργ. Limited
phase space in η′ → ργ produces the asymmetry about the nominal ρ
mass in this mode. Histograms are normalized to equal area.

within the ρ0 mass range of 0.3 to 0.9 GeV/c2, where the range is subdivided into four

roughly equal mass bins. The phase space restrictions in η′ → ρ0γ distort the ρ0 line

shape at high ππ mass (Figure 1.4).

In order to improve the signal to background, the η′`νmeasurement was divided into

two q2 bins, q2 > 10 GeV2 and q2 < 10 GeV2. The majority of the η′`ν backgrounds

occur at q2 > 10 GeV2, and the signal is mainly located in the q2 < 10 GeV2.

The data and Monte Carlo simulation are divided into bins according to recon-

structed q2, reconstructed exclusive decay mode, and reconstructed net charge (0 or ±1).

The Monte Carlo sample is also divided into bins according to true q2 and true decay

mode, that generates the efficiency and cross feed matrix between the different decays

or q2 ranges. A fit is performed using the method of Barlow and Beeston to calculate

the −2LogL.

There was not a statistically significant signal in the B→ η`ν mode and the data was

converted to a 90% upper limit of B(B+ → η`+ν) ≤ 1.01 × 10−4. For B→ η′`ν we have

a statistically significant result B(B+ → η′`+ν) = (2.66 ± 0.80stat ± 0.57syst) × 10−4 . We
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also determine the lower limit for the ratio B(B+ → η′`+ν)/B(B+ → η`+ν) to be 2.5 at

the 90% confidence level.

The BABAR collaboration also measured these branching fractions in 2004 using

L = 88 f b−1 [41] and again in a different analysis in 2006 using L = 316 f b−1 [42].

The results of the 2004 analysis [41] were B(B → η′`ν) = (2.7 ± 1.2 ± 0.5) × 10−4 and

B(B → η`ν) = (0.39 ± 0.41 ± 0.22) × 10−4. Though the statistical significance of these

results did not meet the standard of being considered evidence, the central values are

in good agreement with the CLEO measurement. The 2006 BABAR measurement that

used nearly 4× the luminosity did not find a statistically significant B → η′`ν signal,

and set a 90% upper limit B(B → η′`ν) < 1.3 × 10−4. They measured B(B → η`ν) =

(0.84 ± 0.27 ± 0.21) × 10−4.

Though the CLEO and the 2006 BABAR B(B→ η′`ν) measurements have very dif-

ferent central values, the uncertainties on both measurements are large enough such that

the disagreement is only at the 2σ level. The B(B→ η`ν) measurements are consistent

in all cases.

1.1.7 Estimates of Two Gluon Contributions to B→ η′

In this section we use the FKS basis and phenomenology with the CLEO measurements

of B(B→ η`ν) and B(B→ η′`ν) to determine the size of the two gluon contributions in

the B→ η′ form factor. Previous theoretical studies have assumed that F signlet and FB→π

have the same q2 distributions [17], but this is probably not true. This analysis expresses

B(B→ η′`ν) as a function of the parameter

F̃s = (
∫
|F singlet
+ |2Ωη′∂q2)/(

∫
|FB→π
+ |2Ωη′∂q2), (1.48)

where Ωη(′) is the available phase space in the B → η′`ν decay. The F̃s parameter is

directly related to the enhancement in the branching fraction by the two gluon coupling
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regardless of the q2 dependance of the FB→π or F singlet. If the F singlet and FB→π have the

same q2 dependance then F̃s is equal to |F singlet(q2 = 0)|2/|FB→π(q2 = 0)|2.

In terms of F̃s and B(B→ π0`ν) we may express

Bη′ = I × Bπ0βη′

(
(aπη′)

2 + 2γη′(aπη′)(a
s
η′)

√
F̃s + F̃s(as

η′)
2
)
, (1.49)

and

Bη = I × Bπ0βη

(aπη)2 + 2γη(aπη)(a
s
η)

√
F̃s
βη′

βη
t + F̃s

βη′

βη
t(as

η)
2

 , (1.50)

where I is an isospin factor (2) and Bπ0 is the B→ π0`ν branching fraction. The aπ
η(′) and

as
η(′) are functions of FKS parameters given by

aπ
η(′) = f q

η(′)/ fπ, (1.51)

and

as
η(′) = (

√
2 f q

η(′) + f s
η(′))/(

√
3 fπ). (1.52)

The other factors in the equations are given by,

βX = (
∫
|FB→π
+ |2ΩX∂q2)/(

∫
|FB→π
+ |2Ωπ∂q2), (1.53)

γX =
(
∫
|FB→π
+ F singlet

+ |ΩX∂q2)√
(
∫
|FB→π|2ΩX∂q2) × (

∫
|F singlet
+ |2ΩX∂q2)

, (1.54)

and

t =
(∫
|F singlet
+ |2Ωη∂q2

)
/

(∫
|F singlet|2Ωη′∂q2

)
. (1.55)

The factors βX, γX, and t contain the dependance of the branching fractions on the q2

distributions of F singlet and FB→π. Only F̃s contains information about the relative size

of F singlet compared to FB→π. For our nominal values of F̃s we assume that the q2 distri-

butions are the same and then vary the βX, γX, and t variables to determine a theoretical

systematic uncertainty on F̃s from our lack of knowledge about the q2 distributions.

For the q2 dependance FB→π we use a BK paramterization,

f+(q2) =
f+(0)

(1 − q̃2)(1 − αq̃2)
, (1.56)
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with α = 0.55, the average of a BABAR measurement [43] and a fit to lattice QCD

calculations [44]. The systematic uncertainty is conservatively estimated by varying α

from 0.3 to 0.7. For the F singlet q2 dependance we use a BK with α nominally set to 0.55

and varied between 0 and 1.

If there were no two gluon contribution, F̃s = 0, B(B → η′`ν) would be roughly

half of B(B→ η`ν). The fact that B(B→ η′`ν) is significantly larger than B(B→ η`ν)

indicates that F̃s must be of order 1. The best fit of the CLEO data gives F̃s = 1.15 ±

0.54± 0.38± 0.21, where the errors listed are, in order, statistical, systematic, and those

due to uncertainties related to this model, including the q2 dependance of the different

components. This result indicates that F singlet(q2 = 0) ∼ FB→π(q2 = 0).

1.1.8 Application to D+ → η(′)`+ν

Another place to search for possible enhancement in branching fractions involving the η

and η′ system is the the Ψ(3770) resonance with D meson decays. If we adopt the same

model of the form factors for D→ η(′) as we did for B→ η(′) we may write

FD+→η(′)

+ = FD+→π0

+

f q
η(′)

fπ
+ FD→singlet

+

√
2 f q

η(′) + f s
η(′)

√
3 fπ

. (1.57)

It is not clear how to relate the FD→singlet form factor to the FB→singlet, however,

we may set the value of FD→singlet to zero and calculate lower limits for the branching

fractionsB(D+ → η′e+ν) andB(D+ → ηe+ν) in terms of the branching fractionB(D+ →

π0e+ν). Branching fractions significantly larger than these lower limits may also indicate

the presence of an enhancement. These branching fractions are given by

B(D+ → η(′)e+ν) ≥ B(D+ → π0e+ν)
f q
η(′)

fπ


∫
|FD→π0

|2Ωη(′)(q2)∂q2∫
|FD→π0

|2Ωπ0(q2)∂q2

 (1.58)

.

In the above equation Ωπ0(q2) is the phase space factor for the D+ → π0e+ν decay

for a given q2 and Ωη(′)(q2) is the phase space factor for D+ → ηe+ν decay at a given q2.
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If we use the measured D+ → π0e+ν branching fraction of 0.373(22)(13)% and a BK

form for the form factor with α = 0.37 ([33]) we find the following lower limits for the

branching fractions

B(D+ → η′e+ν) ≥ 1.58 × 10−4 (1.59)

B(D+ → ηe+ν) ≥ 10.72 × 10−4 (1.60)

.

The above lower limits are approximately the same as results calculated by Fajfer

and Kemenik [26], B(D+ → η′e+ν) = 1.6 × 10−4 and B(D+ → ηe+ν) = 10 × 10−4.

Earlier analysis of 281pb−1 of Ψ(3770) CLEO data [25] measured B(D+ → η`+ν) =

13.3 ± 2.0 ± 0.6 and set a 90% upper limit B(B+ → η′`+ν) < 3.5 × 10−4. Based on the

B(D+ → η′`+ν) upper limit, the size of the FD→singlet contribution could be as large as

FD→singlet/FD→π0
= 0.28.

In this analysis we set out to obtain a statistically significant measurement of D+ →

η′e+ν and to improve the measurement of D+ → ηe+ν by using a different technique

and incorporating the full data set. A D+ → η′e+ν branching fraction near the previous

90% upper limit would indicated a 2-gluon enhancement in the D+ → η′e+ν decay, and

a branching fraction one or two standard deviations below the FKS minimum would

constitute evidence against a two gluon contribution.

1.2 Form Factor Representation

There are sufficient events in the D+ → ηe+ν data for a coarse measurement of the q2

distribution, and the shape of the form factor FD→η
+ (q2). Simple parameterizations are

often used to fit form factor shapes. One such parameterization, the Becirevic-Kaidalov

(“BK”) form, is widely used, yet enforces scaling relations at small q2 known to be

broken by hard gluon exchange [40]. Another class of form factor parameterizations
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involve series expansions around some q2 = t0 up to a fixed order with the coefficients

of the expansion being the fit parameters, [40]. The difficulty that can occur with this

method is poor convergence due to singularities.

For this analysis we use an improved series expansion explained in [40], that instead

of expanding in q2 − t0, expands in a variable z(q2, t0) given by

z(q2, t0) =

√
t+ − q2 −

√
t+ − t0√

t+ − q2 +
√

t+ − t0

, (1.61)

where t± = (mD ±mη). This z maps a branch cut on the real axis onto a unit circle when

the form factor is analytically continued into the complex plane. For the physical range

of q2, |z| < 1. The convergence of this form is much better. The form factor in this series

expansion is given by:

F+(q2) =
1

P(q2)φ(q2, t0)

kmax∑
k=0

ak(t0)[z(q2, t0)]k. (1.62)

The definitions of P(q2) and φ(q2, t0) are given by

P(q2) ≡ z(q2,m2
D∗s

), (1.63)

φ(q2, t0) =
(
πm2

c

3

)1/2 (
z(q2, 0)
−q2

)1/2 (
z(q2, t0)
t0 − q2

)−1/2 (
z(q2, t−)
t− − q2

)−3/4 t+ − q2

(t+ − t0)1/4 . (1.64)

We use this parameterization to extract form factor information from our observed

D+ → ηe+ν q2 dependance.
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CHAPTER 2

EXPERIMENTAL SETUP

The data for this analysis was provided by e+e− collisions generated by CESR (Cornell

Electron Storage Ring) and measured by the CLEO-c detector. In the lab frame, the

e+e− collision is precisely tuned to create two D mesons, either D+D− or D0D̄0, nearly

at rest at the center of the CLEO-c detector. This chapter describes CESR, the CLEO-

c detector and the workings of the various CLEO-c detector sub components in more

detail.

2.1 CESR: Cornell Electron Storage Ring

The Cornell Electron Storage Ring (CESR) was originally designed to produce e+e−

collisions in the energy range of 9 to 16 GeV. The e+e− collisions for the analysis of

B→ η′`ν were created by CESR with a center of mass energy of 10.58 GeV. In order to

produce D+D− mesons for the study of D+ → η(′)e+ν CESR had to go below its original

design parameters down to an energy 3.77 GeV.

The electrons and positron were accelerated in three stages: a linear accelerator

(linac), a synchrotron, and then the CESR storage ring itself. The configuration is shown

in Figure 2.1. The linac is 30m long, and accelerates electrons emitted from a 120 kV

electron gun up to 300 MeV. The positrons are produced by inserting a tungsten target

into the 150 MeV point of the electron path. The electrons that collide with the target

create electromagnetic showers that can produce the positrons. Since the positrons are

produced roughly midway through the linac, they are not accelerated up to as high an

energy at this stage, and reach roughly 160 MeV. Curved transfer lines are used like

spectrum analyzers to select electrons and positrons at specific momentum and those

are injected into the synchrotron. Within 1/120 s the synchrotron fully accelerates the

beam and “kicker” magnets send the beam into CESR.
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Figure 2.1: Schematic of the Cornell accelerator chain, showing the linac, syn-
chrotron, and CESR.
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CESR contains a single ring, and both electrons and positrons are stored in the same

beampipe, traveling in opposite directions. We want the beams to only collide at the

intended interaction point at the center of the CLEO-c detector. In order to prevent

the beams from interacting at any other point in the ring, electrostatic separators pro-

vide equal and opposite kicks to the electrons and positrons. When the electrons and

positrons do collide at CLEO there is a slight crossing angle (3 mrad) and hence a non

zero momentum of the center of mass in the lab frame. Despite the crossing angle, the

heavy mesons produced in the e+e− collisions are nearly at rest.

2.2 The CLEO-c Detector

The data for this analysis was provided by e+e− collisions generated by the CESR (Cor-

nell Electron Storage Ring) and measured by the CLEO-c detector. The CLEO-c de-

tector is designed to perform well for a wide variety of heavy meson physics analysis.

The CLEO detector has gone through several iterations during the life of the CLEO ex-

periment. We describe the detector in its final configuration, CLEO-c, that was used to

study the D mesons. The CLEO detector is composed of several different sub-detectors,

each designed with the aim of measuring the daughter particles energy, momentum, and

speed of the particle. The detector is mostly cylindrical and nearly hermetic, with some

sub-components having up to 93% coverage of the solid angle. Figure 2.2 shows a 3D

cut away view of the detector and its sub-components.

2.2.1 Drift Chambers (DR and ZD)

Drift chamber technology is used as the primary means of detecting charged particles in

CLEO-c. The drift chamber is composed of basic units called “cell”s that are composed

of “sense” wires that are surrounded by “field” wires. In CLEO-c the geometry of the
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Figure 2.2: The CLEO-c detector and all of the sub-detector components.

“cell”s is approximately square with a length around 1-1.5 cm. The cell is immersed

in an inert gas mixture of 60:40 helium and propane. When a charged particle passes

through the cell it ionizes gas molecules along its trajectory. The trail of ionized gas is

referred to as a “track”. The ionized gas molecules travel through the material under

the influence of the electric fields generated by the field wires toward the sense wire.

The ions travel at essentially a constant speed, 28 µm/s, until it gets close enough to the

wires where the electric field becomes very strong. The ion gains enough momentum

to ionize other particles and begins an “avalanche” of electrons that amplifies the signal

and finally hits the sense wire to create a signal pulse.

The pulse gives two pieces of information, the time that the original charged particle

passed through the cell, and the total charge of the pulse tells us the energy that was lost

by the original charged particle. The size of this energy loss is related to the particles

velocity by the Bethe-Bloch formula, and is referred to in CLEO and this thesis as dE/dx.
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The charged particles and ions are not only under the influence of the electric fields

generated by the field wires, but are also within a uniform 1 Tesla magnetic field gen-

erated by a solenoid that encloses the entire drift chamber. This magnetic field points

along the direction of the beam axis. The purpose of this field is to cause the paths of

the charged particles to bend in a helix around the beam axis. The curvature of the path

is inversely proportional to the magnitude of the momentum transverse to the direction

of the magnetic field. Therefore, if we arrange the drift chamber cells such that the path

that the charged particle took can be determined then we can determine the momentum

of the charged particle. Information about the momentum (path) and the speed (dE/dx)

can give us the particle mass and identity. Additionally, the direction that the particle

curves in the helix relative to the direction of the magnetic field is related to the sign of

the particles charge.

A single square cell can be used to determine the point along the face of the cell that

the charged particle traveled through. Therefore, if all of the wires in the drift chamber

were parallel to the beam axis then we would have no information about how the particle

traversed along that direction. Therefore, we use cells with “stereo” angles to the beam

axis, which means that it can have some resolution for the path along the beam axis, as

well as the plane that’s transverse to the beam axis.

In order to optimize our ability to determine the path of charged particle from the

interaction point CLEO-c uses two concentric drift chambers, the inner chamber known

as the ZD [18] and the outer drift chamber known as the DR [19]. The inner drift

chamber, ZD, is designed to give good information along the beam axis, or Z axis, and

so uses large stereo angles between 10.3 and 15.4 degrees from the beam pipe. The ZD

contains 300 sense wires.

The main drift chamber surrounds the beam pipe and the ZD. It consists of forty-

seven layers of cells. As the particle passes through the many layers of the DR its dis-
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tance of closest approach in each cell that it hits gives information about its r trajectory.

To contribute information about the z trajectory of the particle, thirty-one of the forty-

seven DR layers are arranged in groups of four layers with alternating negative and

positive stereo angles. The stereo angle is created by giving the wires in these layers a

twist: unlike the wires in the axial layers, they are not strung parallel to the beam axis,

but instead have different coordinates at either end. There are 9,796 sense wires in the

DR drift chamber. Additional z information is provided by cathode strips surrounding

the drift chamber.

All of the information from the drift chamber is used by a Kalman filter [20] to

provide the best possible description of the particles path, including the effect of energy

loss. The track momentum resolution at CLEO-c is σp/p ∼ 0.6% at 800 MeV/c.

2.2.2 RICH

The drift chamber measured the momentum of charged particles and with measurements

of dE/dx we can infer the particle speed and then with momentum and speed identify the

type of particle by its mass. However, our ability to determine the speed of the particle

by dE/dx measurements is not always satisfactory. We find that the separation between

certain species of particles in certain momentum ranges are not very large compared to

the size of the uncertainties in the dE/dx measurements. Therefore, a secondary method

for determining the speed of a particle is required.

We use an instrument known as the RICH (Ring Imaging Cherenkov detector) as an

additional measure of the speed of charged particles [21]. The RICH uses the properties

of Cherenkov radiation to determine the speed of a particle. When particles travel faster

than the speed of light in a medium they create a cone of coherent light called Cherenkov

radiation. The half angle between the cone and the particles trajectory is given by

cos(θC) =
1

nβ
(2.1)
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where n is the refractive index of the medium and β = v/c is the speed of the particle as

a fraction of the speed of light. By measuring the angle between the particle trajectory

and the Cherenkov photon we can determine the velocity of the charged particle.

The RICH is cylindrical and lies immediately outside the DR at a radius of 82 cm,

and covers approximately 80% of the solid angle of the decay, or |cosθ| < 0.8. The

charged particles travel through a 1 cm think lithium fluoride crystal with a refractive

index of 1.5 at ≈ 150 nm wavelength of light. If a charged particle has a speed that

is higher than the speed of light in the fluoride crystal, then a photon with an opening

angle dependent on the particles speed is produced. In order to minimize total internal

reflections, these LiF radiators are arranged in a “sawtooth” pattern on the outer radius

of the RICH barrel. The Cherenkov photons are then allowed to traverse a 16 cm long

region filled with nitrogen gas where the cone of light can expand large enough to be

measured. The photons pass through a calcium fluoride window into another region

filled with a mixture of methane and triethylamine gas. The photons ionize the gas, and

the resulting signal is amplified with a multi-wire chamber, and the charges are measured

with 7.5 mm × 8 mm cathode pads. Figure 2.3 shows a schematic of the RICH.

For each track that reached the RICH a likelihood is calculated for the different mass

hypothesis expected to be found in the drift chamber–namely electron, muon, pion,

kaon, proton. Each mass hypothesis is expected to leave photons in different sets of

cathode pads. Therefore, whichever hypothesis is most consistent with the pattern of

cathode hits in data is chosen as the best match to the track.

It should be noted that the RICH has much more material in it than the drift chamber,

and is estimated to be 13% of a radiation length at normal incidence. This means that

a number of the photons produced in the D decays are going to decay in the RICH, and

that the e+e− generated are going to be farther apart than when the photon decays in the

calorimeter, and hence may not get reconstructed as a photon in the crystal calorimeter.
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Figure 2.3: The RICH detector scheme in the CLEO-c.

The crystal calorimeter is the next detector in the path of the D’s daughter particles, and

is described in the following section.

2.2.3 Crystal Calorimeter

Up to this point we have only described how the CLEO-c detector collects information

about charged particles. However, a large fraction of the total energy from an event
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is going to be in the form of neutral particles that do not leave any tracks in the drift

chambers, and no useful information in the RICH. The neutral particles that we want to

be able to detect include photons, KL, and neutral particles that can almost immediately

decay to two photons such as π0 and η.

Therefore, outside of the RICH is the CLEO Crystal Calorimeter (CC) [22] that is

designed to measure the energy of electromagnetic showers. The CC (Crystal Calorime-

ter) is composed of 7784 cesium iodide crystals doped with thallium. Each crystal is

30cm long and 5 cm × 5 cm on the face. The long axis corresponds to over 16 radiation

lengths, and the Moliére radius of the material is 3.8 cm, which is within the surface

area of a single crystal. This means that almost all showers interact in the calorimeter,

and transverse dimensions of an electron or photon shower can be contained in a small

number of crystals.

The back end of the crystal has four photodiodes mounted on it, and the other end

is mounted toward the interaction region. These crystals are arranged into 3 different

sections around the other detectors: the barrel section and 2 endcap sections. The barrel

section is cylindrical, and the crystals are arranged such that they nearly all look toward

the interaction region, only offset with a slight angle in order to prevent photons from

slipping through the cracks without leaving energy deposits. The crystals in the endcaps

are aligned parallel to the beam axis, and necessarily have a hole through the middle

of them for the beam pipe to enter and exit the detector. The crystal configuration has

different efficiencies for detecting showers in different regions in |cos(θ)| corresponding

to the holes in the endcaps and the gaps between the barrel and endcap sections. We

define 4 regions of the calorimeter given in Table 2.1. Further, the structure holding the

inner component of the drift chamber in place shadows the endcap region in |cos(θ)| >

0.93.
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Table 2.1: Calorimeter regions. The crystal geometry is not cylindrically sym-
metric in the endcap, causing the overlap between the transition and
good endcap regions and the approximate boundaries.

Good Barrel |cosθ| < 0.82

Transition 0.82 < |cosθ| < 0.86

Good Endcap 0.85 < |cosθ| < 0.93

Inner Endcap 0.93 < |cosθ| < 0.95

However, not just neutral, but charged particles can also leave energy in the crystal

calorimeter. These showers from charged particles can usually be distinguished from

showers from photons based on where the track enters the calorimeter, or by the way

that energy was deposited in the crystals. If a shower is located where the path of a track

intersects the calorimeter, then it very likely has been produced by that track. However,

tracks and KL can also leave energy in the calorimeter by having a hadronic interaction

with one of the atomic nuclei in the crystal. The daughters of these hadronic interactions

can be long lived, and may travel some distance, even occasionally end up on the other

side of the detector, before they deposit energy in the calorimeter. These showers are

referred to as “splitoffs” because they are “split” “off” from the track that created them.

Identifying and removing these splitoffs are going to be important later in this analysis.

We find that for showers in the good barrel or good endcap regions, the CC provides

energy resolution of σE/E ∼ 5% for a 100 MeV photon.
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CHAPTER 3

ANALYSIS METHOD

For this analysis we set a goal to obtain a statistically significant observation of

D+ → η′e+ν and to measure the branching fraction with an uncertainty of less than 1/3

of the central value. This level of uncertainty would give 1.5 standard deviation (σ)

separation between the previous 90% upper limit and the minimum branching fraction

predicted by the FKS form factor parameterization. Though greater separation is desired

to confirm 2-gluon contributions to the form factor, the current goal of a 3σ branching

fraction measurement pushes the limits of the CLEO-c data set, and a more ambitious

goal would not be realistic. Even though we do not expect to obtain clear evidence

of 2-gluon contributions, if the branching fraction has fluctuated one or two standard

deviations below the FKS minimum this would be strong evidence against such a con-

tribution.

The CLEO detector is symmetrically centered around the collision point between

electrons and positrons created by CESR (Cornell Electron Storage Ring). The electrons

and positrons have equal energy, and nearly opposite momentum in the lab frame with

the exception of a small crossing angle of 10−3 radians. The beam energy and momen-

tum is known very well compared to the energy resolution of tracks and showers. For

CLEO-(2,2.5,3) the beam energy was on resonance to produce e+e− → Υ(4S ), where

Υ(4S ) predominantly decayed to pairs of B mesons (B+B− and B0B̄0) that were nearly

at rest. For CLEO-c the beam energy was on resonance to produce e+e− → Ψ(3770),

where Ψ(3770) predominantly produced pairs of D mesons (D+D−, or D0D̄0) that were

nearly at rest. The fact that these mesons decay nearly at rest means that the daughter

particles of each heavy meson are evenly distributed in the 4π of solid angle, and it must

be determined which tracks and showers belong to which heavy meson.
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The CLEO-c program has used two different types of analysis to study exclusive

semileptonic decays: D-Tagging [25] and Neutrino Reconstruction [33]. The B(B+ →

η(′)`+ν) measurements were made using neutrino reconstruction, and the preliminary

B(D+ → η(′)e+ν) measurements were made using the D-Tagging method. Neither of

these two approaches are capable of achieving the goal set for this analysis. The D-

Tagging method has very small backgrounds and could claim an observation with only

a few events, but given the size of the data set it is not likely to provide any information

about 2-gluon couplings. The neutrino reconstruction method doubles the efficiency, but

has larger backgrounds and systematic uncertainties, so would probably not achieve a

statistically significant observation of this decay.

In order to accomplish the stated goal of the analysis, a new method is created that

combines neutrino reconstruction with improvements inspired by D-tagging. This new

method performs a generic reconstruction of the non-signal (“other side”) D to improve

the neutrino resolution and aid in background rejection. Furthermore, the approach can

be combined with D tags to do a generic survey of the hadronic decays, and by doing so

we make the first measurement of several D hadronic decays.

In the following sections there is more in-depth discussion of the D-Tagging and

Neutrino Reconstruction approaches, as well as a thorough description of the new

Generic Reconstruction method.

3.1 Exclusive Semileptonic Reconstruction at CLEO-c

Before delving into an in-depth discussion on the different approaches to studying ex-

clusive semileptonic decays at CLEO-c, we describe aspects that are common to any

CLEO-c analysis of this type. The special concerns involved in an exclusive semilep-

tonic analysis are more pronounced when we first consider the study of a fully hadronic

decay, D+ → X0Y+Z0, where X, Y and Z represent hypothetical daughter particles that
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can be observed by the CLEO-c detector. In this hypothetical analysis the mass and

energy of the D mesons produced in the lab frame are well known. Therefore, the study

would proceed by searching the daughter particles of the D+D− decays for an X0, Y+

and Z0 where the sum of their four-vectors is consistent with the expected energy and

mass of a D meson. There would be quality cuts on the X0, Y+, and Z0 candidates to

make certain that they were correctly identified, and the Monte Carlo simulation would

be used to predict the efficiency for reconstructing the decay. The branching fraction for

this process could be found by dividing the number of reconstructed signal events by the

efficiency for detecting the process and the number of all D+D− events in the data set.

Now consider a study of an exclusive semileptonic decay, D+ → X0e+ν. This does

not initially appear any different from the study of D+ → X0Y+Z0 described above.

The difference is that unlike the previous example, where all of the daughters could

be detected by the CLEO-c detector, under no circumstances can neutrinos be directly

measured by the CLEO-c detector. Therefore, the single most important feature of these

studies is that energy and momentum conservation must not only be used to identify

the correct D+ candidate, but must also be applied to the entire set of D+D− daughter

particles to infer information about the neutrino. Due to the necessity of using energy

and momentum conservation on the entire event, and not just on the D+, the semilep-

tonic signal can only be reconstructed when the total energy and momentum of all other

daughter particles in the event can be determined. Events with multiple neutrinos, or

other daughter particles with a low detection efficiency, such as KL, do not contribute to

the signal efficiency. Therefore, unlike the example D+ → X0Y+Z0 where the efficiency

was independent of how the D− decayed, the efficiency for reconstructing an exclusive

D+ semileptonic decay is directly dependent on how well we can determine the energy

and momentum of the D− decay. Each of the analysis techniques that are described in

this thesis deal with this problem differently.
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As an example, consider an imaginary case where D+ has only four possible final

states: one semileptonic decay, SL, and three purely hadronic final states A, B, and C.

Suppose that the efficiency for reconstructing the decay D+ → S L+ in a Ψ(3770) →

D+D− event is 30% for D− → A−, 15% for D− → B−, 7% for D− → C−, and finally

0% for D− → S L−. For N events of type Ψ(3770) → D+D−, the number of D+ → S L+

reconstructed, NR
S L+ is

NR
S L+ = ND+D− (εABA + εBBB + εCBC + εS LBS L) , (3.1)

where εX is the efficiency given D− → X, and BX is the branching fraction for D− →

X. If the hadronic branching fractions, BX, are poorly known the value of the overall

efficiency for reconstructing D+ → S L+, or NR
S L+/(BS LND+D−), is also poorly known.

Consider the case where the true values of the hadronic branching fractions are BA =

15%, BB = 30%, andBC = 45%. Suppose that the branching fractions A, B, and C were

unmeasured but the sum of the 3 was known. If we guessed that BA = 20%, BB = 40%,

and BC = 30%, the total efficiency for reconstructing D+ → S L+ will be wrong by

16% of itself. The CLEO-c program aims to measure exclusive semileptonic decays to

much better than a 16% systematic uncertainty. Therefore, though this is just a cartoon

example of the problem, how unknown branching fractions affect the overall efficiency

for measuring a specific exclusive decay mode must either be understood very well, or

the branching fractions must be determined in such a way that the uncertainties cancel

out.

Another issue that all exclusive semileptonic reconstruction techniques must face

is the problem of extra tracks and extra showers. The algorithm used to extract tracks

from drift chamber hits is not perfect. Extra (fake) tracks can be created by noise in the

drift chamber or by low momentum tracks that curl several times in the drift chamber

(curlers). Extra showers, or showers not associated with a neutral particle directly from

the decay of the D meson, are usually generated by “splitoffs”, or secondary particles
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created by hadronic interactions within the calorimeter that are displaced from the par-

ent particle. These extra tracks and showers can degrade the neutrino resolution, and

can hurt the signal efficiency. One of the challenges in doing an exclusive semileptonic

study is to identify and ignore these extra tracks and showers, and the Neutrino Re-

construction and D-Tagging techniuqes have very different approaches for doing this.

We now discuss the D-Tagging, Neutrino Reconstruction, and Generic Reconstruction

techniques in more detail.

3.2 Method of D Tagging

The D-Tagging technique was first applied by the Mark III collaboration at SPEAR [27].

It was used to search for D± → ηe±ν and D± → η′e±ν using the first 281pb−1 of CLEO-c

data in [25]. This section gives a more in depth description of the method used in [25].

The method works by only considering events where at least one of the two D’s is

clearly identified as a well understood D decay with a precisely measured four-vector.

This well reconstructed D is known as the D-tag. Once a D-tag is identified the signal

of interest is sought out in the remaining tracks and showers in the event. The neutrino

on the signal side is inferred using the four-vector of the D-tag and the four-vectors of

the lepton and meson candidates for the signal D. The problem of extra tracks and extra

showers is solved by simply ignoring any tracks or showers that are not part of the D-

tag or the signal lepton and meson candidates. With specific decays in mind that are

known to occur frequently in the data, we can confidently ignore any left over tacks and

showers if we can make a convincing tag and signal.

For D+D− events the following six hadronic decay modes are used to create D-

tags: D− → KS (π+π−)π−, D− → K+π−π−, D− → K+π−π−π0, D− → KS (π+π−)π−π0,

D− → KS (π+π−)π−π−π+, and D− → K+K−π−. Any of these combinations that are found

must pass strict requirements and be consistent with the the expected energy and mass
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of the D. In the event that there are multiple D− candidates, the one that best matches the

beam energy is chosen. In the actual analysis, the beam energy is known much better

than the energy of the daughter particles in the tag. Rather than make requirements on

the invariant mass of the sum of the daughter particles, consistency of the D-tag with the

D meson is enforced by placing requirements on two parameters, ∆Etag and Mtag
bc . The

total energy of the tag must be the same as the beam energy, so we require that ∆Etag is

close to zero, where ∆Etag = Etag
D − Ebeam. Requirements are placed on the magnitude of

the D-tag momentum by constructing a mass from the magnitude of the tag momentum

and the beam energy, Mtag
bc =

√
E2

beam − |~p
tag

D |
2, known as the beam constrained mass.

We require that Mtag
bc is close to the mass of the D.

The efficiency for correctly reconstructing these tags at CLEO-c can vary by more

than a factor of 2 between the different decay modes. For example, the efficiency for

correctly tagging a true D+ → KS (ππ)π+ is 66.46% but the efficiency for correctly

tagging a D+ → K−π+π+π0 is only 27.02% [25]. If the branching fractions of these two

decays are incorrect in the Monte Carlo simulation it can cause a large uncertainty in

the total number of expected tags and the total number of reconstructed signal events.

Despite the large variation in the tagging efficiencies, once the D− tag has been

found, the efficiency for reconstructing the signal semileptonic D+, or the post-tag signal

efficiency, has much less variation. Depending on which tag was found for the D− decay,

the efficiency for finding the signal can vary by as much as 5% percent of the average.

For example, the post-tag efficiency for D+ → ππη(γγ)e+ν is on average 21.63% with

a standard deviation between the different central values of 0.7% and a low of 20.44%

for D− → K+π−π−π0 and a high of 21.89% for D− → K+K−π−. This variation in the

post-tag efficiency is from combinatoric effects. The requirements for identifying the

signal lepton and η(′) candidate are described in [25].
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As was shown in Section 3.1, the number of reconstructed exclusive semileptonic

decays can depend on all of the hadronic branching fractions of the D meson. The

tagged analysis takes two steps to keep this from being a problem. Firstly, the branching

fractions are found by dividing by the total number of tags found without signal D

restrictions rather than the total number of D+D− generated by CESR. By dividing by

the number of tags rather than the number of D+D− we eliminate the need to know

the fraction of the time that nature produces a decay that can be tagged. Secondly,

the individual branching fractions of the tag modes are accounted for by measuring the

composition of tags in data and correcting the Monte Carlo sample to match.

The advantage of this method is that you do not need to fully understand the D sys-

tem in order to determine absolute branching fractions. You do not need to know the

inclusive semileptonic decay rate, the rate of KL production, or the absolute branching

fractions of any decay. The only thing that has to be understood is the relative fre-

quency for producing the different tag types and this is measured in data. The obvious

drawback to this technique is that it does not make full use of the data. The inclusive

branching fraction of all of the D+ tag modes is approximately 22%, while the total

D+ → f ully visible branching fraction is approximately 44%. Taking advantage of the

additional D→ f ully visible branching fraction is problematic for the D-Tagging anal-

ysis because it is composed of a large number of rare decays. Not only would adding all

of these rare decays involve a large amount of work, but attempts to count the number

of rare tags without signal D restrictions can easily be overwhelmed with backgrounds.

3.3 Method of Neutrino Reconstruction

The method of Neutrino Reconstruction has been used at CLEO-2, CLEO-2.5, and

CLEO-3 to study the semileptonic decays of B mesons to charmless final states and

was used in CLEO’s measurement of the CKM matrix element |Vub| [16] [24]. More
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recently the method was used at CLEO-c to measure the D→ πeν and D→ Keν decays

[33].

This method works by identifying events that are consistent with having one neutrino

and no other unmeasured particles. The four-vector of this neutrino is inferred from

energy and momentum conservation using the known four-vector of the beam subtract

the total measured four-vector of the tracks and showers in the event. Once the neutrino

has been identified, and event level requirements for consistency with only 1 neutrino

have been met, the analysis continues very much like the D+ → X0Y+Z0 example of the

previous section. A search is performed in the tracks and showers for a suitable electron

and meson candidate that can combine with the neutrino four-vector to make a good

D meson candidate. A D candidate is considered good if the energy and momentum

magnitude are consistent with expected values.

More specifically, the event is considered consistent with having only one neutrino

if there is only one charged lepton measured in the event, and if the mass of the missing

four-vector is consistent with zero. The reason for the 1 charged lepton requirement is

that the number of neutrinos is typically equal to the number of charged leptons. The

missing mass must be consistent with zero because the neutrino effectively has zero

mass. A missing mass not consistent with zero is an indication of there being other

missing particles that are not accounted for by the tracks and showers measured by the

detector, such as particles that went down the beam pipe where there is no detector

coverage. Once the missing mass requirement has been made, the missing energy mea-

surement is not used again, and the magnitude of the missing momentum is inferred to

be the neutrino energy.

Good D meson candidates are determined by placing requirements on two variables:

∆E sig = E sig
D − Ebeam and Msig

bc =

√
E2

beam − |~p
sig

D |
2. These requirements enforce energy

and momentum conservation as well as the expected invariant mass of the D. Note that
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this ∆E and Mbc are different from the quantities used in the tagged analysis. In the

D-tagging analysis these two parameters were functions of only the components used

in the D-tag. In Neutrino Reconstruction these quantities use the reconstructed neutrino

four-vector and are functions of all tracks and showers in the event. The Mbc is also

different because after the ∆E sig is calculated, the energy/momentum of the neutrino is

scaled such that ∆E sig is zero in order to improve the resolution of the beam constrained

mass.

This method does not fully reconstruct the contents of the event, and unlike the D-

Tagging method, it does not have the luxury of being able to simply ignore extra showers

and tracks based on event level information. Instead, extra showers and extra tracks must

be identified on a shower by shower and track by track basis using clues offered by the

distribution of those individual objects in the detector.

In order to identify and remove these extra showers we use a neural net algorithm

known as “splitoff”. This algorithm looks at the distance of potential splitoff showers

from parent showers, as well as the shape of the energy deposition of the extra shower

to see if it points back to the parent shower. This neural net is described in more detail

in [29]. Showers that do not show any sign of being a splitoff are refered to as “splitoff

approved”. The efficiency for showers to pass the splitoff approval requirement is shown

in Figure 3.1. The efficiency is near 100% for photons above 400 MeV, but drops to only

20% below 100 MeV.

Extra tracks are identified by an algorithm known as Trkman. Tracks that are con-

sidered good tracks to include in the missing energy calculation are called “Trkman

approved”. More detail about the trkman algorithm can be found in [30]. The efficiency

for pion and kaon tracks to be trkman approved is shown in Figure 3.2. The efficiency

for both pions and kaons to be trkman approved is near 100% above 250 MeV/c.
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Figure 3.1: The efficiency for one shower created by a π0 → γγ to be considered
splitoff approved as a function of the shower energy according to the
Monte Carlo simulation.
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Figure 3.2: The efficiency for a pion track to be trkman approved (left) and the
efficiency for a kaon track to be trkman approved (right).
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This method can make significant gains in efficiency over the D-Tagging method

from two sources. The first source of extra efficiency is that all hadronic D decays that

produce only visible daughter particles are used to reconstruct the signal semileptonic

D decays, and not just the handful of decays used to create tags. The branching fraction

of the sum of the decay modes used to create tags is approximately 22%, while the

branching fraction of all fully hadronic, fully visible decays (not including events that

contain a K0 → KL) is approximately 44%. Since the missing energy reconstruction

method does not discriminate against specific D decays, it can potentially make use of

nearly double the number of events.

The second source of extra efficiency is the fact that an event does not have to be

perfectly reconstructed, as it does in the tagging method, in order to be used in the

analysis. If a shower from a π0 → γγ decay were lost, or incorrectly associated with

hadronic showers from a track, the D-tagging method would probably not be able to

use the event. However, if the total momentum of the event excluding the neutrino

was still reconstructed reasonably well, and the total energy was still close enough to

the expected value to rule out missing KL’s or extra neutrinos, this event would still be

perfectly good to use in Neutrino Reconstruction. Depending on the requirements on the

missing mass necessary to remove the backgrounds from a particular exclusive decay,

the Neutrino Reconstruction method can more than double the number of signal events

seen in the D-Tagging method at CLEO-c.

This increase in efficiency comes at a cost. Limiting the restrictions on the non-

signal D decay can result in much larger backgrounds than the D-Tagging method. In

addition to larger backgrounds there are larger systematic uncertainties associated with

the absolute branching fraction. Unlike the D-Tagging method that used the number of

D-tags in the data set to determine absolute branching fractions, the neutrino reconstruc-

tion method must use the total number of D+D− in the data set. As in the example earlier
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in this chapter, this makes the efficiency of the Neutrino Reconstruction analysis more

vulnerable to systematic uncertainties related to how a generic D meson decays. The ef-

ficiency in this analysis is proportional to the fraction of the D meson decays that will al-

low for the neutrino to be reconstructed. Events with semileptonic decays on both sides

have essentially zero efficiency, as do events with KL’s that do not leave sufficient en-

ergy in the calorimeter. Provided that these low efficiency inclusive branching fractions

are well understood, the analysis method relies on the assumption that the efficiency for

reconstructing the signal is independent of which non-signal D → f ully visible decay

took place. According to the splitoff approval efficiency, Figure 3.1, and the trkman ef-

ficiencies, Figure 3.2, this is probably a sufficient assumption provided that the majority

of the non-signal D is in the form of tracks and showers that have momentum above 300

MeV/c. Also shower losses do not pose a significant problem as long as those showers

contain a small fraction of the neutrino energy.

3.3.1 Using Separate Bins to Increase Significance

Another method that improves statistical significance of measurements made using neu-

trino reconstruction is to divide the data set into separate bins in such a way as to take

advantage of regions of parameter space that have very good signal to background with-

out having to sacrifice signal in regions that have only marginal, but still useful, signal

to background. Note that this is not typically useful in a D-Tagging analysis because the

backgrounds are already so small.

As an illustration, suppose that you have a measurement of 28 events where 14 of

them are expected to be signal, and 14 of them are expected to be from backgrounds.

The statistical uncertainty in the measurement is related to the figure of merit, defined as

S 2/(S + B) where S is the number of signal events and B is the number of background

events. For this toy experiment, S 2/(S + B) = 7. This measurement would not be
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considered an observation of the phenomenon, and the best estimate of the rate for the

phenomenon would be Rate = Ro ± 0.38Ro.

Suppose that there existed a “magic cut” that would remove all of the background

at the cost of also removing half of the signal. After using this requirement there would

be 7 events that were all expected to be signal. The S 2/(S + B) would still be 7, just

as it was before removing the background, and our knowledge of the actual rate of

the phenomenon is the same as before. However, if it were an absolute certainty that

there were no backgrounds then the measurement would now classify as an observation

because 0 background events cannot fluctuate up to 7.

If the magic cut were used to divide the data into separate bins, rather than throw

away the other 7 signal events over 14 background events, there would still be an ob-

servation of the phenomenon because one bin would have 7 signal events with 0 back-

ground. However, by including the 7 signal events over 14 background events in a

separate bin the total figure of merit is now 72/(0 + 7) + 72/(7 + 14) = 9.33 and the

uncertainty in the rate of the measurement has improved. This would correspond to a

rate measurement of Rate = Ro ± 0.33Ro. Therefore, dividing the data into appropriate

bins results in an improved measurement of the rate and an improved significance.

In the CLEO-3 analysis that studied the exclusive b → u`ν decays, dividing data

into bins was used to increase the statistical significance of the result. The analysis used

the net charge bins Q = 0 and Q = ±1. As was mentioned earlier, if the total charge of

all tracks does not equal zero it is an indication that an odd number of tracks are either

missing or fake. Requiring that the net charge of the event is zero improves the signal

to background. However, at the energy of the Υ(4S ) the neutrino could still be recon-

structed reasonably well if a low momentum track were either missing or fake. Because

of this, for most of the b → u`ν branching fractions measured at the Υ(4S ) resonance,
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events with net charge of ±1 still had useful signal even though the backgrounds were

significantly larger than in the case of net charge 0.

3.4 Method of Generic Event Reconstruction

We have set a goal to measure the D± → η′e±ν branching fraction with an uncertainty

of no more than 1/3 of the central value. Even with all of CLEO-c data, the method of

D-Tagging is not expected to have enough events to do this. However, the method of

Neutrino Reconstruction is not expected to have a clean enough signal to background

to do this either. We combine the best of both of these two methods in order to have

a chance at achieving the stated goal. We create an analysis method that maintains the

high efficiency of neutrino reconstruction by using all D → f ully visible decays, make

use of poorly reconstructed events while taking full advantage of the clean events, yet

have the background rejection, resolution, and systematic uncertainty of the D-tagging

method.

In addition to the other requirements we must fully understand how this new pro-

cedure is affected by the way the non-signal D decays. This procedure is based on

the Neutrino Reconstruction technology and is sensitive to the inclusive semileptonic

branching fraction and the rate of KL production of the non-signal D. However, we also

choose to not rely on the assumption that the efficiency for reconstructing the signal is

independent of how the non-signal D → f ully visible decays. Given the efficiency for

a photon to be splitoff approved, Figure 3.1, and the efficiency for a track to be trkman

approved, Figure 3.2, this may not be a good assumption to make after transitioning

from the Υ(4S ) to the Ψ(3770).

At the Υ(4S ) most tracks and showers carry a large enough momentum to have

high splitoff and trkman efficiency. The low momentum and lower efficiency tracks and

showers that were present typically carried a small amount of energy compared to the
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energy of the missing neutrino, and so the neutrino reconstruction at this resonance was

not very sensitive to loosing tracks and showers, and hence not very sensitive to the

final state of the non-signal B. The Ψ(3770) is a different environment than the Υ(4S ).

The total energy is smaller, the energy of the neutrino is less, there are fewer tracks and

showers, with lower energy, that are more likely to have low efficiency for splitoff and

trkman. This means that we are more likely to loose tracks and showers, and those lost

tracks and showers are more likely to degrade the reconstruction efficiency.

For example, consider a neutrino reconstruction analysis when the non-signal D

decays to one of the two hadronic decays D− → K+π−π− or D− → K+π−π−π0. For the

decay D− → K+π−π−π0 the two showers in the π0 are often below 200 MeV, where the

efficiency for a shower to be splitoff approved begins to drop. In fact, the probability

that both showers are splitoff approved is only about 65%. Therefore, depending on how

important those two showers are, the efficiency for an event containing D− → K+π−π−π0

may be as low as 65% of the efficiency for an event containing D− → K+π−π−. We

find that if we perform a neutrino reconstruction analysis on D+ → KS (π+π−)e+νe with

requirements similar to those used in [33] the efficiency given a non-signal D− decay of

D− → K+π−π− is 32%. For a non-signal D− decay of D− → K+π−π−π0 the efficiency

is 22%, and for a non-signal D− decay of D− → K+π−π−π0π0 the efficiency is 13%.

This shows that even when using neutrino reconstruction at the Ψ(3770) there can still

be fairly large variations in reconstruction efficiency depending on how the non-signal

D decays. Therefore, we must be mindful of this potential problem and find a way to

understand how it impacts this analysis.

3.4.1 Splitoff Escapes and Backgrounds from D→ K?eν

The method of Generic D Reconstruction was originally developed to help remove back-

grounds in D± → η′(ρ0γ)e±ν caused by D → K?0eν. This section gives a description
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of how the D → K?eν was faking the D± → η′e±ν and identify the key issue that

Generic Reconstruction was developed to solve, identifying extra showers not flagged

as splitoffs.

The masses of the η′ and the K∗0 are fairly close, 0.958 GeV/c2 and 0.892 GeV/c2

respectively. The width of the K∗0 (0.050 GeV/c2) is wide enough to reach the mass

of the η′. This means that both a K∗0 meson candidate and a η′ meson candidate can

potentially make an equally good D− candidate when combined with the electron and

neutrino within the resolution of the Neutrino Reconstruction technique (∼ 0.10 GeV).

It was found through Monte Carlo studies that in Neutrino Reconstruction D− →

K?0e−ν̄e; K?0 → K+π− and D+ → K−π+π+ was a primary component of the D± →

η′(ρ0γ)e±ν background. This background source is completely composed of tracks, and

if splitoff showers are removed there should be no shower in the event to create a ρ0γ

candidate. The fake photon can come from two different sources for this type of decay.

First, theΨ(3770) resonance is at a significantly lower energy than theΥ(4S ), and unlike

the data taken at the Υ(4S ), many kaons have a low enough momentum to decay in flight

within the drift chamber. Roughly 5% of all kaons decay via K → Xπ0 somewhere

between the event vertex and the end of the drift chamber. If the decay occurs close to the

vertex then the missing energy should still be accurately measured within the resolution

of the decay products. However, decays that occur after the kaon has already generated

a measurable track cause some of the kaons energy to be double counted via the extra

showers produced by the π0. Another, more frequent source of extra showers that double

count energy are hadronic splitoff showers that are far enough away from the parent track

to avoid being removed by the splitoff alogorithm. These extra showers are referred to

as “splitoff escapes”. According to the Monte Carlo simulation, approximately 15% of

charged kaons and 5% of charged Pions produce a splitoff escape. The splitoff escapes
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Figure 3.3: The spectrum of splitoff escape showers from pions (black) and kaons
(clear) according to the Monte Carlo simulation.

are typically in the energy range of 0.0 GeV to 0.30 GeV. Figure 3.3 shows the spectrum

of splitoff escape showers from pions and kaons, each normalized to the same area.

Not only do these extra showers from in flight decays and splitoff escapes provide a

shower to create a η′ → ρ0γ candidate, the showers are in general degrading the neutrino

resolution and should be removed for all decay modes. Therefore, the initial purpose of

Generic Event Reconstruction was to help remove these extra showers. The method

of Generic Event Reconstruction and how it is used to remove these extra showers is

described in the following section.

3.4.2 Generic Reconstruction By Golden Composite Particles

It has been shown in the previous section that there are extra showers in the data con-

tributing to backgrounds and degrading the neutrino resolution. These extra showers

are not identified by the Splitoff algorithm, and there are not sufficient clues from the

shower shape or location to identify them as extra showers and remove them. We note
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that predominantly the photons generated in a D meson decay are from either a π0 → γγ

or an η → γγ. Therefore, in order to remove these extra showers we take a hint from

the D-Tagging method and fully reconstruct the neutral component of the non-signal D

as π0 → γγ or η → γγ candidates and remove showers that do not appear to belong to

one of these neutral particles. In D-Tagging this is done with a specific decay in mind

but in the case of Generic Reconstruction we need a way to do this for a generic decay

without any prior assumptions about how many π0’s or η→ γγ’s to look for.

This is not the first attempt in a Neutrino Reconstruction analysis to fully reconstruct

the neutral energy in order to remove extra showers. Early studies on using neutrino

reconstruction for the CLEO-c data set at the Ψ(3770) considered using “golden” π0’s

to measure the neutral component of the total visible energy instead of splitoff approved

showers [31]. The golden π0’s are a list of the π0 → γγ candidates that give the best

description of the neutral energy in an event. Each shower in the golden π0 list can only

be used once, and showers that do not fall into a high quality π0 candidate are removed

from the total energy calculation.

We quantify the quality of candidate particles by use of the mass pull (χm ) defined by

χm = (MU−MN)/σM where MU is the measured invariant mass of the candidate particle,

MN is the nominal mass of the particle, and σM is the uncertainty in the measurement.

The smaller the absolute value of the mass pull ( |χm| ) the better the candidate.

The original golden π0’s were selected from a list of candidates composed of showers

that were not matched to any track (splitoff approval was not required). For each possible

π0 candidate we define the mass pull, χm(π0) = (Mγγ−Mπ0)/σM, where Mπ0 is the known

mass of the π0, Mγγ is the invariant mass of the two showers in the candidate, and σM

is the uncertainty in Mγγ. The golden π0 list was generated by selecting the π0 → γγ

candidate with the smallest |χm(π0)|, removing any other candidates using those showers

from consideration, and then repeating until all possible candidates have either been
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selected or discarded. Then, only the golden π0’s with χm(π0) between -3 and 3 were

used to compute the neutral energy component of the total visible energy. Showers that

were not part of one of these golden π0’s were ignored.

The preliminary studies found that the above method did not work as well as using

the sum of the splitoff approved showers, and it was abandoned [31]. However, with

several modifications this procedure can successfully be applied to this analysis to help

remove splitoff escapes. The modifications include considering η → γγ in addition to

π0 → γγ, loosening the χm(π0) and χm(η) requirements used in the previous attempt,

and only considering π0 candidates composed of splitoff approved showers that have

not already been used by the tracks and showers in the signal D.

Unlike neutrino reconstruction that finds the neutrino first, we begin this new pro-

cedure by selecting a signal electron and η(′) candidate. Then, rather than considering

all showers in the event when generating our list of golden X → γγ’s, we only consider

splitoff approved showers that have not already been used by the signal D. Proceeding

in this way prevents us from mistakenly using a golden X → γγ candidate where one

shower is actually part of the signal side and the other is actually part of the non-signal

side.

We widen the range of accepted χm values. Since a significant part of the extra

efficiency gained by the neutrino technique over the tagged technique is the ability to

make use of poorly reconstructed events, we wish to be very certain that a shower is a

splitoff escape before removing it. We find that true π0’s and true η→ γγ’s usually have

a mass pull in the range of -5 to 3. However there are small tails in the distribution that

can extend far out from this range, so we open up the requirements to include -25 to 15,

see Figure 3.4. Since we have already required that the showers are splitoff approved,

we can afford to be conservative and accept candidates out to this large mass pull range.

Due to the fact that π0 → γγ is much more common than η→ γγ, preference is given to

50



Pull Mass of True !0

Pull=15Pull=-25

Figure 3.4: The mass pull of true π0’s according to the Monte Carlo simulation.
The range of -25 to 15 easily encloses the full range of true π0’s.

π0 candidates in the range of -5 to 3 even if there is an η candidate with a better (closer

to zero) mass pull that uses one of the same showers. After this initial selection process

is finished all remaining showers are divided among both π0 and η candidates with mass

pull between -25 and 15. Rather than the unconstrained sum of the shower four-vectors,

the four-vectors from the mass constrained fits of the π0 and η candidates are used in

the missing energy calculation. This alone is an improvement to the missing energy

calculation if there are true π0 or η candidates with large mass pulls.

All showers remaining after the golden X → γγ have been assigned are considered

for removal. Showers that do not fit into any reasonable X → γγ candidate could be

splitoff escapes that need to be removed, but they could also be important contributions

to the other side D decay, such as showers from a KL interacting in the calorimeter,

or showers from a genuine X → γγ decay where the second photon was somehow

lost. Therefore, there are instances where we obtain a more accurate measure of the

neutrino energy and momentum by keeping these showers rather than throwing them

51



away. Showers that are splitoff escapes tend to be less than 0.25 GeV in energy. Since

splitoff escapes are more common from charged kaons than they are from charged pions,

and tend to have higher energy from kaons, we consider the identities of the tracks in

the event when we decide which showers to remove. For events that have charged kaons

we remove extra showers less than 0.25 GeV in energy. For events that do not have any

charged kaons, we remove extra showers with less than 0.10 GeV in energy.

Not only is it advantageous to generically reconstruct the neutral energy, but it can

also be helpful for background rejection to identify the KS → π+π− in the event. The KS

has a cτ = 2.68 cm, therefore, while all other tracks should coincide with the interaction

point, tracks created by the decay of a KS can be displaced several centimeters from the

center of the detector. Therefore, all tracks that are not from a KS should pass strict re-

quirements concerning the reconstructed distance of closest approach to the interaction

point. If a π± is found that does not coincide with the interaction point, and if it does

not appear to belong to a KS → π+π−, then we know that the event has not been recon-

structed properly. Therefore, the pion tracks in the non-signal D are assigned to golden

KS → π+π− candidates with an invariant mass within 0.012 GeV/c2 of the known KS

mass. No charged pion is used more than once, and preference is given to candidates

with invariant mass closest to the KS mass. The KS four-vectors of the mass constrained

fit of the two pion tracks are used in the missing energy calculation.

The generic reconstruction procedure is repeated for each electron and η(′) candidate

in the event. This means that photons considered extra showers by one candidate may

not be by another candidate, and that picking the correct signal candidates provides a

better description of the neutrino than picking a false candidate.

Figure 3.5 shows the difference in the reconstructed non-signal D energy and the

true non-signal D energy with this new reconstruction method (histogram) and original

neutrino reconstruction (black circles). The area of the two distributions are the same.
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Figure 3.5: The difference between the reconstructed and the true Other Side D
energy before the improvements (black circles) and after (histogram).

Many events where the energy was previously reconstructed as too high have had the

energy determination greatly improved by removing the extra showers. There is also

a smaller number of events that were reconstructed as too low and were improved by

using the kinematically fit π0 and η candidates instead of the sum of the four-vectors of

the two showers.

At this point it is important to have an aside and briefly address the case of

KS → π0π0. Because we only measure shower energies in the calorimeter, we con-

vert the shower energy to photon momentum by assuming that the photon originated

from the center of the detector and traveled in a straight line to reach the calorimeter

and excite the crystals. In the case of KS → π0π0 the four photons created do not orig-

inate from the center of the detector. The question is, are these showers reconstructed

as two π0’s in the generic reconstruction or are they going to be rejected by the generic

reconstruction because they do not originate from the interaction point? The answer is

that the displacement of the KS decay shifts the reconstructed masses of the two π0’s

downward, but not catastrophically, and not outside the -5 to 3 mass pull window. The
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distance the KS travels before decaying is (2.68 cm)βγ, where βγ are the usual defi-

nitions from special relativity, β = v/c, γ = 1/
√

1 − β2. The maximum displacement

occurs with the maximum momentum. The maximum momentum of the KS ’s at CLEO-

c is approximately 1 GeV/c and corresponds to βγ ∼ 2, and a maximum displacement

from the interaction point of 5.4 cm. The radial distance from the center of the de-

tector to the barrel of the crystal calorimeter is 1 m. The mass of the two showers is

Mγγ =
√

2E1E2(1 − cos(θ12). At worst, the angle between the two photons is distorted

by a factor of (1 m − 5.4 cm)/1 m. This pushes the reconstructed mass down by ap-

proximately 7%, or from 135 MeV/c2 to 125 MeV/c2. This shift is on the order of

1 σ downward. Note that the distortion in the π0 momenta from the KS displacement

should be corrected for by using the kinematic fit of the two showers rather than the

unconstrained sum of the shower four-vectors.

3.4.3 Hadronic D Mass Pull in Background Suppression

The Generic Reconstruction method makes an impressive improvement in our ability

to determine the energy of the other side D meson. According to Figure 3.5 the num-

ber of signal events that reconstructed within ±20 MeV of the true energy more than

doubled. However, this big improvement in the reconstruction of the other side D does

not directly translate into improved signal efficiency. The improvement in the signal D

energy determination is not as dramatic, see Figure 3.6. The efficiency and optimization

of the neutrino reconstruction requirements are not significantly altered by the improve-

ments. The true advantage that the generic reconstruction has given us is the power of

background rejection.

Even though Generic Reconstruction does not make dramatic improvements to the

signal D energy, the improvement to the other side D allows us to ask the following

question: for a given lepton candidate and signal meson candidate how good is the
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Figure 3.6: The difference between the reconstructed and true signal D+ →
η′(ππη(γγ))e+νe energy before the improvements (black circles) and
after (histogram).

hadronically decaying D candidate? To answer this question we sum up the error matri-

ces of all of the particles in the hadronically decaying D (K, π, π0, η, KS ) and calculate

the uncertainty of the D mass calculated from the sum of those four-vectors. With this

uncertainty we can calculate the D mass pull, χm(D) = (Mmeasured − MD)/σM. Events

where everything is correctly identified should have a χm(D) between -3 and 3. Figure

3.7 shows the χm(D) distribution when the signal and other side are correctly identified

(histogram), when the signal D is incorrectly identified (crosses), and when generic DD̄

is mistaken for signal (diamonds).

How should we make use of the other side χm(D)? If we required χm(D) to be

within ±3 it would remove approximately 50% of our background. However, as is seen

in Figure 3.6, the signal D can be reasonably well reconstructed even if the other side

D is not. If we required that χm(D) be within ±3 it would remove 40% of our sig-

nal. To remove backgrounds without adversely affecting the efficiency we fully recon-

struct the semileptonic decays likely to be backgrounds (πeν, π0eν, Keν, K∗eν, K∗0eν,
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Figure 3.7: The χm(D) of the other side D meson. The histogram shows the dis-
tribution when the signal and the other side D are correctly identified,
blue shows true η′eν when either of the D’s are incorrectly identified,
and the red shows the distribution for generic DD̄ misidentified as a
semileptonic decay. Each distribution is normalized to have the same
area.

K0(π+π−)eν, ρeν, ρ0eν, ηeν, η′enu), then require that the D± → η′e±ν other side D

mass pull, χm(D± → η′e±ν), is either better than or consistent with the best χm(Best) of

all semileptonic candidates. We do this by requiring χ2
m(D± → η(′)e±ν) − χ2

m(Best) < 9,

where χm(Best) is the D mass pull closest to zero among all of the reconstructed semilep-

tonic decays. By making this requirement, rather than requiring the χm(D± → η(′)e±ν) to

be within ±3, we loose only 10% of our signal rather than 40%, and still remove almost

50% of the backgrounds.

For reference, we show below how the D mass pull, χm(D) is calculated. Each track,

KS , η and π0 have a 7 × 7 error matrix where the first 3 indices refer to the momentum

vector elements px, py, and pz, the fourth is for the particle energy, and the last 3 indices

refer to position x,y,z. The error matrices of each daughter particle are added together

for the error matrix of the parent D. The uncertainty in the unconstrained mass of the D
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is given by

σ2
M =

∑
i

∑
j

∂M
∂Xi

∂M
∂X j

Ei, j, (3.2)

where Ei, j is the sum of the 7 × 7 error matrices of the daughter particles, M is the mass

of the collection of particles, and X = [px, py, pz, E, x, y, z]. The value of the derivatives

of M are given by
∂M
∂Xi
=

[
−px

M
,
−py

M
,
−pz

M
,

E
M
, 0, 0, 0

]
. (3.3)

3.4.4 Quality Binning

The increase in efficiency of the Neutrino Reconstruction method versus the D-Tagging

method is partly due to the fact that poorly reconstructed events can still be used. As

was shown earlier, if we only used events where the other side D was reconstructed very

well, |χm(D)| < 3, we would loose 40% of our signal. In order to take full advantage of

the improved other side D reconstruction without sacrificing the extra efficiency from

poorly reconstructed events, we divide the data into two bins based on the quality of the

other side D reconstruction.

Dividing the data into bins such that a portion of the signal is essentially background

free increases the overall statistical significance of the measurement. A bin with essen-

tially zero background and a large fraction of the signal can give a statistically significant

observation of the decay with only a few events. Or, if there is no sign of a signal, the

zero background bin can set a more restrictive 90% upper limit than a bin with back-

grounds.

We separate the events into “High Quality” and “Low Quality” bins. The high qual-

ity bin contains events where there are no signs of poor reconstruction, and the “Low

Quality” bin contains everything else. For example, extra showers that have not been

vetoed indicate that there may be missing energy from a KL or from a lost photon in an

X → γγ. If any of the π0 or η→ γγ candidates do not have a good mass pull that would
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indicate that the neutral energy was poorly reconstructed. The |χm(D)|2 is essentially a

χ2 for the hypothesis that the collection of tracks and showers designated as an other

side D is actually a D meson. Events where the |χm(D)| is large indicate that there is a

problem with the other side D reconstruction. We define the following criteria for high

quality events:

1. All showers on the other side D are either in an X → γγ or are vetoed.

2. All π0 → γγ and η→ γγ must have a mass pull between -5 and 3.

3. The hadronically decaying D± meson must have a beam constrained mass be-

tween 1.8629 GeV/c2 and 1.8729 GeV/c2. Figure 3.8 shows the other side MBC

distribution when both the signal and the other side D are correctly identified. The

beam constrained mass requirements were developed for the tagged D± → ηe±ν

analysis [32], and we have simply adopted them here. (If this method is applied to

decays of neutral D mesons, which have a lower mass than charged D, we instead

use the requirements 1.8581 GeV/c2 and 1.8741 GeV/c2).

4. We require |χm(D)| < 3.0. Figure 3.9 shows the χm(D) distribution when both the

signal and other side D are correctly identified.

Events in the high quality bin are essentially D tags that have not been as thoroughly

optimized as the specific tags used in a CLEO-c D tagging analysis. In the tagged

D± → ηe±ν analysis, [32] each tag had the ∆E requirements individually optimized for

both reconstruction resolution and background rejection. The high quality bin of the

generic reconstruction method has replaced the specialized ∆E requirements with the

generic |χm(D)| < 3 requirement. The |χm(D)| < 3 is automatically optimized for the

expected resolution of the decay, but not necessarily for background rejection. Though

the high quality bin is not as well optimized for the specific decays used in the D tagging

analysis, it instead has some efficiency for reconstructing nearly all fully visible hadronic
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Figure 3.8: The other side beam constrained mass (MBC) when the contents of
both signal and other side D are correctly identified. The vertical lines
show the region of MBC required for the high quality bin.

D Other Side Pull
-10 -8 -6 -4 -2 0 2 4 6 8 10

 

0

10

20

30

40

50

60

Correctly Reconstructed EventsCorrectly Reconstructed Events

Figure 3.9: The χm(D) of the other side D meson when the contents of both the
signal and other side D are correctly identified. The vertical lines show
the region of χm(D) required for the high quality bin.
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D decays. We therefore use the high quality bin not only to maximize the statistical

significance of our semileptonic measurements but also to attempt to measure all of the

hadronic D decays.

3.5 Measurement of the Hadronic D Branching Fractions

The efficiency of any CLEO-c analysis that places requirements on the entire event

depends on how the non-signal D decays. A simple example of this is if we require

that there is only 1 electron in the entire event. The efficiency of such a requirement is

proportional to the inclusive branching fraction of D decays with no electrons.

In an analysis of exclusive semileptonic decays we require that the energy and mo-

mentum of everything except the neutrino is reconstructed. Different types of decays

have different efficiencies for sufficiently reconstructing the entire energy and momen-

tum of the non-signal D. For example, in the D-Tagging analysis the efficiency for recon-

structing a semileptonic event when the non-signal D decays to K+π−π−π0 is only 50%

of the efficiency when the non-signal D decays to K+π−π−, [32]. Similarly, if we repro-

duce a Neutrino Reconstruction analysis similar to [33] we find that the efficiency for

reconstructing D+ → KS (π+π−)e+νwhen the non signal D is D− → K+π−π−π0 is approx-

imately 70% of the efficiency when the non signal D is D− → K+π−π−. Additionally, the

non-signal decay D− → K+π−π−π0π0 is only 40% as efficient as the non-signal decay

D− → K+π−π−. Clearly, the efficiency for reconstructing the signal depends on how the

non signal D decays. The Monte Carlo simulation may therefore incorrectly predict the

efficiency if the hadronic branching fractions are not correct.

In this analysis the systematic uncertainties associated with how the non-signal D

decays are controlled by measuring all of the individual D → f ully visible branching

fractions with an automated procedure. As is shown in the following section, the generic

reconstruction algorithm makes this task possible. This approach not only provides this
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analysis with useful reweights, but also maximize the physics output of the endeavor and

may impact many other analysis by potentially measuring other branching fractions that

have been previously unknown. There is also the potential to see completely unexpected

hadronic D decays that may not otherwise have been discovered.

3.5.1 Hadronic Branching Fraction Measurements

The systematic uncertainties associated with the hadronic branching fractions are con-

trolled by measuring all of the hadronic branching fractions. Under other circumstances

this would have been a tremendous undertaking for an analysis geared toward mea-

suring semileptonic decays. However, the Generic Reconstruction algorithm that was

developed to improve neutrino resolution and combat backgrounds in D± → η′(ρ0γ)e±ν

is also an ideal tool to perform this study.

In order for the generic reconstruction algorithm to function, it requires that the

contents of one of the D mesons is already identified before it can generically reconstruct

the other D in terms of π±, K±, KS → ππ, π0 and η → γγ. Therefore, to study the

hadronic decays, we simply replace the semileptonic candidate with a well understood

D-tag. Rather than require that the event is consistent with one neutrino, we require

that the event is consistent with no neutrinos. We require that the event has no electrons

and that it is consistent with no missing energy. The generic reconstruction algorithm

determines the number of each type of daughter that it can find in the remaining tracks

and showers in the event, and most of the backgrounds are removed by using the high

quality criteria.

The next step is to understand both the efficiency to reconstruct each decay mode

correctly and the expected backgrounds for each decay. The efficiency is determined by

the Monte Carlo simulaiton and is simply the number of correctly reconstructed decays

of type i in a Monte Carlo sample divided by the number of decays of type i that were
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generated. However, the backgrounds in each decay mode are directly related to the

branching fractions that we are trying to measure. For example a K0 can be reconstructed

as KS → π+π−, π+π−, or π0π0 depending on the K0 decay mode and the distance it

traveled before decaying. Therefore, the decays D+ → π+π+π− and D+ → π+π0π0

both have background contributions from D+ → π+K0. If the D+ → π+K0 branching

fraction is unknown then we cannot know the amount of background in D+ → π+π+π−

or D+ → π+π0π0.

In order to properly account for backgrounds in all decay modes we simultaneously

solve for all of the hadronic branching fractions. We do this by constructing a cross feed

matrix, Ai j, from our Monte Carlo sample. The elements of the matrix Ai j are given by:

Ai j = NT AG(MC)BMC(i)E j(i), (3.4)

where NT AG(MC) is the number of signal side tags found in the Monte Carlo simulation,

BMC(i) is the branching fraction for decay i programmed into the Monte Carlo simula-

tion, and E j(i) is the efficiency for reconstructing generated decay mode i as the final

state j. For example, the background in D+ → π+π+π− is related to Eπ+π+π−(π+K0). The

Ai j matrix is related to the branching fractions by the equation

NT AG(DAT A)
NT AG(MC)



A1,1 A1,2 · · · A1,N

A2,1 A2,2 · · · A2,N

· · · · · · · · · · · ·

AN,1 AN,2 · · · AN,N





W1

W2

· · ·

WN


=



D1

D2

· · ·

DN


−



C1

C2

· · ·

CN


−



BT1

BT2

· · ·

BTN


,

(3.5)

where Wi = BDAT A(D → Xi)/BMC(D → Xi), Di is the number of data events recon-

structed as decay i, Ci is the continuum background ( typically very small), and BTi is

the background from bad initial tags (also typically very small). The weight Wi is the

weight that needs to be applied to every D → Xi decay in the Monte Carlo sample to

match the number produced in data.
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The vector of weights, Wi, is solved for by multiplying the vector of background

subtracted data by the inverse of the cross feed matrix. There is no need to fit a distribu-

tion to obtain a constraint on the expected backgrounds, because each Aii element helps

to constrain the background from decay mode i in all the other decay modes.

The statistical uncertainty in the weight is found by

σWi =
Wi√∑

j S 2
i j/(D j)

, (3.6)

where Wi is the weight to be applied to the Monte Carlo branching fraction, S i j =

NT AG(DAT A)
NT AG(MC) WiAi j, and D j is the number of events measured in reconstructed mode j. The

branching fraction of decay mode j is simply W j multiplied by the branching fraction of

mode j in the Monte Carlo simulation.

The absolute branching fractions of all decays determined by this method are pro-

portional to NT AG(DAT A)
NT AG(MC) . The main goal of this study is to measure branching fractions

that have not been measured before or are not well known. Therefore, in order to reduce

systematic uncertainties in this measurement the value of NT AG(DAT A)
NT AG(MC) is calibrated using

previous measurements of B(D+ → K−π+π+) for charged D decays, and B(D0 → K−π+)

for neutral D decays. For this paper we use the most recent CLEO-c measurements of

B(D+ → K−π+π+) = 9.14% ± 0.20% and B(D0 → K−π+) = 3.891% ± 0.070%.

3.6 Absolute Scale Calibration using D+ → K−π+π+

The ultimate goal of this analysis is to convert the signal yields of D+ → η(′)e+ν to

absolute branching fractions. If we define our signal efficiency (ε) as the number of

signal events reconstructed (ND+→S IG) divided by the total number in the data set, then

we determine our absolute branching fractions by B = ND+→S IG/(εND+D−), where ND+D−

is the number of D+D− in the data set. Historically Neutrino Reconstruction follows

this method using the most accurate measurement of ND+D− available. However, using
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the most accurate determination of ND+D− is not necessarily the best way to determine

the absolute branching fractions. We can reduce the size of the systematic uncertain-

ties in the absolute branching fractions if we measure ND+D− such that the systematic

uncertainties are correlated with and the same size as the systematic uncertainties in the

efficiency corrected signal yields. This is implicitly what the D-tagging analysis does

by using the number of single tags instead of ND+D− .

It is important to understand how ND+D− was measured for the previous CLEO-c

Neutrino Reconstruction [33] and other CLEO-c “Untagged” analyses. The following

discussion is based on the method used in [39] to determine ND+D− . First, it should

be clear that only a D-tagging analysis can determine an absolute branching fraction

without relying on previous branching fraction measurements. Any measurement of

ND+D− is anti-correlated with at least one absolute branching fraction. For example the

value of ND+D− used in [33] was 60% anti-correlated with B(D+ → K−π+π+), 48% anti-

correlated with B(D+ → KSπ
+), and anti-correlated with several other hadronic branch-

ing fractions. Either an absolute branching fraction must already be known very well,

or the branching fractions and ND+D− must be determined simultaneously. In [39] ND+D−

was determined by performing a simultaneous fit for ND+D− and 6 hadronic branching

fractions. This was done by using both “single tagged” and “double tagged” events.

Single tagged events have one D-tag and no requirements on the other D decay in the

event, which makes the efficiency for reconstructing a single tag independent of how the

generic D decays . Double tagged events have both D+ and D− described by a tag. The

double tag events are subsets of the single tagged events. Let yi be the raw number of

single tag events with decay i and let εi be the efficiency for single tagging decay i. Let

yi j be the raw number of double tagged events where one D is decay i and the other D

is decay j and let εi j be the efficiency for reconstructing both tags at the same time. We
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may write the following relations:

yi = ND+D−εiBi, (3.7)

yi j = ND+D−εi jBiB j, (3.8)

ND+D− =
yiy jεi j

yi jεiε j
, (3.9)

Bi =
yi jε j

y jεi j
, (3.10)

ND+D− =
yi

εiBi
. (3.11)

The efficiencies are determined from the Monte Carlo simulation and we measure yi for

several types of i and yi j for all combinations of the i decays. The branching fractions Bi

and ND+D− are parameters in a simultaneous fit to the measured values of yi and yi j. All

of the branching fractions are correlated with one another and anti-correlated to ND+D− .

If ND+D− decreases the absolute branching fractions increase to compensate.

This method gives an accurate determination of ND+D− . However, as mentioned

previously we don’t want an accurate determination of ND+D− , we want one that has the

same systematic uncertainties as the signal yields. We see from Equation 3.11 that ND+D−

can be obtained from one single tag yield if the branching fraction for that decay is very

well known. Therefore, to obtain our systematically correlated ND+D− we reconstruct a

single tag for D+ and use Generic Reconstruction on the rest of the event. In order to

make certain that the tag yield systematic uncertainties are the same as the D+ → η′e+ν

systematic uncertainties we require that the missing energy is consistent with zero and

that the number of electrons is zero.

Ideally we would measure several D+ tag yields using Generic Reconstruction and

then use independent previously measured branching fractions of those D+ tags to de-

termine the best value for ND+D− . However, most of the branching fraction measure-

ments for D+ are correlated with D+ → K−π+π+ which diminishes the benefit of us-

ing multiple decays to calibrate D± → η′e±ν. So, for this statistically limited analysis
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where our main goal is to remove systematic uncertainties from poorly known decays,

it is sufficient to just use the D+ → K−π+π+ Generic Reconstruction yields and use

the absolute branching fraction for this decay determined in the double tag fit. By

doing this our measurement of B(D+ → η′e+ν) is really a measurement of the ratio

B(D+ → η′e+ν)/B(D+ → K−π+π+), and can potentially improve as the measurement of

B(D+ → K−π+π+) improves.

It should be noted that our dependence on B(D+ → K−π+π+) is not unique to this

calibration method or to Generic Reconstruction. It has unfortunately been neglected

in the literature that all untagged CLEO-c studies that have used ND+D− are also highly

correlated with the value ofB(D+ → K−π+π+), and this fact should be taken into account

when CLEO-c values are averaged with other experiments in the PDG.
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CHAPTER 4

EVENT SELECTION

This chapter provides the event selection criteria used to reconstruct the hadronic

decays and the different decay modes of ηe±ν and η′e±ν. We describe the electron iden-

tification, the generic requirements applied to all hadronic decays, the generic require-

ments applied to all semileptonic decays, and the requirements specific to each decay

mode.

4.1 Electron Identification

The curvature of a track in the drift chamber gives us the track momentum and the RICH

and dE/dx (ionization) information can help us to determine the mass of the particle that

created the track. In addition to these clues that are available to identify all of the charged

particles we can also take advantage of the fact that the electron deposits nearly all of its

energy in the electromagnetic calorimeter (CC) and use ECC/|~pc| ∼ 1. In this analysis all

of these pieces of information are used by the Rochester Electron Identification Package

(REId) [45] to identify tracks as electrons. This package combines information about

the track and the showers matched to the track in order to form an electron likelihood,

F. The likelihood F ranges between 0 and 1, where 0 indicates a track least likely to be

an electron, and 1 indicates a track most likely to be an electron. Tracks passing the

above quality criteria and having F > 0.8 are considered electrons. The identification

efficiency (measured in data) above pe = 300 MeV/c is greater than 90% and above

pe = 500 MeV/c is greater than 96%. The probability that a hadron is misidentified as

an electron is less than 0.8%.

In addition to the REId likelihood requirements we also require that the candidate

electron track also pass the following set of track quality criteria:

1. electron track is Trkman approved.
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2. electron track was fit to an electron hypothesis and the fit did not abort.

3. electron track momentum > 0.200 GeV/c.

4. electron track |cos(θz)| < 0.9.

Electron identification occurs differently for data than for the Monte Carlo sample.

The same track quality criteria listed above is also applied to the Monte Carlo tracks.

However, rather than using the REId package on the Monte Carlo tracks we identify

electrons based on truth table information, and then throw random numbers such that

the efficiency for identifying the electron is the same as the REId efficiency in data. In

the analysis we require that there is only one electron in the event in order for it to be

used. This means that the rate that we loose events by having a fake lepton and a true

lepton at the same time is not accounted for by only using true electrons. To fix this, we

calculate the probability of having one of the non-electron tracks falsely identified as

an electron, and cut out the appropriate number of events that we would expect to have

more than one track identified as an electron.

4.2 Generic D Reconstruction

This section describes the generic reconstruction procedure used in both semileptonic

and fully hadronic events. Keep in mind that as far as the generic reconstruction is

concerned the procedure for events used to measure all of the hadronic branching frac-

tions is the same as the procedure to reconstruct the D+ → K−π+π+ yield that is used

to convert the D± → η′e±ν yield to a branching fraction. Once the event has been re-

constructed the fully hadronic events used to determine the hadronic branching fractions

have additional quality requirements described in following sections. However, in this

stage of the analysis all of the fully hadronic events are handled in the same way.
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The first step of the Generic Reconstruction is to designate which tracks and showers

belong to the signal D and which should be considered part of the other side D. Identify-

ing a suitable signal D first helps to increases the probability that the π0’s, η→ γγ’s, and

KS → π+π−’s made out of whatever tracks and showers remain correspond to real parti-

cles. When using generic reconstruction on semileptonic events the tracks and showers

that belong to the signal D are the electron candidate and the tracks and showers in the

η(′) candidate. When reconstructing a fully hadronic event the signal tracks and showers

are taken from a D-tag. From the remaining tracks and showers the generic reconstruc-

tion algorithm generates the best list of π0’s, η→ γγ, and KS → ππ to describe the other

side D. Extra showers that were not assigned to a π0 or an η → γγ are considered for

removal.

The remaining trkman-approved tracks that are not part of other side KS ’s are iden-

tified as either a pion or a kaon by calculating the probability for the track to be either

type of particle from the RICH and dE/dx (ionization) information. The particle iden-

tification also takes into consideration the multiplicity of kaons and pions as a function

of momentum as predicted by the Monte Carlo simulation. For example, if according to

dE/dx and RICH information a particle is barely more likely to be a kaon rather than a

pion, it is labeled a pion because they occur more often than a kaon.

We attempt to assign all splitoff-approved showers not used by the signal side to a

π0 → γγ or η → γγ candidate. The π0 candidates are generated out of pairs of showers

where the minimum shower energy is greater than 30 MeV and the mass pull is between

−25 and 15. The η → γγ candidates are generated out of pairs of showers where the

minimum shower energy is greater than of 50 MeV and mass pull between −15 and 15.

There is a tighter range in η → γγ candidates than in π0 candidates because there is

an enormous combinatorics rate, with very few true η, that significantly slows the data

processing.
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Any showers that have not been assigned to a π0 or an η candidate are potentially

splitoff escapes and are considered for removal from the list of other side D daughters.

Whether or not an extra shower is removed depends on the shower energy and the iden-

tity of tracks in the event. If there is a kaon in the event, either on the signal side or

the other side, we veto any extra showers with energy below 250 MeV. If there are no

kaons in the event we veto any extra showers below 100 MeV. The reason for this is that

events with charged kaons are more likely to have splitoff escapes and tend to create

higher energy splitoff-escapes than events without kaons.

The four-vectors of the mass constrained kinematically fit π0, η, and KS candidates

are used in the total missing energy calculation rather than the four-vectors of the indi-

vidual showers and tracks. The error matrices of the other side KS ’s, π0’s, η’s, K’s, and

π’s are summed and used to calculate the mass pull for the other side D.

4.3 Generic Semileptonic Requirements

This section describes the set of requirements made of all semileptonic event candidates.

1. There is only one track in the event identified as an electron. Events that have

more than one lepton are likely to have more than one neutrino, so we veto events

with multiple electrons.

2. The total charge from all of the trkman approved tracks in the event is equal to

zero. The D+D− has zero net charge, so if the charge is not zero then we either

have extra or missing tracks in the event.

3. The beam constrained mass of both the signal and other side D’s is greater than

1.79 GeV/c2. This exact number is somewhat arbitrary. We determine the signal

yields by performing a fit on the histogram of Msig
BC and the end of the histogram

must extend low enough to offer a good “lever arm” or constraint for determin-
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Figure 4.1: The beam constrained mass of D+ → η′e+ν. The lower limit of
1.79 GeV/c2 is sufficient to provide a signal free region to normalize
the backgrounds.

ing the background levels. Figure 4.1 shows one of the beam constrained mass

distributions and demonstrates that the 1.79 GeV/c2 requirement is sufficient to

determine the background levels.

4. The missing energy (Emiss) must be greater than 50 MeV. Events that appear to

have more energy than the available beam energy (Emiss < 0) could still pass a

M2
miss = E2

miss − P2
miss requirement since the sign of the energy does not affect the

calculation.

5. The sum of the energy of all splitoff-approved showers vetoed by the Generic

Reconstruction must be less than 300 MeV. More vetoed shower energy than this

could indicate that the generically reconstructed missing energy may not have

correctly identified the true π0’s and η’s. Consider the situation of a bad candidate

having a smaller |χm| than a true candidate. In this situation all of the X → γγ

could be incorrectly identified, and leave true showers unassigned to a π0 or η.

The signature of this would be a large amount of energy from vetoed showers.
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6. The angle between the neutrino and the beam axis must satisfy |cos(θν)| < 0.9.

This requirement ensures that the neutrino candidate is not actually another type

of particle that went outside the detector fiducial range and was not detected.

7. Events are vetoed if there is evidence of a photon conversion γ → e+e−, or of

a π0 → e+e−γ decay in the event. We have already required that the number

of electrons in the event is 1, but electrons are only identified with confidence if

their momentum is greater than 200 MeV/c. The primary source of continuum

backgrounds are fake semileptonic events where the signal lepton is from one of

these two sources, and the second electron is below the 200 MeV/c momentum

cutoff and so not identified as an electron. We search for tracks that have a dE/dx

consistent with an electron, opposite charge of our signal electron, and momentum

less than 200 MeV/c. We do not require the track to be trkman approved. We also

look for combinations of this track with the signal lepton and all splitoff approved

showers in the event. If either the mass of the signal electron and a track is less

than 100 MeV/c2, or if the mass of the electron, track, and a shower is within 50

MeV/c2 of the π0 mass, we veto the event.

8. We veto candidates that appear to have a “wrong sign K”. We require that if there

is only one kaon on the other side, no KS → π+π− candidates, and at least one

other side pion, then that kaon must have the same charge as the signal side e.

This should be true in almost all cases, whether we have a semileptonic decay

from a D+ or a D0. Only rare doubly cabbibo suppressed decays do not follow

this pattern. Further, in events where there are two kaons, 1 pion, and no KS , we

require that the pion has a charge opposite that of the signal side electron.

9. We require that the other side D found with this semileptonic candidate is con-

sistent with the best other side D for all reasonably well-reconstructed semilep-

tonic candidates. We explicitly reconstruct the semileptonic decays ρeν, ρ0eν,
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πeν, π0eν, Keν, KS (π+π−)eν, ηeν, η′eν, K∗eν, K∗0eν. We find the candidate with

|χm(D)| closest to zero out of all of these different semileptonic decays that have

a signal side δE within ±0.15 GeV of zero, and a M2
miss/(Emiss + Pmiss) within

±0.15 GeV of zero. We require that the other side D mass pull of our η(′)eν signal

candidate (C) be within 3σ of the best other side D mass pull of all candidates by

imposing χ2
m(C) − χ2

m(Best) < 32.

10. We require that all other side tracks that are not part of a KS candidate pass a

stricter set of track quality requirements than trkman approval:

(a) We require strict d0 and z0 requirements, where d0 is the distance of closest

approach of the track fit to the center of the detector in the x-y plane, while

z0 is the distance along the z axis from the center of the detector. We require

that |d0| be less than 0.5 cm, and that z0 be less than 5 cm.

(b) We require that at least 50% of the drift chamber layers traversed by the track

have hits associated with that track.

(c) We require that the track momentum is greater than 50 MeV/c and less than

2 GeV/c.

(d) We require that the cosine the track momentum makes with the z axis be less

than 0.93. This requirement ensures that the track went through enough of

the drift chamber to be properly reconstructed.

11. The pion tracks on the signal side D must satisfy the “signal pion” criteria adopted

from [33]. The “signal pion” criteria uses dE/dx and RICH information to select

tracks that are consistent with being a pion. The dE/dx must be within 3 standard

deviations of the expected value for a pion. For pion candidates in the momentum

range 650 MeV/c to 750 MeV/c the dE/dx must be more consistent with a pion

than a kaon. For tracks greater than 750 MeV/c, if RICH information is available,
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and the number of RICH photons are greater than 3, we require that the RICH

data is at least one standard deviation closer to a pion than a kaon. Finally, the

track must not be part of a KS → π+π−.

4.4 Generic Hadronic Event Requirements

This section describes the requirements that are applied to all events that are recon-

structed as being purely hadronic. Many of these requirements are similar to the re-

quirements in the semileptonic candidates and are made for the same reasons. This not

only includes tags used to determine the hadronic branching fractions, but also the Kππ

signal that is used to normalize the semileptonic measurements.

1. We require that there are no tracks in the event identified as an electron.

2. The total charge of trkman-approved tracks is required to be zero.

3. We require that the absolute value of the missing energy is less than 100 MeV/c

to reduce backgrounds from decays with neutrinos or missing daughter particles.

4. The total energy of vetoed splitoff-approved showers is required to be less than

300 MeV/c.

5. For D± candidates with one kaon, no KS → π+π−, and one or more charged pions,

we require that the charge of the kaon is opposite the charge of its parent D. This

is true for all charged D except for the rare doubly cabibbo-suppressed modes.

And for decays with two charged K, no KS , and one π the charge of the π must be

equal to the charge of the D. For D0 candidates, we only used D0 tags with one

kaon, then events with an other side that contains one kaon, one or more pions,

and no KS we require the charge of the other side kaon to be opposite the charge

of the kaon in the tag.
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6. We require that all other side tracks that are not part of a KS → π+π− candidate

pass the same requirements as in the semileptonic candidates.

The following additional requirements are made to events that are used to determine

the branching fractions of the generically reconstructed hadronic modes.

1. We require that other side tracks have a dE/dx within 3 standard deviations of the

particle identification assigned to it.

2. We require all splitoff-approved showers from the other side D are either vetoed

or assigned to an η or π0.

3. We require the other side D mass pull is within ±3.

4. All π0 and η→ γγ candidates are required to have a mass pull within ±3.

5. |∆E| < 100 MeV.

6. To remove backgrounds from KS → π0π0 from decays with multiple π0 we reject

events containing pairs of other side π0’s with an invariant mass within 30 MeV/c2

of the KS .

7. For neutral D decays we require the beam constrained mass of both the tag

D and the generically reconstructed D to be between 1.8581 GeV/c2 and

1.8741 GeV/c2. For charged D we require that the beam constrained mass is be-

tween 1.8629 GeV/c2 and 1.8789 GeV/c2. These are the same beam constrained

mass requirements used on D tags in the D-Tagged D± → ηe±ν analysis.

8. The D tag is required to have a mass pull within ±3.

4.5 Missing Mass Requirements

For the purpose of this study the mass of the neutrino is zero. Therefore, if the miss-

ing four-vector is from a neutrino, the missing mass squared (M2
miss = E2

miss − P2
miss)
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should be consistent with zero. Rather than directly place requirements on M2
miss we

instead impose restrictions on the parameter V = M2
miss/(Emiss + Pmiss). The V param-

eter is theoretically motivated by the uncertainty in the square of the missing mass. If

the missing four-vector is from a single neutrino then the uncertainty in M2
miss reduces

to δM2
miss = 2Emiss

√
(δEmiss)2 + (δPmiss)2. The uncertainty in the missing energy and

momentum is difficult to calculate because it depends on how well you have identi-

fied discrete quantities like the mass of the tracks and the number of daughter parti-

cles. The number of standard deviations that M2
miss is away from zero is proportional to

M2
miss/(2Eν). The missing energy and momentum have nearly the same resolution (Fig-

ure 4.2) and the best estimate of the true neutrino energy is the average of the missing

energy and the missing momentum magnitude ( (Emiss + Pmiss)/2 ). This gives us the V

parameter.

4.6 D±ηe±ν Requirements

This section describes the requirements that are placed on the different decay modes of

the η in the D± → ηe±ν analysis. Three of the η decay modes are reconstructed: η→ γγ,

η → π+π−π0, η → π0π0π0. Each requirement listed below has been tuned to maximize

the S 2/(S + B) assuming B(D → ηeν) = 3.0 × 10−4, the value found by the previous

D-Tagging analysis. Each decay mode has requirements on the invariant mass of the

η candidate (M(η)), the mass pull of the η candidate (χm(η)), the V-cut, the signal side

∆E sig, and the other side ∆EOS are summarized in Table 4.1. Each decay mode also has

requirements that are unique to its topology.

For η → γγ we make additional requirements of the two showers. π0 are much

more common than η and we reject the η→ γγ if either of the showers could instead be

described as part of a π0. We require that neither of the two showers can be included in
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Figure 4.2: The missing energy and missing momentum distributions for ηeν and
η′eν.

Table 4.1: The common requirements for the different η decay modes used in the
D± → ηe±ν analysis .

Variable η→ γγ η→ π+π−π0 η→ π0π0π0

M(η) (495 to 580) MeV/c2 (535 to 560) MeV/c2 (535 to 560) MeV/c2

χm(η) -4 to 3 -3 to 3 -3.5 to 3

V-cut (-140 to 140) MeV (-140 to 140) MeV (-140 to 140) MeV

Signal ∆E ( -80 to 130 ) MeV ( -100 to 100 ) MeV (-110 to 100 ) MeV

non-Signal ∆E ( -320 to 350 ) MeV ( -300 to 350 ) MeV ( -350 to 300 ) MeV
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a π0 candidate with |χm(π0)| < 5. The efficiencies for the D → η(γγ)eν decay mode are

listed in Table 4.2.

For the η → π+π−π0 we require that the unconstrained mass of the π0 → γγ candi-

date is between 100 MeV/c2 and 150 MeV/c2, and that it is within 3 standard deviations

of the nominal π0 mass . The efficiencies for D± → η(π+π−π0)e±ν are given in Table 4.3.

For the decay mode η → π0π0π0 we require that the unconstrained mass of each

π0 → γγ candidate is between 100 MeV/c2 and 150 MeV/c2, and is between -3.5 and

2.5 standard deviations of the nominal π0 mass . The efficiencies for D± → η(π0π0π0)e±ν

are given in table 4.4.

4.7 D± → η′e±ν Requirements

This section outlines requirements applied to the different decay modes that are used in

the D± → η′e±ν reconstruction. We reconstruct the η′ candidates using the decay modes

η′ → γγ, η′ → π+π−η(γγ), η′ → π+π−η(π+π−π0), η′ → π+π−η(π0π0π0), η′ → π0π0η(γγ),

and η′ → ρ0(π+π−)γ. The η′ → ρ0γ decay mode is divided into 4 separate ρ0 → π+π−

mass bins : (1) 300 MeV/c2 to 540 MeV/c2, (2) 540 MeV/c2 to 660 MeV/c2, (3) 660

MeV/c2 to 780 MeV/c2, and (4) 780 MeV/c2 to 900 MeV/c2. All of the decay modes

make requirements on the unconstrained mass of the η′ (M(η′)), the mass pull of the η′

(χmη
′)), V-cut, signal ∆E, and non-signal ∆E. The η′ decays that include η candidates

also have in common requirements on the η unconstrained mass (Mη) and mass pull. The

requirements for the ππη and the π0π0η decays are given in Table 4.5. The requirements

for ρ0γ and η′ → γγ are given in Table 4.6.

For η′ → γγ we additionally require that neither of the two showers could instead

be included in a π0 candidate with |χm(π0)| < 5. The efficiency for this decay mode is

given in Table 4.7.
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Table 4.2: Efficiency for the D± → η(γγ)e±ν for each q2 and quality bin. The
efficiency Etot is the efficiency contribution for the total D± → ηe±ν.
The efficiency Eq2/B(η → γγ) is the efficiency of reconstructing this
decay mode and q2 range.

Decay Mode q2 Bin Quality Bin Etot Eq2/B(η→ γγ)

η→ γγ All All 2.04% 5.18%

η→ γγ All Low 0.69% 1.77%

η→ γγ All High 1.34% 3.4%

η→ γγ q2 < 0.5GeV2 All 1.09% 5.35%

η→ γγ q2 < 0.5GeV2 Low 0.4% 1.96%

η→ γγ q2 < 0.5GeV2 High 0.69% 3.39%

η→ γγ 0.5GeV2 < q2 < 1.0GeV2 All 0.65% 4.88%

η→ γγ 0.5GeV2 < q2 < 1.0GeV2 Low 0.21% 1.59%

η→ γγ 0.5GeV2 < q2 < 1.0GeV2 High 0.44% 3.28%

η→ γγ q2 > 1.0GeV2 All 0.29% 5.29%

η→ γγ q2 > 1.0GeV2 Low 0.08% 1.54%

η→ γγ q2 > 1.0GeV2 High 0.2% 3.75%

The η′ → ρ0γ mode has several unique requirements that are given in the list below.

The efficiencies for the D± → η′(ρ0γ)e±ν are given in Table 4.8.

1. The shower must not be included in any π0 candidate (both showers splitoff ap-

proved) with a mass pull of magnitude less than 3.

2. We impose requirements on the angle between the photon and either of the two

charged π from the ρ0 decay in the rest frame of the ρ0 (θγπ). The η′ has spin

zero, and the ρ0 has spin 1. This means that the photon must be traveling along

the direction of the ρ0 angular momentum and the decay must follow a sin2(θγπ)
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Table 4.3: Efficiency for the D± → η(π+π−π0)e±ν for each q2, and quality bin.
The efficiency Etot is the efficiency contribution to the total D± → ηe±ν.
The efficiency Eq2/B(η → π+π−π0) is the efficiency of reconstructing
this decay mode and q2 range.

Decay Mode q2 Bin Quality Bin Etot Eq2/B(η→ π+π−π0)

η→ π+π−π0 All All 0.91% 3.99%

η→ π+π−π0 All Low 0.37% 1.64%

η→ π+π−π0 All High 0.54% 2.34%

η→ π+π−π0 q2 < 0.5GeV2 All 0.5% 4.23%

η→ π+π−π0 q2 < 0.5GeV2 Low 0.2% 1.74%

η→ π+π−π0 q2 < 0.5GeV2 High 0.29% 2.49%

η→ π+π−π0 0.5GeV2 < q2 < 1.0GeV2 All 0.28% 3.63%

η→ π+π−π0 0.5GeV2 < q2 < 1.0GeV2 Low 0.11% 1.48%

η→ π+π−π0 0.5GeV2 < q2 < 1.0GeV2 High 0.16% 2.15%

η→ π+π−π0 q2 > 1.0GeV2 All 0.12% 3.98%

η→ π+π−π0 q2 > 1.0GeV2 Low 0.05% 1.68%

η→ π+π−π0 q2 > 1.0GeV2 High 0.07% 2.3%

distribution. Backgrounds, however, tend to have a flat distribution in cos(θγπ).

Therefore, we require that the |cos(θγπ)| < 0.85. See Figure 4.3.

3. The photon candidate must have energy greater than 250 MeV if a kaon is present

in the event, which helps to exclude candidates that are actually made with splitoff

escape showers.

The π0 candidate in the η′ → ππη(πππ0) is required to have a mass pull between

±3. The 3 π0 candidates in the η′ → ππη(π0π0π0) are required to each have a mass pull

between -5.0 and 3.0. The 2 π0 candidates in the η′ → π0π0η(γγ) are each required to
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Table 4.4: Efficiency for D± → η(π0π0π0)e±ν for each q2, and quality bins. The
efficiency Etot is the efficiency contribution to the total D± → ηe±ν.
The efficiency Etot/B(η → π0π0π0) is the efficiency of reconstructing
this decay mode and q2 range.

Decay Mode q2 Bin Quality Bin Etot E/B(η→ π0π0π0)

η→ π0π0π0 All All 0.73% 2.26%

η→ π0π0π0 All Low 0.35% 1.09%

η→ π0π0π0 All High 0.37% 1.16%

η→ π0π0π0 q2 < 0.5GeV2 All 0.35% 2.1%

η→ π0π0π0 q2 < 0.5GeV2 Low 0.16% 0.96%

η→ π0π0π0 q2 < 0.5GeV2 High 0.19% 1.14%

η→ π0π0π0 0.5GeV2 < q2 < 1.0GeV2 All 0.23% 2.15%

η→ π0π0π0 0.5GeV2 < q2 < 1.0GeV2 Low 0.11% 1.04%

η→ π0π0π0 0.5GeV2 < q2 < 1.0GeV2 High 0.12% 1.1%

η→ π0π0π0 q2 > 1.0GeV2 All 0.14% 3.13%

η→ π0π0π0 q2 > 1.0GeV2 Low 0.07% 1.74%

η→ π0π0π0 q2 > 1.0GeV2 High 0.06% 1.39%

have a mass pull between -3.0 and 3.0. The η′ → π0π0η(γγ) decay has an additional

constraint on the η→ γγ, which is that neither of the showers are part of a π0 candidate

with |χm(π0)| < 3. The efficiencies for these decays are given in Table 4.9 and Table

4.10.
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Table 4.5: The requirements on common variables for the different η′ decay
modes involving η′ → ππη and η′ → π0π0η analysis .

Variable ππη(γγ) ππη(π+π−π0) ππη(π0π0π0) π0π0η(γγ)

M(η′) (MeV/c2) 945 to 970 948 to 970 940 to 980 945 to 968

χm(η′) -3 to 3 -3 to 3 -3 to 3 -3.3 to 2.5

M(η) (MeV/c2) 495 to 580 536 to 560 480 to 570 505 to 573

χm(η) -3 to 3 -3 to 3 -3 to 3 -3 to 3

V-cut (MeV) -200 to 200 -140 to 140 -140 to 140 -120 to 120

Signal ∆E (MeV) -70 to 100 -110 to 100 -110 to 100 -100 to 100

non-Signal ∆E (MeV) -320 to 220 -350 to 300 -350 to 300 -400 to 350

Table 4.6: The requirements on common variables for η′ → ρ0γ and η′ → γγ.
Note that the V-cut and signal side ∆E vary depending on the ρ0 mass
bin.

Variable ρ0γ bins(2,4) ρ0γ bin(1) ρ0γ bin(3) γγ

M(η′) (MeV/c2) 936 to 980 936 to 980 936 to 980 890 to 1000

χm(η′) -3.0 to 2.25 -3.0 to 2.25 -3.0 to 2.25 -3.0 to 2.15

V-cut (MeV) -200 to 120 -200 to 50 -200 to 120 -100 to 100

Signal ∆E (MeV) -70 to 100 -70 to 50 -200 to 50 -100 to 50

non-Signal ∆E (MeV) -300 to 200 -300 to 200 -300 to 200 -200 to 200
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Table 4.7: Efficiency for the D± → η′(γγ)e±ν for each quality bin. The efficiency
Etot is the efficiency contribution for the total D± → η′e±ν. The effi-
ciency Etot/B(η′ → γγ) is the efficiency of reconstructing this decay
mode.

Decay Mode Quality Bin Etot Etot/B

η′ → γγ All 0.1% 4.94%

η′ → γγ Low 0.04% 1.99%

η′ → γγ High 0.06% 2.94%

Table 4.8: Efficiency for D± → η′(ρ0γ)e±ν decay mode for mass and quality bins.
The efficiency Etot is the efficiency contribution to the total D± → η′e±ν.
The efficiency EM(ππ)/B is the efficiency for reconstructing the ππ mass
bin.

Decay Mode Quality Bin Etot EM(ππ)/B

η′ → ρ0γ : Mππ(1) All 0.07% 5.25%

η′ → ρ0γ : Mππ(1) Low 0.02% 2%

η′ → ρ0γ : Mππ(1) High 0.04% 3.25%

η′ → ρ0γ : Mππ(2) All 0.16% 3.79%

η′ → ρ0γ : Mππ(2) Low 0.04% 0.94%

η′ → ρ0γ : Mππ(2) High 0.12% 2.84%

η′ → ρ0γ : Mππ(3) All 0.65% 4.24%

η′ → ρ0γ : Mππ(3) Low 0.21% 1.38%

η′ → ρ0γ : Mππ(3) High 0.44% 2.86%

η′ → ρ0γ : Mππ(4) All 0.34% 4.35%

η′ → ρ0γ : Mππ(4) Low 0.1% 1.32%

η′ → ρ0γ : Mππ(4) High 0.24% 3.03%

83



)) γπ(θ cos(
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

20
40
60
80

100
120
140
160
180
200

 Rest Frame0ρ)) in γπ(θ cos(γ0ρ→’η
Signal
Background

 Rest Frame0ρ)) in γπ(θ cos(γ0ρ→’η

Figure 4.3: In η′ → ρ0(π+π−)γ decay, the cosine of the angle between one of
the pions from the ρ0 and the photon in the rest frame of the ρ0. The
histogram is signal, the black dots are background.

Table 4.9: The efficiencies of all of the η′ → ππη decay modes into the q2 bins,
decay mode, and quality bins. The efficiency E is the efficiency contri-
bution for the total η′eν from this decay mode and bin. The efficiency
E/B is the efficiency of reconstructing that particular mode and bin.

Decay Mode Quality Bin E E/B

η′ → ππη(γγ) All 0.61% 3.54%

η′ → ππη(γγ) Low 0.23% 1.33%

η′ → ππη(γγ) High 0.38% 2.21%

η′ → ππη(πππ0) All 0.16% 1.57%

η′ → ππη(πππ0) Low 0.06% 0.66%

η′ → ππη(πππ0) High 0.09% 0.9%

η′ → ππη(π0π0π0) All 0.26% 1.82%

η′ → ππη(π0π0π0) Low 0.13% 0.97%

η′ → ππη(π0π0π0) High 0.12% 0.84%
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Table 4.10: The efficiencies of all of the η′eν decay modes into the q2 bins, and
quality bins. The efficiency E is the efficiency contribution for the
total η′eν from this decay mode and bin. The efficiency E/B is the
efficiency of reconstructing that particular mode and bin.

Decay Mode Quality Bin E E/B

η′ → π0π0η(γγ) All 0.07% 0.9%

η′ → π0π0η(γγ) Low 0.03% 0.39%

η′ → π0π0η(γγ) High 0.04% 0.5%

4.8 Hadronic D-Tag Requirements

There is a set of common D-Tag requirements applied to the daughter particles for the

decay modes: D+ → K−π+π+, D+ → K−π+π+π0, D+ → KSπ
+π0, D+ → KSπ

+, D0 →

K−π+, and D0 → K−π+π0. For the measurement of the hadronic decays of the D+

and the D0 we allow tags from both charge conjugate modes, for example both D+ →

K−π+π+ and D− → K+π−π−. However in the D+ → K−π+π+ yield used to normalize

the semileptonic measurements we only use positively charged D so that the systematic

uncertainties associated with the generic reconstruction are the same as η(′)e±ν. If we

use both charges for K+π−π− as tag modes, and select only one tag per event, the relative

other side D K−π+π+ contribution is half what it is in the semileptonic decays. The only

way around this is to either double count D+ → K−π+π+ D− → K+π−π− events or to

choose only one charge for the D-tag.

1. We require the hadronic D-tag candidate to have a mass pull between ±3.

2. All π0’s are required to have a mass pull between ±3.

3. All charged π are required to have a dE/dx within 3 standard deviations of the

expected value for a π.
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4. All charged K are required to have a dE/dx within 3 standard deviations of the

expected value for a K.

5. All KS → π+π− are required to be within ±12 MeV/c2 of the known KS mass.

6. On the tag side |∆E| < 100 MeV.

7. On the other side |∆E| < 100 MeV.

86



CHAPTER 5

CORRECTIONS TO THE MONTE CARLO SIMULATION

Though great lengths have been taken to make the CLEO-c Monte Carlo simulation

match the data as well as possible, we do not expect perfect agreement. Certain aspects

of the Monte Carlo simulation, such as hadronic branching fractions, have not been

measured before, and other processes, such as the creation of hadronic splitoff-escape

showers, are difficult to simulate. This section describes a series of studies to determine

how well the Monte Carlo simulation reproduces key processes and efficiencies in the

data, as well as the corrections needed to make the simulation match the data.

5.1 Procedures for Determining Corrections

We compare many different aspects of the Monte Carlo simulation to the data. This sec-

tion briefly describes procedures that are repeatedly used in these studies. We describe

these general procedures in terms of hypothetical daughter particles such as X and Y so

that they can be readily applied to any situation.

The efficiency for reconstructing a daughter particle X is studied by using the con-

servation of energy and momentum. We construct a “missing” four-vector from the

beam energy and the total energy and momentum of everything in the event excluding

X mesons. We look for events where the missing four-vector has a mass consistent

with an X meson. Of those events where the “missing” four-vector is consistent with

an X meson we ask how many of those events actually contained a reconstructed X me-

son. The reconstruction efficiency for X is the number of events with a reconstructed X

meson divided by the total number of events consistent with an X.

Suppose that D decays to X through the process D → XYY . We first find a well

understood D tag, such as D+ → K−π+π+ that passes very strict requirements such that

there is very little background. We then search for 2 “Y”’s. We do not, at this point,
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ask the question whether or not we measured an X in an event, and if there is an X in

the event we ignore it. We simply want to know if we think there should be an X in the

event. We can determine whether or not there is an X in the event by using the fact that

the four-vector of the two D mesons is equal to the four-vector of the colliding beams

(Ptotal). We construct a “missing” four-vector for everything else in the event besides the

D-tag and the 2 “Y”’s given by

Pmiss = Ptotal − (Ptag + P2Y). (5.1)

If this event actually contained a XYY decay then the missing mass should be consis-

tent with the mass of the X. We fit the missing mass distribution to determine how many

of these events contained an X. Now that we know how many events contained X, we

ask how often we actually found an X that passed all of our requirements and had a

momentum and energy consistent with the missing four-vector. The efficiency for re-

constructing X is the ratio between the number of X’s found and the total number of

events that contained an X. The momentum dependence of the efficiency can be found

by dividing the data and Monte Carlo events into bins based on |~Pmiss|.

In addition to studying the efficiency of different types of real daughter particles we

also need to study how often there are fake tracks and showers. In order to determine the

rate that fake or extra particles get reconstructed we use events that are “double tagged”.

Events that are double tagged simultaneously have both D+ and D− described by D-tags

without using any track or shower more than once. If both the D+ and D− tags satisfy

strict requirements then any tracks or showers in the event that are not included by the

tags must be a fake. If the fraction of double tagged events with fake tracks or showers

is not the same in data as it is in the Monte Carlo simulation then we can modify the

Monte Carlo simulation to match.
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5.2 Hadronic Branching Fraction Correction

Generic Reconstruction requires that the four momentum and charge of the non-signal

D is accurately determined. The efficiency for doing this depends on the number, type,

and momentum of the non-signal D daughter particles. Therefore the absolute branching

fractions for the different non-signal D final states help determine the D+ → η(′)e+ν

reconstruction efficiency.

Table 5.1 lists the efficiencies for reconstructing D+ → η′e+ν, D+ → ηe+ν, and

D+ → K−π+π+ for many of the other side D decay modes. To show the importance of

each decay and to allow direct comparison between the different signal modes we also

list the percent contribution that the other side decay is expected to make to the total

signal efficiency given our current knowledge of that branching fraction. For example, if

the contribution from Kπππ0 is 10%, this means that 10% of all of the signal measured

has a Kπππ0 on the other side. Systematic uncertainties associated with the hadronic

branching fractions are only removed from our semileptonic branching fractions if the

percent contribution of each decay mode is the same in D+ → K−π+π+ as it is in D+ →

η(′)e+ν.

As Table 5.1 shows, there is significant variation in the signal efficiency with the

other side D decays mode, and this variation can lead to the total signal efficiency in data

being incorrectly calculated if the hadronic branching fractions are unknown. Therefore,

we use the generic reconstruction algorithm to measure the branching fractions of all of

the visible D-hadronic decay modes. As discussed in Section 3.5.1 we measure these

branching fractions in terms of the number of the different daughter particles (π, K, K0,

π0, η → γγ) found in the final state. Once these branching fractions are measured the

events in the Monte Carlo sample are reweighted to have the same composition of final

states that is seen in data.
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An additional complication arises concerning whether or not all of the previously

known and recently measured branching fractions add to 1. For example, suppose that

there are 3 branching fractions, BA, BB, and BC. Each of the branching fractions have

independent absolute measurements: BA = a + σa, BB = b + σb, BC = c + σc. Since

each of these measurements are independent, we cannot expect the central values to give

a + b + c = 1 precisely, only that this sum should be within a few σ =
√
σ2

a + σ
2
b + σ

2
c

of 1.

It is unphysical for the sum of all branching fractions to not be equal to one, and this

unity must be enforced when applying corrections to the Monte Carlo sample. There-

fore, unless a+ b+ c is significantly less than 1, indicating that other unmeasured decay

modes exist, we must assign values to BA, BB, and BC that precisely add to 1. We deter-

mine the values of BA, BB, and BC, given the physical constraint that a + b + c = 1, by

performing an N − 1 parameter fit to the N measurements. The N th parameter is defined

to be equal to 1 −
∑N−1

j B j so that the physical constraint is satisfied.

Let B j be the measured value of the decay j branching fraction, and B f it
j be the value

for decay j obtained in the fit. The χ2 for this model is given by

χ2 =

N−1∑
i

(Bi − B
f it
i )2

σ2
i

 +
 (BN − (1 −

∑N−1
j B

f it
j ))2

σ2
N

 . (5.2)

We minimize the χ2 by requiring for all i = 0...N − 1

∂χ2

∂B
f it
i

=
−2(Bi − B

f it
i )

σ2
i

+
2(BN − (1 −

∑N−1
j B

f it
j ))

σ2
N

= 0. (5.3)

This minimization requirement can be written as the matrix equation,

1
σ2

1
+ 1

σ2
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1
σ2

N
· · · 1

σ2
N

1
σ2

N

1
σ2

2
+ 1

σ2
N
· · · 1

σ2
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· · · · · · · · · · · ·

1
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N

1
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N
· · · 1

σ2
N−1
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f it
1

B
f it
2

· · ·

B
f it
N−1


−



B1
σ2

1
+ 1−BN

σ2
N

B2
σ2

2
+ 1−BN

σ2
N

· · ·

BN−1
σ2

N−1
+ 1−BN

σ2
N


= 0. (5.4)
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Solving for the fit parameters i = 1 · · ·N − 1 yields,

B
f it
1

B
f it
2

· · ·

B
f it
N−1


=
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+ 1
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1
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1
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−1 
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1
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σ2
N

B2
σ2

2
+ 1−BN

σ2
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· · ·
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σ2

N−1
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(5.5)

Solving Equation 5.5 for B f it
i we find

B
f it
i = Bi + (1 −

N∑
j

B j)
σ2

i∑N
k σ

2
k

. (5.6)

Any difference between 1 and the sum of all branching fraction measurements is divided

up among the different fit values such that the fraction that each decay mode gains or

looses is proportional to the square of the uncertainty in that decay mode. Therefore,

poorly known branching fractions are changed more by the fit than ones that are known

very well.

A second complication concerns whether or not we have actually measured all of the

relevant D decays. Within the uncertainty of the sum of all known branching fractions

there may exist a subset of decays that cannot be directly measured. This subset of

unmeasured decays could either contain final states with very low efficiency, or it could

be distributed over a large number of very small branching fractions that do not have a

statistically significant signal in the data. Let BU be the inclusive branching fraction of

this potential subset of unknown decays. The size of BU and whether or not the decays

are efficient is a source of systematic uncertainty in the efficiency-corrected yields.

To determine the sum of all branching fractions and the uncertainty in that sum, we

include unmeasured decays that are in the Monte Carlo simulation and assign to each

unmeasured decay an uncertainty equal to the expected central value. We find that for

D± the sum of the inclusive semileptonic branching fraction (32%±0.6% based on PDG

2008), the hadronic branching fractions measured in this analysis (62.3% ± 1.6%), and
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the unmeasured branching fractions that are included in the Monte Carlo simulation

(2.9% ± 0.9%) to be 97.2% ± 2.0%. This result is 1.4σ below 100%. Though this is

still perfectly consistent with this sum including all of the D+ branching fractions, there

is still room for unmeasured decays. Based on the available data there is no way of

knowing if BU is significant in size or efficiency. We include BU when considering

systematic uncertainties, but for the purposes of reweighting the Monte Carlo sample

we assume that all of the different decays have already been accounted for.

5.3 Hadronic Daughter Momentum Spectrum Corrections

Tracks with higher momentum tend to have higher reconstruction efficiency than tracks

with lower momentum. Also, showers and X → γγ candidates also tend to have momen-

tum dependent efficiencies. Furthermore the energy deposited in the calorimeter by KL

and by tracks also have some dependence on the momentum of these particles. There-

fore, the momentum spectra of the different types of daughter particles in the hadronic

decays affect our overall reconstruction efficiency. How well we know these distribu-

tions is a source of systematic uncertainty for the hadronic branching fraction measure-

ments and the semileptonic branching fraction measurements.

The momenta of particles from decays that contain only two daughters, such as

D0 → K−π+, are completely determined by energy and momentum conservation. How-

ever the spectra for decays with 3 or more particles are dependent on the composition of

resonances that make up the branching fraction for that final state. For example, the de-

cay D+ → K−π+π+ has contributions from non-resonant K−π+π+ as well as resonances

K̄∗(892)0π+, K̄∗(1430)0π+, and K̄∗(1680)0π+, where the excited K∗ resonances decay to

K−π+. Each different resonance create kaons and pions with different momentum spec-

tra, and the exact composition of these resonances in the full K−π+π+ final state affect

the spectra of these particles in D+ → K−π+π+.
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Table 5.1: The efficiencies (E) for reconstructing signal side D+ → η′e+ν, D+ →
ηe+ν and D+ → K−π+π+ given different other side D decays. We also
list the fraction of the total efficiency from this non-signal decay (F ).
The decays listed below make up approximately 90% of the total effi-
ciency. The 10% not listed is composed of more than 20 different final
states.

non-signal D E(η′eν) F (η′eν) E(ηeν) F (ηeν) E(Kππ) F (Kππ)

3 × π 11.92% 1.82% 18.31% 2% 19.43% 1.71%

1 × π 2 × π0 5.86% 1.23% 8.44% 1.27% 9.85% 1.19%

3 × π 1 × π0 5.89% 3.46% 7.65% 3.22% 10.09% 3.43%

5 × π 5.33% 0.38% 6.72% 0.35% 10.92% 0.46%

1 × π 3 × π0 3.31% 0.64% 4.49% 0.62% 5.79% 0.65%

3 × π 2 × π0 3.12% 1.28% 3.64% 1.07% 5.42% 1.28%

2 × π 1 × K 7.55% 33.6% 10.33% 32.9% 12.15% 31.24%

2 × π 1 × π0 1 × K 3.56% 10.04% 5.14% 10.38% 6.66% 10.85%

2 × π 2 × π0 1 × K 1.73% 0.5% 1.83% 0.38% 3.1% 0.52%

1 × π 2 × K 3.33% 1.53% 6.47% 2.13% 8.21% 2.18%

4 × π 1 × K 3.69% 1.03% 5.31% 1.06% 6.05% 0.97%

1 × π 1 × K0 4.23% 6.1% 5.92% 6.11% 6.77% 5.64%

1 × π 1 × π01 × K0 2.46% 17.21% 3.29% 16.52% 4.11% 16.62%

1 × K 1 × K0 3.4% 1.06% 4.56% 1.01% 5.64% 1.01%

1 × π 2 × π0 1 × K0 1.31% 3.6% 1.93% 3.8% 2.54% 4.03%

3 × π 1 × K0 2.42% 7% 3.68% 7.63% 4.67% 7.81%

3 × π 1 × π0 1 × K0 1.3% 1.82% 1.84% 1.85% 2.53% 2.05%

1 × π 1 × K0 1 × η(γγ) 2.23% 1.06% 2.81% 0.96% 3.98% 1.1%

1 × π 1 × π0 2 × K0 1.81% 0.29% 3.51% 0.41% 3.46% 0.32%
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It is beyond the scope of this work to attempt to disentangle the resonance com-

position of all of the hadronic final states. Instead we compare the spectra in data to

the spectra in the Monte Carlo simulation and develop reweights to give us the correct

momenta spectra and efficiencies for the hadronic decay modes.

The spectra of one type of daughter particle is correlated with the spectra of the

other types of daughter particles in the decay. For example, the decay D+ → K−π+π+

has contributions from different K∗0 resonances via D+ → K∗0π+ with K∗0 → K−π+.

Since the kaon and one of the pions have the invariant mass of the K∗0 it is not possible to

change the spectrum of the kaons and maintain the invariant mass without also changing

the spectrum of the pions. To account for this correlation we determine reweights for

one type of daughter particle at a time, beginning with the heaviest daughter particle,

and apply the reweight for that type of particle before calculating a reweight for the next

type of particle.

The reweight for a spectrum of a daughter particle in a particular decay is determined

by dividing the background subtracted data spectrum by the reconstructed Monte Carlo

spectrum. The reweight is normalized such that the total number of generated events

remains constant. This iterative procedure is not perfect but it is easy to automate and

apply to all of the decay modes without evaluating all of the resonances that might

contribute to the final state.

We do not reweight spectra that do not have a statistically significant disagreement

with data. In order for a spectrum to be reweighted the χ2 per degree of freedom must

be greater than 4, which prevents the spectra of rare decay modes from being corrected.

5.4 Splitoff Escape Correction

One of the major improvements made in this analysis came with identifying splitoff-

escapes and excluding them from the event reconstruction. Most of the splitoff-escapes
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are the result of hadronic interactions in the calorimeter. We do not expect that the

hadronic interactions in the calorimeter are accurately modeled in the Monte Carlo sim-

ulation and so do not expect that the splitoff-escapes are accurately modeled. We need to

measure the rate that pions and kaons create splitoff-escape showers in data and compare

that to the rate in the Monte Carlo simulation.

The Monte Carlo simulation suggests that pions and kaons produce extra showers at

significantly different rates. On average, pions create splitoff escapes at a rate of 4-5%

per track in the momentum range of 0.2 GeV/c to 1.0 GeV/c. Kaons create extra showers

by two mechanisms: in-flight decays and splitoff-escapes. An in-flight decay is when

a kaon decays while traversing the drift chamber. Daughter particles from the in-flght

decay can create extra showers. Both of these mechanisms for kaons to produce extra

showers are dependent on the kaon momentum. The Monte Carlo simulation predicts

that the total probability that a kaon creates extra showers varies from roughly 50% to

10% depending on the track momentum. On average kaon tracks produce extra showers

via in-flight decays at a rate of approximately 3% per track, and generate splitoff escapes

at approximately 15% per track. Figures 5.1, 5.2, and 5.3 show the probability for a

track to create extra showers from pion splitoff escapes, kaon splitoff escapes, and kaon

in-flight decays respectively.

We need to compare the rate of splitoff escape creation and the momentum depen-

dance of that rate in the data to the rate in the Monte Carlo sample. First, we identify

a tag, either from charged D decays (Kππ, KSππ
0, Kπππ0, KSπ) or neutral D decays

(Kππ0, KSπ
0, Kπ). The tag must have |∆E| < 0.02 GeV, and must have a beam con-

strained mass within 0.005 GeV/c2 of the expected D mass. We perform the generic

reconstruction of the other side and reject events that have η → γγ or π0 → γγ candi-

dates with |(Mtrue−Mγγ)/σM | > 3. We reject events with non-zero net charge. All tracks

not associated with a KS → π+π− must pass additional track quality requirements. We
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Figure 5.1: The Monte Carlo probability for a π± track to generate a splitoff escape
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then reconstruct the other side D using everything except showers that are not matched

to a π0 or η. For this study, all splitoff approved showers not matched to a π0 or η are

considered extra showers regardless of the shower energy or the types of tracks in the

event. If the beam constrained mass of the other side is within 0.005 GeV/c2 of the

known D mass and |∆E| < 0.025 GeV then we accept the event.

We first study the splitoff escapes from pion tracks because they are backgrounds to

our kaon study. We isolate splitoff escapes from pions by only considering events with-

out kaons. In order to determine differences in the momentum dependence between data

and the Monte Carlo simulation, we attribute the extra shower to the track that intersects

the calorimeter closest to where the shower was found. This method can fail in two dif-

ferent ways. First, splitoff escape showers can be far from where the track collided with

the calorimeter, and so the closest track to the shower is not necessarily the track that

created it. Second, a splitoff escape could potentially be included in π0 or η candidate

while a true shower was labeled as a splitoff escape if doing so does not significantly
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change the mass pull of the candidate or the ∆E or Mbc of the D candidate. Therefore,

we should expect the measured momentum dependence to be distorted. However, we

cannot proceed unless we assume something, so we assume that the track closest to the

shower is the one that created it.

Let απ(p) be the momentum dependent probability for a pion with momentum p to

create an extra shower. For an event with N pion tracks, the probability that there are

zero extra showers (P(nγ = 0)) is

P(nγ = 0) = ΠN
i=1(1 − απ(pi)). (5.7)

The probability that there is only 1 extra shower created by a pion with momentum pk is

P(nγ = 1, pk) = απ(pk)ΠN
i,k(1 − απ(pi)). (5.8)

Therefore, the ratio ( R(pk)) of the number of events where exactly 1 extra shower was

generated by a track with momentum pk, and the number of events where 0 extra show-

ers were created, but still contained a track with momentum pk is:

R(pk) = Nnγ=1,pk/Nnγ=0,pk =
απ(pk)

1 − απ(pk)
, (5.9)

απ(pk) =
R(pk)

1 + R(pk)
. (5.10)

To determine the above ratio ( R(pk)), we divide the momentum distribution of tracks

closest to the extra shower when there is only 1 extra shower, by the momentum distri-

bution of all tracks in the event when there are no extra showers. For each bin of this

distribution we solve for the απ(p). Figure 5.4 shows the measured απ(p). Note that the

reconstructed shape in Figure 5.4 is not the same as the generator level shape in Figure

5.1. This is because the track closest to the splitoff escape is not necessarily the track

that created it. We can infer from this plot that a splitoff escape created by a low energy

pion is more likely to be far away from it than an extra shower created by a high energy

pion.
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Figure 5.4: The measured probability for a π+ to create a splitoff escape versus π
momentum (GeV/c). The black dots are data and the histogram is the
same measurement performed on the Monte Carlo sample.

.

In order to compare the data and the Monte Carlo sample we take the ratio of their

απ(p) distributions found for each (Figure 5.5). Within the uncertainties, the momentum

dependance of απ seems to be the same in both data and Monte Carlo samples. The total

rate in data appears to be a factor of 1.139±0.033 larger than the rate in the Monte Carlo

simulation.

Next, we need to compare the probability for a kaon track to create extra showers

in data and the Monte Carlo simulation. We do this by selecting events that have only

one kaon in them. Unlike the pions, if there is an extra shower from a kaon we know

which kaon it came from. However, there is a large background from events where the

extra shower came from a pion. We use the results of the study of the pions and the

backgrounds expected from the Monte Carlo simulation to subtract events with showers

from pions from the total number of events with an extra shower. We normalize the

Monte Carlo pion backgrounds using the sum of the number of events with 0 and 1
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Figure 5.5: The data to Monte Carlo ratio between the probability for a π+ to cre-
ate a splitoff escape as a function of the π momentum (GeV/c). This
ratio is consistent with being flat, meaning that only the total probabil-
ity, rather than the momentum dependence, differs between data and
Monte Carlo samples. The average ratio is 1.139 ± 0.033.
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extra showers and also make sure via reweighting that the relative composition of events

with 1 kaon and N pions is the same in data and Monte Carlo samples.

Figure 5.6 shows the momentum distribution of kaons in events that have one extra

shower and only one kaon in the event as well as the expected background from events

where the extra shower was created by a pion.

To determine the probability of a kaon creating an extra shower we divide the back-

ground subtracted kaon spectrum for Nshow = 1 by the spectrum for Nshow = 0. From

this ratio and Equation 5.10 we calculate the probability for a kaon track to produce an

extra shower in the event (Figure 5.7).

We find significant differences in the measured probability for both high and low

momentum kaons. The process where kaons generate extra showers via in-flight decays

is assumed to be well modeled by the Monte Carlo simulation since it is governed by
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Figure 5.6: The momentum distribution of Kaons in events with only 1 kaon when
there is also 1 extra shower in the event. The black dots are data.
The blue histogram is the component of the data that is expected from
events when the extra shower was generated by one of the pions rather
than the kaon.
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Figure 5.7: The probability of the kaon track creating an extra shower as a func-
tion of the kaon momentum. The black dots are the probability ex-
tracted from data, and the histogram is the Monte Carlo prediction.

101



 Kaon Momentum (GeV)
0 0.2 0.4 0.6 0.8 1 1.2

 R
e-

W
ei

gh
t

0

0.5

1

1.5

2

2.5

3

Kaon Splitoff Escape Re-weightKaon Splitoff Escape Re-weight

Figure 5.8: The measured splitoff escape probability divided by the Monte Carlo
splitoff escape probability as a function of kaon momentum.
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time dilation. So the differences between the data and the simulation are attributed to

the simulation of hadronic interactions in the calorimeter. The reweight values to correct

the kaon splitoff escape probability in the simulation is shown in Figure 5.8.

We have investigated whether or not positively and negatively charged kaons require

different corrections since interactions between nuclei for K+ and K− are known to differ

significantly. Figure 5.9 shows α(pK) and the corrections for both positive and negative

kaons.

To adjust the Monte Carlo sample to match the data, we first fit the Monte Carlo

probabilities, α, and the reweighting factors, β, to polynomials to obtain smooth func-

tions of momentum. Each track is given a weight of either β if it has an extra shower, or

a weight of (1− βα)/(1− α) if it does not have an extra shower. The weight of the event

is the product of the track weights.

We also correct the energy distribution of these extra showers. The energy of an extra

shower affects whether or not they may be included in a false π0 or η → γγ candidate.
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Figure 5.9: The difference in the splitoff escape probabilities, and reweights for
positive K (left) and negative K (right).

This is important because if an extra shower creates a fake π0 or η we won’t be able to

remove the shower from the event.

We determine corrections for the extra shower energy by using the ratio of the energy

distribution in data to the Monte Carlo energy distribution. For events with kaons we

subtract the expected contributions from pion showers. The reweights that are applied

to the Monte Carlo sample in order to match the data are given in Tables 5.2 and 5.3.

5.5 η→ γγ Efficiency Correction

The η → γγ efficiency correction is determined using the missing mass technique de-

scribed earlier in this chapter. We obtain preliminary branching fractions for hadronic
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Table 5.2: The energy distribution reweights applied to extra showers created by
a pion.

Shower Energy Range (GeV) reweight

0.0 < Eγ < 0.05 GeV 0.748 ± 0.055

0.05 GeV ≤ Eγ < 0.10 GeV 1.25 ± 0.058

0.10 GeV ≤ Eγ < 0.15 GeV 1.20 ± 0.08

0.15 GeV ≤ Eγ < 0.20 GeV 1.01 ± 0.10

0.20 GeV ≤ Eγ < 0.25 GeV 1.11 ± 0.14

0.25 GeV ≤ Eγ 0.58 ± 0.09

Table 5.3: The energy distribution reweights applied to extra showers created by
a Kaon.

Shower Energy Range (GeV) reweight

0.0 < Eγ < 0.05 GeV 1.07 ± 0.06

0.05 GeV ≤ Eγ < 0.10 GeV 1.09 ± 0.05

0.10 GeV ≤ Eγ < 0.15 GeV 0.94 ± 0.05

0.15 GeV ≤ Eγ < 0.20 GeV 0.72 ± 0.05

0.20 GeV ≤ Eγ < 0.25 GeV 0.82 ± 0.08

0.25 GeV ≤ Eγ 1.39 ± 0.09
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Figure 5.10: The energy distribution for extra showers created by pions in the
calorimeter. The black dots are data and the histogram is from sim-
ulation. The distributions are normalized by the number of events
with either 0 or 1 extra showers.
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Figure 5.11: The energy distribution for extra showers created by kaons in the
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decays that include η → γγ, and select events where the other side D is consistent with

one of these decays. A “missing” mass is calculated using everything in the event except

for possible η candidates and extra showers. Events where the missing mass is consis-

tent with an η are selected, and the η → γγ efficiency is determined by how often one

of these events actually had an η candidate that passed all of our requirements.

For most of the X+η decays that are found in the data there is a corresponding X+K0

decay. Within our missing mass resolution the masses K0 and η are close and X + KL

decays can fake X + η decays. We select X + η decays where the corresponding X + KL

decays do not overwhelm our study with background. Table 5.4 gives the preliminary

branching fractions of interest. We select against decays with poor resolution and decays

where the X + KL branching fraction is much larger than the X + η branching fraction.

We exclude the following decays from our study: D+ → π+π0π0η, D+ → π+η, D+ →

π+π+π−η, and D0 → π+π−π0η.

Table 5.4: The preliminary X+η and X+KL branching fractions that were used to
decide which decays to use for the η systematic study, and which ones
to select against.

X X + η Branching Fraction X + KL Branching Fraction

π 0.118% 1.47%

3π 0.14% 2.8%

πKS 0.44% 0.35%

KS 0.16 % too small

πk 0.75% 0.4%

2πKs 0.27% 0.046%

2ππ0 0.19% 5.10%

π0KS 0.37% 0.27%
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Figure 5.12: The missing mass distribution for Xη candidates with no require-
ments on η candidates or showers that could potentially be part of an
η candidate. We see two peaks. One peak is from η and the other
peak is from KL.

The remaining X + η decays have corresponding X + KL decays with comparable

branching fractions. The missing mass distribution for X + η candidates clearly shows

both an η and a KL mass peak ( Figure 5.12 ). The two peaks overlap at approximately

the 2σ level. The KL peak compromises our ability to accurately count the number of η

that should be used in the denominator of our efficiency calculation.

To minimize the KL peak we impose minimal requirements on the event that have

little effect on the number of η candidates, but remove most of the KL candidates. The

probability that an η → γγ looses both showers is very low, so we require that there is

at least one shower in the event that could have come from an η. If there is only one

shower we make additional requirements. Unlike an η, showers from a KL should be in

the direct path of the KL. So if the extra shower energy is less than 1/2 the η energy, the

cosine of the shower with the missing momentum must be less than 0.90. Further, if the

shower is really from an η→ γγ, then energy conservation requires Eγ + |~Pη − ~Pγ| = Eη.
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We require that the Eη predicted by the shower and the missing momentum is within

0.2 GeV of the missing energy. These additional requirements diminish the relative size

of the KL peak (Figure 5.13).

To determine the η efficiency as a function of momentum we require the missing

mass to be between 0.52 and 0.58 GeV/c2. The size of the backgrounds relative to

the η are determined by fitting the missing mass distribution with a linear model to

describe the combinatoric backgrounds and double gaussians to describe the KL and η

contributions. Monte Carlo backgrounds to the missing momentum spectrum are scaled

by the missing mass fit values to match the levels seen in data and subtracted from the

data spectrum. The efficiency as a function of η momentum is the ratio of the missing

momentum spectrum with requiring a reconstructed η that passes all requirements and

the spectrum without requiring that an η was found. The ratio between the efficiency

found in data and the efficiency found in Monte Carlo samples gives the systematic

correction to the efficiency.

This analysis employs four different sets of requirements for η→ γγ candidates. The

generically reconstructed D has low quality η (−25 < χm(η) < 15) and high quality η

(−5 < χm(η) < 3). On the signal side, there are η→ γγ requirements for D+ → η(γγ)e+ν

and separate requirements for η → γγ from η′ → ππη(γγ) decay. We determine a

correction for each set of requirements.

In the momentum range 0..2 GeV/c to 0.8 GeV/c the reweights are consistent with a

constant correction, independent of momentum. Depending on the set of requirements

the efficiency correction ranges between 0.97 and 1.006 with uncertainties of approxi-

mately 3.3% (Table 5.5).
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Figure 5.13: The missing mass distribution for X + η candidates for the Monte
Carlo sample. We have imposed minimal requirements to remove KL

events. Note that after adding requirements we have a much smaller
KL peak relative to the η peak than Figure 5.12.

Table 5.5: The efficiency correction and uncertainty in the correction for η → γγ
for the 4 different sets of η requirements used in the analysis.

Cut Set reweight and uncertainty

Other Side Low 1.006 ± 0.033

Other Side High 0.984 ± 0.033

D→ ηeν 0.975 ± 0.033

D→ η′eν 0.970 ± 0.033
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Figure 5.14: The missing mass distribution for X + π0 candidates. Data is rep-
resented by black dots, expected signal with a clear histogram and
expected backgrounds with a blue histogram .

5.6 π0 → γγ Efficiency Correction

We use the missing mass technique to determine the π0 → γγ efficiency corrections. As

the mass distribution in Figure 5.14 show the backgrounds are relatively small and there

is no need to impose minimal requirements as was done in η→ γγ.

To determine the π0 efficiency as a function of momentum we require the missing

mass to be between 0.10 GeV/c2 and 0.20 GeV/c2 then divide the resulting background

subtracted momentum distribution of events with good π0 candidates by the distribution

from all events to determine the efficiency. The ratio between the data efficiency and the

Monte Carlo efficiency gives us the reweight correction that needs to be applied to the

Monte Carlo sample. This analysis employs four different sets of requirements for π0 →

γγ candidates. The generically reconstructed D has low quality π0 ( −25 < χm(π0) < 15)

and high quality π0 ( −5 < χm(π0) < 3) criteria. For the signal side D there are two
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Figure 5.15: The efficiency of π0 as a function of momentum for both data and
Monte Carlo samples.

different sets of mass pull requirements ( |χm(π0)| < 3 and −3.5 < χm(π0) < 2.5) used to

reconstruct the various D+ → η(′) decay modes. Figure 5.15 shows the efficiency of π0

with |χm(π0)| < 3 and Figure 5.16 shows the corresponding correction. The efficiency

corrections for the different π0 requirements are given in Table 5.6.

Table 5.6: The efficiency correction and uncertainty in the correction for π0 → γγ
for the 4 different π0 requirements used in the analysis.

Mass Pull reweight and uncertainty

-25 to 15 0.991 ± 0.012

-5.0 to 3.0 0.964 ± 0.013

-3.0 to 3.0 0.954 ± 0.013

-3.5 to 2.5 0.958 ± 0.013
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Figure 5.16: The Monte Carlo efficiency reweight for reconstructed π0 → γγ with
|χm(π0)| < 3 as a function of momentum.

5.7 KL Energy Deposition Correction

An important class of low quality events are events that contain a KL that deposits a

large fraction of its energy in the calorimeter. These events reconstruct the neutrino

fairly well, but have one or more showers in the event that came from the KL rather than

a π0 or an η → γγ. The details of hadronic interactions in the calorimeter are difficult

to simulate so we explicitly study the KL energy deposition to understand how often the

neutrino can be reconstructed in events with a KL.

The energy deposition of KL in the CLEO crystal calorimeter has been previously

studied for CLEO-2 [35] and CLEO-c [34]. It is necessary to repeat these studies for

this analysis because previous studies did not use splitoff-approved showers and only

considered the total energy deposited in the calorimeter and not the number of showers

produced.
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To determine the KL corrections in this analysis we use the missing energy method

outlined in Section 5.1. As was done in [34] we study the KL by using the two D0 decays

D0 → KLπ
+π− and D0 → KLπ

+π−π0. We begin by finding a “signal side” D-tag of type

K−π+, K−π+π0, or KS (π+π−)π0. The generic reconstruction is performed on the “other

side” D, and we select events where the “other side” consist of two oppositely charge

pions, no kaons, no η → γγ, and at most one π0 (required to have |χm(π0)| < 3). The

missing four-vector is required to have a mass consistent with a KL, and we say the KL

deposited energy if there are showers with energy greater than 0.030 GeV/c2 within a

cone of cos(θ) > 0.98 around the direction of the missing momentum.

We consider events with a missing mass between 0.46 GeV/c2 and 0.52 GeV/c2.

We subtract backgrounds predicted by the Monte Carlo simulation from both data and

Monte Carlo samples. For the backgrounds subtracted from the data we normalize

Monte Carlo backgrounds using the sideband region 0.36 GeV/c2 to 0.42 GeV/c2.

Without the splitoff requirement we find that KL deposit showers 49.9±0.6% for data

and 44.2 ± 0.2% for the Monte Carlo simulation, which is consistent with the previous

CLEO-c study [34]. With the splitoff requirement we find that data has a total rate of

39.2 ± 0.6% and the Monte Carlo sample has a total rate of 32.3 ± 0.1%. We determine

the KL showering rate as a function of KL momentum (Figure 5.17) and find that the

discrepancy in the total rate is primarily due to the region P(KL) < 300 MeV/c. The drop

in the Monte Carlo rate below 300 MeV/c is present with or without requiring splitoff-

approval, and is an artifact of the FLUKA algorithm used to simulate KL interactions.

The FLUKA code stops propogating hadronic interactions once the kinetic energy of a

particle drops below 50 MeV, which corresponds to a KL momentum of approximately

0.23 GeV/c.

To correct for the rate problem we reweight the events with and without KL show-

ering. In the region of KL momentum greater than 0.30 GeV/c we give the constant
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Figure 5.17: The rate that KL produce splitoff approved showers as a function of
KL momentum. The black dots are data and the clear circles are from
the Monte Carlo sample.

reweight of 1.07 ± 0.02 for KL that create a splitoff approved shower and 0.953 ± 0.013

for KL that do not create splitoff approved showers (uncertainties of these two weights

are ant-correlated with one another). The corrections to the KL showering rates as a

function of momentum is given in Table 5.7.

Because we reconstruct π0 and η → γγ to calculate the neutral energy and remove

extra showers, it is important to not only know the total energy deposited by the KL but

also the number of splitoff approved showers that are created. The number of showers

produced in both data and Monte Carlo samples for the full range of KL momentum is

shown in Figure 5.18, normalized to the number of showering KL.

To test the number of showers as a function of KL momentum, we divide the momen-

tum range into bins: (0.00−0.25 GeV/c), (0.25−0.50 GeV/c), (0.50−0.75 GeV/c), and

(0.75 − 1.00 GeV/c), normalized by the number of showering KL in each bin. The
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Table 5.7: The momentum dependent reweights to the KL showering rate. The
“showering weight” is applied to KL that did not create splitoff ap-
proved showers, and the “no showering weight” is for events that did.

KL Momentum Range (GeV/c) Showering Weight No Showering Weight

0.00 - 0.05 1.99 ± 2.26 0.94 ± 0.14

0.05 - 0.10 2.53 ± 0.68 0.89 ± 0.04

0.10 - 0.15 3.92 ± 0.49 0.77 ± 0.03

0.15 - 0.20 6.09 ± 0.57 0.67 ± 0.03

0.20 - 0.25 2.04 ± 0.15 0.77 ± 0.03

> 0.25 1.07 ± 0.02 0.95 ± 0.01

reweights for events with 1 and events with 2 showers are given in table 5.8. The

reweights are consistent with 1.00 for all momentum bins.

Table 5.8: KL reweights for the number of showers produced for different regions
of KL momentum.

KL Momentum Range (GeV/c) 1 Shower 2 Showers

0.00 - 0.25 1.02 ± 0.05 0.85 ± 0.12

0.25 - 0.50 1.03 ± 0.03 0.89 ± 0.06

0.50 - 0.75 1.01 ± 0.03 1.00 ± 0.06

0.75 - 1.00 1.01 ± 0.04 1.00 ± 0.09

All 1.02 ± 0.02 0.93 ± 0.04

Finally, we consider the fraction of the KL energy in each of the showers produced.

We consider the distribution of Eshow/EKL for interactions with one splitoff-approved

shower (Figure 5.19) and interactions with two. In the case of two splitoff-approved
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Figure 5.18: The number of splitoff approved showers created by the showering
KL in both data and Monte Carlo simulation. The Monte Carlo sam-
ple has been normalized so that the total number of showering KL is
the same as in data.

showers, we separately look at the distributions for the shower with the maximum energy

(Figure 5.20) and the minimum energy (Figure 5.21).

The figures 5.19 through 5.21 show that the fraction of the KL energy deposited in the

shower is different in data than in Monte Carlo samples. For the case of KL depositing

one shower in the calorimeter we show Eshow/EKL for the full range of KL momentum

(Figure 5.19), and divided into the different KL momentum ranges (Figure 5.22).

The ratio between the Eshow/EKL distribution (one shower) for data and for the Monte

Carlo sample for the full momentum range is given in Figure 5.23. To get a smooth

function to use as a reweight, we fit this distribution with a gaussian plus a polynomial

c0 + c1x + c2x2 + c3e(−c4(x−c5)2), (5.11)

where x = Eshow/EKL with 6 free parameters ci. The fit parameters for the different

momentum intervals are given in Table 5.9.
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Figure 5.19: The ratio between the shower energy and the parent KL energy in the
situation where the KL deposits only one splitoff-approved shower in
the calorimeter.
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Figure 5.20: The ratio between the larger shower energy and the parent KL energy
in the situation where the KL deposits 2 splitoff approved showers.
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Figure 5.21: The ratio between the smaller shower energy and the parent KL en-
ergy in the situation where the KL deposits two splitoff approved
showers.

In the case that the KL deposits more than one shower, the ratio between the high-

est energy shower Eshow/EKL distribution for data and Monte Carlo samples is fit to a

line (Figure 5.25) with results given in Table 5.10. The energy distribution of the low

momentum shower in the N=2 case is consistent with data and is not corrected.

To correct the Monte Carlo simulation we reweight the generator level KL based

on whether or not they produce splitoff approved showers in the calorimeter according

to Table 5.7. The number of showers produced is consistent with data, so we do not

reweight for the number of splitoff approved showers produced. Events with a shower-

ing KL are given additional reweights as a funciton of KL momentum and the Eshow/EKL

for the highest energy shower. The N = 1 reweights are given in Table 5.9, and the

N > 1 reweights are given in Table 5.10.
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Table 5.9: Parameters describing the ES/EKL reweights for Number of Showers
equal to one. The reweights are fit to the function: c0 + c1x + c2x2 +

c3exp(−c4(x − c5)2), where x = ES/EKL . The average correction for
the full momentum range is given in Figure 5.23, and the corrections
divided into momentum bins are shown in Figure 5.24.

KL Momentum Range (GeV/c) c0 c1 c2 c3 c4 c5

All 0.656 0.921 -1.113 0.693 38.036 0.565

0.00 - 0.25 0.483 1.174 -0.959 1.00 36.563 0.641

0.25 - 0.50 0.700 0.255 -0.207 0.537 27.943 0.533

0.50 - 0.75 0.749 0.868 -1.343 0.769 46.448 0.574

0.75 - 1.00 0.705 -0.253 -0.458 1.337 18.919 0.577

Table 5.10: Parameters describing the ES (Max)/EKL reweights for KL that pro-
duce two splitoff approved showers. The reweights are fit to the func-
tion: b+m(x−0.5), where x = ES (Max)/EKL . The average correction
for the full momentum range is given in Figure 5.25 and the correction
for the different momentum bins is shown in Figure 5.26.

KL Momentum Range (GeV/c) b m

All 0.92 -0.875

0.00 - 0.25 0.78 -1.11

0.25 - 0.50 0.93 -0.93

0.50 - 0.75 0.92 -0.83

0.75 - 1.00 0.90 -0.30
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Figure 5.22: Ratio of shower energy to KL energy in the situation where the KL

deposits only one splitoff-approved shower in the calorimeter. We
show the momentum range 0.0 to 0.25 GeV/c (top left), 0.25 GeV/c
to 0.50 GeV/c (top right), 0.50 GeV/c 0.75 GeV/c (bottom left), and
0.75 to 1.00 GeV/c (bottom right).

5.8 Tracking Corrections

All tracks in this analysis are required to be trkman-approved. A previous study [33]

measured the trkman-approval efficiency using ψ(2S )→ J/ψπ+π− and J/ψ→ e+e− and

found a Monte Carlo correction of 1.0004 ± 0.0009. We use this result to correct the

Monte Carlo trkman-approval efficiency. To determine other tracking corrections we use

the missing mass technique with the DD̄ data at the Ψ(3770). Using the decay D+ →

K−π+π+ we study the rate that kaons are either successfully identified or misidentified as

pions. We find a charged D-tag, then generically reconstruct the other side D and require
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Figure 5.23: The reweight for the ratio between the shower energy and the parent
KL energy in the situation where the KL deposits only one splitoff
approved shower in the calorimeter.

that there are two pions with equal charge and an additional trkman-approved track (tk)

with the same charge as the D-tag. We use the conservation of energy and momentum

and the beam energy to determine the expected mass of track tk. Events where the

expected mass of tk is consistent with a kaon are considered true D+ → K−π+π+ events.

The efficiency for identifying a trkman-approved kaon track as a kaon is determined

by the number of events where the dE/dx and RICH information of tk are consistent

with a kaon. We find a kaon identification correction of 0.982 ± 0.015. We also want a

correction for the rate that kaons are faking pions. There are two types of charged pion

criteria in this analysis, the generic reconstruction criteria, and a “signal pion” criteria

adopted from [33] used for charged pions in D-tags and semileptonic candidates. The

correction for kaons faking generically reconstructed pions is 1.126 ± 0.036, and the

correction for kaons faking signal pions is 1.17±0.14. We also find a correction for true
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Figure 5.24: Correction factors for ES /EKL in the situation where the KL deposits
only one splitoff-approved shower in the calorimeter. We show the
momentum range 0.0 to 0.25 GeV/c (top left), 0.25 GeV/c to 0.50
GeV/c (top right), 0.50 GeV/c 0.75 GeV/c (bottom left), and 0.75 to
1.00 GeV/c (bottom right).

pions to fall into the signal pion category by looking at the the two charged pions in the

generically reconstructed K−π+π+ and find a pion correction of 0.998 ± 0.008.

5.9 Net Charge (Fake Track) Correction

In this analysis we make an event level requirement that the net charge of all trkman-

approved tracks in the event is zero because a non-zero net charge indicates that we have

either lost a track or have a fake track. We also make a candidate level requirement that

all tracks in the other side D must either be part of a KS → π+π− candidate or pass
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Figure 5.25: The reweight in the ratio between the shower energy and the parent
KL energy in the situation where the KL deposits two splitoff ap-
proved shower in the calorimeter and we examine the highest energy
shower.

strict vertex requirements. The vertex requirements remove bad candidates where a true

KS → π+π− is split between the two D candidates, but also helps to remove events with

fake tracks that have managed to pass the net charge requirement. For example, events

that have not detected a charged particle but reconstructed a track from random hits can

pass the net charge requirement. In this situation, a track created from random hits is

unlikely to pass the vertex requirements.

To determine if the efficiency for passing these requirements is correct in the Monte

Carlo simulation, we study the rate that extra tracks cause the candidates to be rejected.

We consider double tagged events where both D’s can be described by D-tags with a

beam constrained mass within 0.005GeV/c2 of the D mass and |∆E| < 0.025 GeV. We

require that all tracks in the D-tags are trkman-approved. The η → γγ and π0 → γγ

have |χm| < 3 and are composed of splitoff-approved showers. Events are vetoed if there
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Figure 5.26: Correction factors for ES (Max)/EKL in the situation where the KL

deposits two splitoff-approved shower in the calorimeter. We show
the momentum range 0.0 to 0.25 GeV/c (top left), 0.25 GeV/c to 0.50
GeV/c (top right), 0.50 GeV/c 0.75 GeV/c (bottom left), and 0.75 to
1.00 GeV/c (bottom right).

are splitoff approved showers greater than 250 MeV in energy that are not part of a η or

π0. Extra tracks are ignored in the double tagged events.

We study the rate that these double tagged events pass the generic reconstruction

tracking requirements by using one D-tag for the signal side and generically reconstruct

the other D tag. Events with extra tracks that passed the double tag requirement fail

the generic reconstruction requirements. Previous neutrino reconstruction studies [33]

found that the zero net charge efficiency varied with the number of low transverse mo-

mentum tracks in the event. We adopt the parametrization of [33] and determine the

efficiency of our net charge and track vertex veto as a function of the number of low
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Figure 5.27: The efficiency in the data and in the Monte Carlo sample for passing
the net charge 0 and track vertex requirements.

transverse momentum tracks in the event (Figure 5.27). Table 5.11 shows the efficiency

corrections applied to the Monte Carlo sample.

Table 5.11: Corrections to the efficiency for passing the net charge 0 and track
vertex requirements as a function of the number of low transverse
momentum tracks (Pt < 0.15GeV/c).

Number Low Pt Tracks reweight

0 0.995 ± 0.006

1 0.987 ± 0.008

2 0.96 ± 0.02

3 or more 0.88 ± 0.04
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5.10 Final State Radiation Correction

Our Monte Carlo sample was generated with final state radiation (FSR) implemented

using the general purpose package PHOTOS [46]. Another program known as KLOR

([47]) is based on calculations of the FSR amplitudes for the semileptonic decays

(specifically K+ → π0e+νe) and takes into account interference terms that are not ac-

counted for in PHOTOS. We modify the Monte Carlo sample to match the KLOR pre-

diction for the number of events with no FSR photons, FSR photons with Eγ < 1 MeV,

and FSR photons with Eγ > 1 MeV. To properly account for interference terms, we

reweight the two dimensional Eγ versus cos(θγe+) distribution to match KLOR.
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CHAPTER 6

FITTING FOR SEMILEPTONIC YIELDS

This chapter describes the fitting procedure used to determine the efficiency cor-

rected yields of the D± → η′e±ν, three q2 ranges of D± → ηe±ν (q2 < 0.5 GeV2,

0.5 GeV2 < q2 < 1.0 GeV2, q2 > 1.0 GeV2), and the calibration mode D+ → K−π+π+.

We determine the yields by a binned maximum likelihood fit to the MBC distributions

using our predicted contributions from the signal modes and the different backgrounds.

This fit follows the method of Barlow and Beeston [36], which accounts for finite statis-

tics in the Monte Carlo predictions. The contribution that each event makes to the MBC

distribution is scaled by the product of all corrections described in Chapter 5.

The D± → η′e±ν and D± → ηe±ν decays are potentially backgrounds to one another

as are the different q2 regions of D± → ηe±ν. To understand the cross feed, or how

often one type of signal decay is incorrectly reconstructed as another type of signal, we

separate the signal Monte Carlo samples by true decay (ηe±ν, η′e±ν, K−π+π+) and for

ηe±ν the true q2. For each sample with a particular true decay and true q2 we create a

separate MBC distribution for each reconstructed decay mode, reconstructed q2 region,

and quality bin. The number of events in each distribution gives us the efficiency for sig-

nal mode i to be reconstructed as signal mode j with a particular reconstructed q2 region

and quality classification. As the fit varies the signal yields of each true decay and true

q2 region, the background contributions from one mode into another scale accordingly.

For each reconstructed MBC distribution for a semileptonic decay we consider con-

tributions from the following sources: three q2 regions of D± → ηe±ν, D± → η′e±ν,

generic DD̄ decays (excluding ηe±ν and η′e±ν), continuum backgrounds, and events

with fake leptons. For the calibration mode (K−π+π+) we consider contributions to the

MBC distributions from the following sources: D+ → K−π+π+, generic DD̄ decays (ex-

cluding D+ → K−π+π+), and continuum backgrounds. Contributions from the contin-
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uum and fake lepton sources are fixed and normalized to the expected contributions from

the luminosity captured by the detector. The normalization of the DD̄ backgrounds are

allowed to float to match the apparent background levels in the MBC distribution in each

decay mode. We do not use a common DD̄ background normalization for all signal

modes because each one has contributions from different D decays.

There are a total of 15 free parameters in the fit. There are five yield parame-

ters: η′e±ν, the three q2 regions of ηe±ν, and K−π+π+. There are an additional ten

normalization parameters for the generic DD̄: six for the η′ decay modes (γγ, ρ0γ,

π+π−η(γγ), π+π−η(π+π−π0), π+π−η(π0π0π0), and π0π0η(γγ)), three for the η decay modes

(γγ, π+π−π0, and π0π0π0), and one for K−π+π+.

Each MBC distribution used as input to the fitter is divided into 16 bins of equal width

in the range 1.79 GeV/c2 to 1.890 GeV/c2. There are 18 MBC distributions for η′e±ν

candidates from nine decay modes (including the 4 ρ0 mass bins for η′ → ρ0γ) and two

quality bins (9 × 2 = 18). There are 18 MBC distributions for the ηe±ν candidates from

three decay modes, three q2 bins for each decay modes, and two quality bins (3×3×2 =

18). There are two MBC distributions for the K−π+π+ candidates from the quality bins.

This results in a total of 608 bins (16 × (18 + 18 + 2) = 608), and given the 15 free

parameters in the fit we have in total 593 degrees of freedom.

The efficiency-corrected yields obtained from the fit are given in Table 6.1. Since

the number of events in the D± → η′e±ν study are so low, and scattered among different

decay modes, it is instructive to see how the efficiency-corrected yields vary were we to

only consider one of the η′ decay modes at a time. Table 6.2 shows the yields for each of

the η′ decay modes, and also gives the change in −2logL between the best fit value and

zero. We have obtained a statistically significant observation of the D± → η′e±ν decay,
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Table 6.1: The efficiency-corrected yields for Kππ, η′eν and 3 q2 bins of ηeν.

decay q2 range Efficiency-Corrected Yield

Kππ NA (4.30 ± 0.04) × 105

η′eν ALL 1020 ± 250

ηeν q2 < 0.5 GeV2 2687 ± 295

ηeν 0.5 GeV2 < q2 < 1.0 GeV2 1877 ± 291

ηeν q2 > 1.0 GeV2 957 ± 223

Table 6.2: The η′eν efficiency-corrected yield obtained by using only one η′ decay
mode. We also show the difference in −2LogL between the best fit
yield and zero.

η′ Decay Yield −2∆LogL

All 1020 ± 250 31.9

γγ 0 ± 593 0.0

ρ0γ 1144 ± 434 15.3

ππγγ 1881 ± 589 28.6

πππππ0 0 ± 383 0

π0π0γγ 0 ± 396 0

where the reconstructed signal is primarily found in the η′ → ρ0γ and η′ → π+π−γγ

decay modes.

The results for D± → ηe±ν are given in Figures 6.1, 6.2, and 6.3, which show the

different q2 bins, decay modes, and decay modes separated by quality bins respectively.

In all cases there is good agreement between the data and the fit. For events with MBC

within 15 MeV/c2 of the D mass the distributions of other variables that were not directly
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Figure 6.1: The beam constrained mass (MBC) distribution for all η decay modes
and all q2 (top left), q2 < 0.5 GeV2 (top right), 0.5 GeV2 < q2 <
1.0 GeV2 (bottom left), q2 > 1.0 GeV2 (bottom right). The black dots
are data, the clear histogram is the D± → ηe±ν contribution, the blue
histogram is DD̄ backgrounds, the continuum background is green,
and fake leptons are yellow.

used in the fit are shown in Figure 6.4. These additional distributions include: ∆E, EMiss,

the electron momentum, the cos(θWe), as well as the inclusive momentum spectrum

of KS → π+π− and π+ of the other side D. The cos(θWe) is the cosine between the

direction of the W boson and the electron in the W rest frame, and is expected to have

a 1 − cos2(θWe) distribution. These distributions are also in good agreement with the
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Figure 6.2: The beam constrained mass (MBC) distribution for the full q2 range
of ηe±ν and all decay modes (top left), η → γγ (top right), η →
πππ0 (bottom left), η → π0π0π0 (bottom right). The black dots are
data, the clear histogram is the D± → ηe±ν contribution, the blue
histogram is DD̄ backgrounds, the continuum background is green,
and fake leptons are yellow.

data and show that the fit parameters not only describe the MBC distributions but also all

aspects of the decays.

The results for D± → η′e±ν are given in Figures 6.5, and 6.3, which show the fit

results for the different decay modes, and quality bins respectively. In all cases there is

good agreement between the data and the fit. For events with MBC within 15 MeV/c2

of the D mass, the distributions of other variables that were not directly used in the fit

are shown in Figure 6.7. These additional distributions include: ∆E, EMiss, the electron

momentum, and cos(θWe). These distributions are also in good agreement with the data
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Figure 6.3: The beam constrained mass (MBC) distribution for the full q2 range
of ηeν with low quality bins on the left side and high quality bins
on the right side. The black dots are data, the clear histogram is the
D± → ηe±ν contribution, the blue histogram is DD̄ backgrounds, the
continuum background is green, and fake leptons are yellow.
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Figure 6.4: The distributions of D± → ηe±ν quantities not involved in the fit. Plots
shown: ∆E (top left), missing energy (top right), electron momentum
(middle left), cos(θWe) (middle right), other side KS momentum dis-
tribution (bottom left), other side π momentum distribution (bottom
right). The black dots are data, the clear histogram is the D± → ηe±ν
contribution, the blue histogram is DD̄ backgrounds, the continuum
background is green, and fake leptons are yellow.
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and show that the fit parameters not only describe the MBC distributions but also all

aspects of the decays.

The results for the D+ → K−π+π+ calibration mode are given in Figure 6.8, which

shows the MBC distribution for both quality bins separately and added together (log

scale). The figure also shows the momentum spectrum of the other side D KS , π0, and

η → γγ for events with MBC within 15 MeV/c2 of the D mass. The fit is in sufficient

agreement with data.
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Figure 6.5: The beam constrained mass MBC for each of the η′ decay modes. The
black dots are data, the clear histogram is the D± → η′e±ν contri-
bution, the blue histogram is DD̄ backgrounds, the continuum back-
ground is green, and fake leptons are yellow.
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Figure 6.6: The beam constrained mass (MBC) distribution for η′eν with low qual-
ity bins on the left side and high quality bins on the right side for the
two η′ decay modes with the largest efficiency. The black dots are
data, the clear histogram is the D± → η′e±ν contribution, the blue his-
togram is DD̄ backgrounds, the continuum background is green, and
fake leptons are yellow.
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Figure 6.8: Results of the K−π+π+ fit. We show MBC (top left), MBC for high
quality (top right), MBC for low quality (middle left), other side KS →

π+π− spectrum (middle right), other side η → γγ spectrum (bottom
left), and other side π0 spectrum (bottom right). The black dots are
data, the clear histogram is the D± → ηe±ν contribution, the blue
histogram is DD̄ backgrounds, the continuum background is green,
and fake leptons are yellow.
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CHAPTER 7

SYSTEMATIC UNCERTAINTIES

This section describes the different systematic uncertainties that affect the hadronic

branching fraction measurements and the efficiency-corrected yields of the Kππ, ηe±ν

and η′e±ν. Table 7.1 summarizes the systematic uncertainties of the efficiency-corrected

yields (σy) given as a percentage of the nominal values (100 × σy/y). A negative sign

indicates when varying a process or efficiency moves yields in opposite directions. For

each source of systematic uncertainty, the systematic error on the ratio of two yields (σr)

is approximately given by,

σr/r ∼ σya/ya − σyb/yb, (7.1)

where r = ya/yb. In most cases σr/r is smaller than σy/y.

We determine the D+ (D0) hadronic branching fractions relative to previously mea-

sured calibration modes B(D+ → K−π+π+) (B(D0 → K−π+)). Table 7.2 (7.3) summa-

rizes the systematic errors of the ratio of the D+ (D0) hadronic branching fractions to the

corresponding calibration mode.

Below we describe how the different contributions to the systematic uncertainties

were calculated.

7.1 Other D Branching Fractions

For both the semileptonic and hadronic branching fraction measurements there are sys-

tematic uncertainties from how well all of the other D branching fractions are known.

For the semileptonic yields these systematic uncertainties primarily affect the signal effi-

ciencies, and for the hadronic branching fraction measurements this uncertainty affects

the backgrounds. Below we describe the means of calculating this systematic uncer-

tainty.
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Table 7.1: The systematic uncertainties for the η′eν, ηeν (3 q2 bins and the total),
and the K−π+π+ yield. A minus sign has been applied to modes where
the systematic uncertainty of one mode or bin pushes it in the opposite
direction of all of the others. Below, OS stands for “other side D”, and
EDEP stands for “energy deposition”.

Knob K−π+π+ η′eν ηeν q2
1 ηeν q2

2 ηeν q2
3 ηeν All

η→ γγ Eff (%) 0.09 1.38 2.32 2.51 2.96 2.49

KL EDEP (%) 0.21 -0.68 0.21 0.83 1.58 0.66

K ID (%) 0.80 0.87 0.85 0.94 1.09 0.92

Fake Tracks (%) 0.78 1.46 0.76 0.74 0.86 0.77

π0 → γγ Eff (%) 0.64 0.69 1.11 1.00 0.82 1.02

Splitoff Escape (%) 0.29 -0.49 0.87 0.34 2.10 0.9

Pion ID (%) 1.58 1.48 0.43 0.37 0.34 0.40

Tracking Eff(%) 0.48 0.49 0.37 0.36 0.38 0.37

OS BF (%) 1.68 1.72 1.66 1.64 1.85 1.67

OS Spectrum (%) -0.20 0.90 0.14 -0.50 0.01 -0.10

KS → ππ Eff (%) 0.31 0.26 0.36 0.19 0.19 0.27

K faking π (%) 0.00 0.00 -0.02 -0.01 -0.00 -0.01

EID (%) 0.00 0.50 0.30 0.30 0.30 0.30

FSR (%) 0.00 -0.50 -0.50 -0.76 -1.27 -0.72
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Table 7.2: The breakdown of systematic uncertainties on the D+ hadronic branch-
ing fractions given in percent of the nominal values. The table uses the
following symbols and abbreviations: ε(η) is the η → γγ efficiency;
ε(π0) is the π0 → γγ efficiency; SE is the modeling of splitoff escapes;
EKL is the modeling of the KL energy deposition; ε(Trk) is trkman ef-
ficiency; επ(K) is the rate for kaons to fake “signal pions”; εK(K) kaon
identification; επ(π) is pion identification; ε(KS ) is KS → π+π− identifi-
cation; Q = 0 is the net charge and track quality requirements; “Spec.”
is the spectrum of daughter particles of both the signal and background;
B(D) is from uncertainty in the branching fractions of backgrounds.
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Table 7.3: The breakdown of systematic uncertainties on the D0 hadronic branch-
ing fractions given in percent of the nominal values. The table uses the
following symbols and abbreviations: ε(η) is the η → γγ efficiency;
ε(π0) is the π0 → γγ efficiency; SE is the modeling of splitoff escapes;
EKL is the modeling of the KL energy deposition; ε(Trk) is trkman ef-
ficiency; επ(K) is the rate for kaons to fake “signal pions”; εK(K) kaon
identification; επ(π) is pion identification; ε(KS ) is KS → π+π− identifi-
cation; Q = 0 is the net charge and track quality requirements; “Spec.”
is the spectrum of daughter particles of both the signal and background;
B(D) is from uncertainty in the branching fractions of backgrounds.
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7.1.1 Semileptonic Yields

We define our exclusive semileptonic efficiency as the number of D+ → Xe+ν recon-

structed divided by the total number produced by e+e− collisions. Since the final state of

the other side D affects our ability to reconstruct the neutrino, our efficiency-corrected

yields are sensitive to all of the branching fractions of the other side D. We correct our

efficiency prediction by measuring as many of the D hadronic decays as possible and

using them in our Monte Carlo simulation. The uncertainty of each branching fraction

measurement, both previously measured D decays and decays first measured by this

analysis, contribute to the systematic uncertainty on the overall efficiency. We minimize

these uncertainties in the absolute branching fractions by using Kππ yields and previ-

ous measurements of B(D+ → K−π+π+) to normalize the B(D± → η(′)e±ν) measure-

ments. However, the cancelation of errors in the final branching fractions is dependent

on whether or not the ratio of η±e±ν to Kππ efficiency-corrected yields remain constant

with variations in the generic D branching fractions. Therefore, we calculate the sys-

tematic uncertainties on the efficiency-corrected yields from our knowledge of the D

branching fractions, and explicitly show that normalizing to Kππ removes this class of

uncertainties.

We calculate the systematic uncertainty in the efficiency-corrected yields by individ-

ually varying each branching fraction measurement by one standard deviation, and then

adding the corresponding changes to the efficiency-corrected yields in quadrature to ob-

tain an error on the yield. However, with each variation we must maintain the physical

requirement that
∑N

j B j = 1. So, with each variation we repeat the N-1 parameter fit to

the N branching fraction measurements described in Section 5.2.

In addition to varying the measurements of all known decays, we consider the pos-

sibility that there is a class of decays that we know nothing about with an inclusive

branching fraction of BU . For our nominal corrections we assume BU = 0. However,
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the sum of the inclusive semileptonic and hadronic branching fractions is 97.2% ± 2%,

which allows for BU to be as large as 4.8%. If BU is non-zero there are two reasons

why the decays have not been discovered: they either have very low efficiency for being

fully reconstructed, or they are a large number of decays that are individually too small

to produce a statistically significant signal in the data. Inefficient final states will not

contribute to our overall efficiency, but a diverse collection of efficient final states will.

A systematic uncertainty from BU = 4.8% of inefficient final states is probably overly

conservative, so for the systematic error associated with BU we take the difference be-

tween BU = 0 and BU = 2.8% where the efficiency for the unknown decays is assumed

to be zero.

Table 7.4 lists the systematic uncertainty associated with the non-signal D branching

fractions for the following 4 classes of decays:

1. Efficiency systematic uncertainty from Inclusive semileptonic branching fraction.

2. Efficiency systematic uncertainty from hadronic branching fractions containing

K0

3. Efficiency systematic uncertainty from hadronic branching fractions not contain-

ing K0

4. Efficiency systematic uncertainty for size of BU .

Each class of decays described above have unique contributions to the total systematic

uncertainty. The other side D semileptonic decays should have essentially zero effi-

ciency for contributing to our signal, but in the
∑N

j B j = 1 fit the value still affects the

absolute scale of other side decays that do contribute to the efficiency. The hadronic de-

cays that have K0 should have lower efficiencies than decays without K0 because 50%

of the time K0 → KL. The systematic uncertainty from whether or not to include BU is

not directly derived from a measurement, and so belongs in a class of its own.
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Table 7.4: The systematic uncertainties of the efficiency-corrected yields associ-
ated with the different types of other side D branching fractions. We
show the percent change in the efficiencies in the η′eν, ηeν (3 q2 bins
and the total), and the K−π+π+. We choose to use the BU = 2.8%
estimate as the systematic uncertainty in this analysis.

Decay B(D+ → X0`+ν) B(D+ → XK0) B(D+ → X[no K0]) BU = 2.8%/4.8%

K−π+π+ 0.41% 0.44% 0.61% 1.45% / 2.45%

η′eν 0.42% 0.46% 0.63% 1.48% / 2.25%

ηeν 0.41% 0.44% 0.60% 1.44% / 2.52%

ηeν q2
1 0.41% 0.46% 0.60% 1.42% / 2.50%

ηeν q2
2 0.40% 0.41% 0.60% 1.41% / 2.41%

ηeν q2
3 0.45% 0.54% 0.63% 1.59% / 2.79%

The total systematic uncertainty on all of the efficiency-corrected yields is approx-

imately 1.6% of the central values. Since the uncertainties are essentially the same for

both the signal (D± → η(′)e±ν) and normalization (D+ → K−π+π+) decays, the error

in the final branching fractions, which is derived from a ratio of the two yields, is be

negligible.

7.1.2 Hadronic Branching Fractions

We determine the hadronic branching fractions using double tagged events and so our

signal efficiencies are not sensitive to other D branching fractions, but our background

levels are. We determine the branching fractions by inverting the cross-feed matrix and

multiplying it by the vector of observed events. The total DD̄ background in decay i is

given by: ∑
j, j,i

NTAG(DATA)
NTAG(MC)

Ai jW j, (7.2)
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The statistical uncertainties on the W j for all j decays with a non-zero Ai j contributes to

the uncertainty in the decay i backgrounds. We individually vary the W j by 1 standard

deviation and add the corresponding changes to the signal in quadrature to obtain a

systematic uncertainty.

7.2 Continuum

In the semileptonic measurements we constrain the overall background level using the

signal-free region of the MBC distribution. In the scheme used to measure the hadronic

branching fractions there is no means by which to constrain the continuum backgrounds.

Therefore, for the hadronic branching fractions, we separately vary the continuum back-

ground for each decay mode by 20% and assign the corresponding change in the number

of signal events as the systematic uncertainty.

7.3 Hadronic Daughter Spectra

We assign a systematic uncertainty for the effect of the spectrum of daughter particles

of hadronic D decays on the efficiency-corrected yields of D± → ηe±ν, D± → η′e±ν,

and D+ → K−π+π+ by taking the difference between the yields with and without the

spectrum corrections.

Both the efficiency and the backgrounds of hadronic decays are affected by the spec-

tra of daughter particles. The affect on the backgrounds is found by taking the differ-

ence between the results with and without the spectrum corrections. The systematic

uncertainty from how the spectra affects the efficiency of the final state is determined

by radically altering the spectra generated by the Monte Carlo simulation (prior to re-

construction) and calculating the subsequent change. For each generated momentum

distribution we find the average momentum, which divides the area of the spectrum in
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half, and weight events with momentum below the average by 1.5 and events above the

average by 0.5. This reweighting conserves the total number of generated events but in-

creases the fraction of particles with low momentum, and low efficiency, by 50%. If after

this change a comparison of the reconstructed spectra of the data and Monte Carlo (both

normalized to the same area) have a χ2/(d.o. f ) > 1, then we divide the change in effi-

ciency by
√
χ2/(d.o. f ) to account for the disagreement with observation. We repeat this

procedure weighting the spectra high rather than low, and whichever reweighting pro-

duces the largest change in the efficiency is assigned to be the systematic uncertainty.

The systematic uncertainty for each type of daughter particle is added in quadrature

to obtain the total systematic uncertainty on the efficiency from our knowledge of the

spectra.

7.4 Electron ID Systematic Uncertainty

The electron identification efficiency was studied in [37], and [38]. The expected sys-

tematic uncertainty on the total ηe±ν efficiency given the electron spectrum is 0.3% of

itself, and for η′eν it is 0.5% of itself.

7.5 Other Uncertainties

For the following sources of systematic uncertainty, we determine the error by taking the

difference between our results with the corresponding corrections described in Chapter

5 and without them:

1. The simulation of splitoff escapes.

2. The simulation of how a KL deposits energy in the crystal calorimeter.

3. The FSR (final state radiation) in D± → η(′)e±ν.
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For the following sources of systematic uncertainty, we determine the error by

changing the corresponding corrections described in Chapter 5 by 1 standard deviation,

and calculating the change in the yields.

1. η→ γγ reconstruction efficiency.

2. π0 → γγ reconstruction efficiency.

3. Efficiency for a track to be trkman-approved.

4. Kaon identification efficiency.

5. The rate for K to fake “signal pions”.

6. The efficiency to identify π as “signal pion”.

7. Net charge and track quality efficiency as a function of number of low pT tracks.
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CHAPTER 8

RESULTS

This section describes the results of this study, including systematic uncertainties.

We begin with discussing the hadronic branching fraction measurements, as these mea-

surements feed into the semileptonic yields and branching fractions as systematic un-

certainties.

8.1 Hadronic Branching Fractions

We use the Generic Reconstruction algorithm with a D-Tag to reconstruct the number

of π±, K±, KS → π+π−, π0 → γγ, and η → γγ in the final state the other side D.

We use the Monte Carlo simulation to predict the efficiency of reconstructing each fi-

nal state, as well as the rate that one final state is incorrectly reconstructed as another.

Given the efficiencies and the number of observed events in each final state we solve

for the relative branching fraction of each D+ and each D0 decay. We calibrate the

D+ branching fractions using a previous CLEO-c measurement B(D+ → K−π+π+) =

(9.14 ± 0.10 ± 0.16 ± 0.07)%, and calibrate D0 branching fractions using another pre-

vious CLEO-c measurement B(D0 → K−π+) = (3.891 ± 0.035 ± 0.059 ± 0.035)%.

All hadronic decays presented are 100% correlated with the corresponding calibration

mode and the systematic uncertainties contain the total uncertainty of the calibration

decay (statistical and systematic uncertainties added in quadrature).

The branching fractions are determined in terms of the number of π±, K±, K0, π0,

η→ γγ in the final state, so decays such as D+ → π+η contribute to multiple final states

including: D+ → π+π+π−π0, D+ → π+π0π0π0, and D+ → π+η(γγ). Final states may

have multiple contributions from previously measured decays such as D+ → π+π+π−π0

that has contributions from D+ → π+η and D+ → π+ω.
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For each final state we calculate the statistical significance in terms of the number of

standard deviations the background prediction would have to fluctuate in order to equal

the number of observed events (N(σB)). Final states with statistical significance greater

than 3 σB constitute evidence-for the decay, and states greater than 5 σB constitute

observations.

For the D+ we attempt to measure the branching fraction of 44 final states seen in

data. Of those 44 final states, 28 have N(σB) > 5, and 6 have 5 > N(σB) > 3. Of the

final states with N(σB) > 5, 13 are not listed in PDG 2008. The D+ final states with

PDG values are listed in Table 8.1, and those that are not listed in the PDG are given in

Table 8.2. A 90% upper limit is calculated for every final state that is not listed in the

PDG.

For the D0 we attempt to measure the branching fraction of 62 final states seen in

data. Of those 62 final states, 39 have N(σB) > 5 and 4 have 5 > N(σB) > 3. Of the final

states with N(σB) > 5, 19 are not listed in PDG 2008. The D0 final states with PDG

values are listed in Table 8.3, and those that are not listed in the PDG are given in Table

8.4. A 90% upper limit is calculated for every final state that is not listed in the PDG.

Of all of the final states that have been measured, we observe two final states that

have no contributions from any of the decays programmed into the CLEO-c Monte

Carlo simulation: D+ → π+η(γγ)η(γγ) and D0 → K−π+π0η(γγ). The decay D+ →

π+ηη is particularly interesting because the branching fraction is roughly the same size

as B(D+ → π+π0π0). With all else being equal, one would naively expect the ratio

B(D+ → π+ηη)/B(D+ → π+π0π0) ∼ 0.08 due to additional phase space constraints in

πηη. We find B(D+ → π+η(γγ)η(γγ)) = (0.052 ± 0.008 ± 0.005)% that corresponds

to B(D+ → π+ηη) = (0.337 ± 0.057 ± 0.032)% . The ratio B(D+ → π+ηη)/B(D+ →

π+π0π0) = 0.73±0.16, which is nearly a factor of 10 larger than naive expectations. The

comparatively large size of the D+ → π+ηη branching fraction indicates contributions
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Figure 8.1: The invariant mass of the two η in the decay D+ → π+ηη. The dots
are data, the histogram is Monte Carlo simulation using 3 body phase
space.

from either an ηη or πη resonance. Figure 8.1 shows the invariant mass of the two η

compared to Monte Carlo expectations from three-body phase space predictions. The

Monte Carlo M(ηη) prediction is consistent with data. Figure 8.2 is the mass of πη1

versus the mass of πη2, and the data appears to be restricted to a smaller region of phase

space than the 3-body phase space prediction, possibly indicating a πη resonance.

8.2 D± → ηe±ν and D± → η′e±ν

The ratio of the efficiency-corrected yields of the D+ → ηe+ν (D+ → η′e+ν) and the

D+ → K−π+π+ is equal to the ratio of the corresponding branching fractions. We find

B(D+ → η′e+ν)
B(D+ → K−π+π+)

= (23.7 ± 5.8 ± 0.5) × 10−4, (8.1)

and
B(D+ → ηe+ν)
B(D+ → K−π+π+)

= (128.4 ± 11.0 ± 3.7) × 10−4. (8.2)
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Table 8.1: The D+ Hadronic branching fractions found in this analysis that have a
listing in the PDG 2008

Mode Bran. Frac. (%) MC BF PDG (08) ∆B/σ

π+π0 0.098 ± 0.008 ± 0.005 0.129 0.128 ± 0.008 -2.49

π+π−π+ 0.32 ± 0.01 ± 0.01 0.34 0.33 ± 0.02 -0.35

K̄0π+ 2.965 ± 0.100 ± 0.108 2.925 2.940 ± 0.120 0.13

K+π0 0.011 ± 0.004 ± 0.002 0.024 0.024 ± 0.003 -2.60

π+π0π0 0.43 ± 0.03 ± 0.04 0.48 0.48 ± 0.04 -0.78

π+π−π+π0 1.213 ± 0.044 ± 0.086 1.179 1.180 ± 0.090 0.25

π+η(γγ) 0.145 ± 0.009 ± 0.009 0.137 0.138 ± 0.013 0.40

π+π−π+π−π+ 0.15 ± 0.01 ± 0.01 0.18 0.17 ± 0.02 -0.71

K+K̄0 0.64 ± 0.03 ± 0.02 0.59 0.59 ± 0.04 0.88

K̄0π+π0 14.39 ± 0.36 ± 0.64 13.98 14.00 ± 1.00 0.31

K+K−π+ 0.94 ± 0.03 ± 0.06 1.00 1.00 ± 0.04 -0.74

K̄0π+π−π+ 5.95 ± 0.15 ± 0.32 6.21 6.20 ± 0.44 -0.44

K−π+π+π0 5.79 ± 0.16 ± 0.32 5.98 6.00 ± 0.28 -0.46

K−π+π−π+π+ 0.57 ± 0.03 ± 0.05 0.62 0.58 ± 0.06 -0.12

K̄0K0π+ 1.45 ± 0.15 ± 0.62 2.70 2.12 ± 0.92 -0.60

K+K−K+ 0.008 ± 0.004 ± 0.001 0.009 0.009 ± 0.002 -0.22

K,K0, 2 × π, 0.77 ± 0.06 ± 0.27 0.82 0.48 ± 0.06 1.05

K+K̄0K0 0.96 ± 0.10 ± 0.16 1.01 1.84 ± 0.87 -0.99
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Table 8.2: The D+ hadronic branching fractions not listed in PDG.
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Figure 8.2: The invariant mass of πη1 versus the invariant mass of πη2 in the decay
D+ → π+ηη. The black dots are data, the squares are from a Monte
Carlo simulation using 3 body phase space.

We convert these branching fraction ratios to branching fractions using the CLEO-c

measurement from the most recent double tag fit: B(D+ → K−π+π+) = (9.14 ± 0.10 ±

0.16 ± 0.07)% [39]. We find the branching fractions:

B(D+ → η′e+ν) = (2.16 ± 0.53stat ± 0.05syst ± 0.05Kππ) × 10−4, (8.3)

and

B(D+ → ηe+ν) = (11.70 ± 0.98stat ± 0.34syst ± 0.26Kππ) × 10−4. (8.4)

Table 8.5 summarizes the branching fraction ratios and branching fractions for the above

as well as the three q2 regions of D+ → ηe+ν.

8.3 D± → ηe±ν Form Factor Expansion Fit

We expect the q2 distribution of D+ → ηe+ν to be dominated by the phase space de-

pendence. However, with the three q2 bins we fit for the form factor with the series
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Table 8.3: The D0 Hadronic branching fractions found in this analysis that have a
listing in the PDG 2008

Mode Bran. Frac. (%) MC BF PDG (08) ∆B/σ

π+π− 0.151 ± 0.007 ± 0.005 0.138 0.137 ± 0.003 1.48

π0π0 0.093 ± 0.008 ± 0.004 0.081 0.079 ± 0.008 1.16

π+π−π0 1.567 ± 0.039 ± 0.055 1.407 1.410 ± 0.080 1.50

π+π−π+π− 0.75 ± 0.02 ± 0.02 0.73 0.73 ± 0.03 0.47

K̄0π0 2.057 ± 0.083 ± 0.081 2.258 2.260 ± 0.240 -0.76

K+K− 0.47 ± 0.02 ± 0.01 0.39 0.39 ± 0.01 3.58

K̄0π+π− 6.15 ± 0.13 ± 0.22 5.83 5.76 ± 0.38 0.85

K−π+π0 15.13 ± 0.26 ± 0.37 13.61 13.50 ± 0.60 2.17

π+π−π0π0 0.97 ± 0.04 ± 0.06 0.99 0.98 ± 0.09 -0.09

K−π+π−π+ 8.08 ± 0.14 ± 0.39 7.81 7.70 ± 0.25 0.79

π+π−π+π−π0 0.37 ± 0.03 ± 0.04 0.42 0.41 ± 0.05 -0.57

K̄0K0 0.05 ± 0.02 ± 0.06 0.03 0.14 ± 0.03 -1.34

π+π−π+π−π+π− 0.066 ± 0.009 ± 0.007 0.040 0.040 ± 0.011 1.67

K,K0, π, 0.90 ± 0.07 ± 0.27 1.22 0.68 ± 0.10 0.74

expansion given by

F+(q2) =
1

P(q2)φ(q2, t0)

kmax∑
k=0

ak(t0)[z(q2, t0)]k, (8.5)

where the variables and functions are described in Chapter 1.2, [40]. Since we only have

three data points, and an overall normalization, we only consider form factor contribu-

tions to order k = 1. We use the arbitrary value of t0 = 0.

Let the form factor be described by:

F+(q2) = a0F(q2, 0) + a1F(q2, 1), (8.6)
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Table 8.3 (Continued)

Mode Bran. Frac. (%) MC BF PDG (08) ∆B/σ

K+K−π0 0.36 ± 0.02 ± 0.02 0.33 0.32 ± 0.02 1.11

K̄0π+π−π0 10.36 ± 0.24 ± 0.49 10.72 10.60 ± 1.20 -0.18

K̄0η(γγ) 0.34 ± 0.02 ± 0.02 0.30 0.30 ± 0.05 0.69

2 × K, 2 × π, 0.23 ± 0.02 ± 0.02 0.25 0.23 ± 0.01 0.00

K̄0π+π−π+π− 0.74 ± 0.05 ± 0.16 0.57 0.55 ± 0.06 1.05

K−π+π−π+π0 5.06 ± 0.13 ± 0.17 3.53 4.10 ± 0.40 2.12

K+K−K̄0 1.062 ± 0.069 ± 0.191 0.920 0.910 ± 0.068 0.71

K̄0K0π+π− 0.57 ± 0.09 ± 0.40 0.52 0.12 ± 0.02 1.10

K̄0π0η(γγ) 0.90 ± 0.06 ± 0.09 0.42 0.41 ± 0.09 3.45

2 × K, 2 × π, π0, 0.028 ± 0.014 ± 0.003 0.316 0.310 ± 0.200 -1.41

K̄0K0K̄0 0.40 ± 0.09 ± 0.21 0.50 0.74 ± 0.10 -1.36

where

F(q2, k) =
1

P(q2)φ(q2, 0)
[z(q2, 0)]k. (8.7)

Let F j(k1, k2) be defined by:

F j(k1, k2) =
∫

j

(
F(q2, k1)F(q2, k2)

)
Ω(q2)∂q2, (8.8)

where j represents a particular q2 region, and Ω(q2) is a phase space factor. The branch-

ing fraction for q2 region j (B j) is given by:

B j = C ×
F j(0, 0) + 2

a1

a0
F j(0, 1) +

(
a1

a0

)2

F j(1, 1)
 , (8.9)

where C is a normalization constant. The values of F j(0, 0), F j(0, 1), and F j(1, 1) are

numerically calculated and are given in arbitrary units in Table 8.6.

We fit the measurements of the branching fractions in the q2 bins with C and a1/a0 as

free parameters (Figure 8.3). To determine the systematic uncertainties, we repeat the fit
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Table 8.4: The D0 hadronic branching fractions not listed in PDG.
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Table 8.5: The ratio of the semileptonic branching fractions with B(Kππ) and
the semileptonic branching fractions determined using B(D+ →
K−π+π+) = (9.14 ± 0.10 ± 0.16 ± 0.07)% [39].

Decay q2 Range (GeV2) B/B(K−π+π+) ×104 B × 104

η′eν ALL 23.7 ± 5.8 ± 0.5 2.16 ± 0.53stat ± 0.05syst ± 0.05Kππ

ηeν 0.0 to 0.5 62.5 ± 6.9 ± 1.8 5.71 ± 0.63stat ± 0.16syst ± 0.12Kππ

ηeν 0.0 to 1.0 43.7 ± 6.8 ± 1.3 3.99 ± 0.62stat ± 0.12syst ± 0.09Kππ

ηeν > 1.0 22.3 ± 5.2 ± 1 2.03 ± 0.47stat ± 0.08syst ± 0.04Kππ

ηeν ALL 128.4 ± 11.0 ± 3.7 11.70 ± 0.98stat ± 0.34syst ± 0.26Kππ

Table 8.6: The integrals (F j(k1, k2)) used in the D+ → ηe+ν form factor fit. The
integrals are given in arbitrary units, and are integrated over the phase
space in the ηe+ν q2 bins.

q2 Region F (0, 0) F (0, 1) F (1, 1)

0.0 GeV2 < q2 < 0.5 GeV2 1419520.0 -14502.5 206.2

0.5 GeV2 < q2 < 1.0 GeV2 833084.0 -27565.4 952.3

q2 > 1.0 GeV2 355826.0 -20863.9 1251.05

for each systematic uncertainty described in Chapter 7, and take the change in the values

as the systematic errors on the paramters. We obtain (a1/a0)ηe±ν = −4.2±3.2stat±0.25syst.

We expect the D+ → ηe+ν form factors to be essentially the same as D+ → π0e+ν. In

[33] a similar fit was performed on D+ → π0e+ν where it was found that (a1/a0)π0e±ν =

−2.6 ± 0.7, which is consistent with the ηe±ν result.
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Figure 8.3: The D+ → ηe+ν form factor fit to the branching fractions found for
the three q2 regions.
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CHAPTER 9

CONCLUSIONS

We have studied the semileptonic decays D+ → η′e+ν and D+ → ηe+ν with a

technique involving missing energy reconstruction via a generic reconstruction of the

non-leptonically decaying D. The generic reconstruction allows us to place strict re-

quirements on tracks in the events, as well as to remove extra showers from our missing

energy calculations. We obtain the first observation of D+ → ηe+ν and the most precise

measurement of D+ → ηe+ν in three different q2 regions. For the measurement of the

D+ → ηe+nu we do a series expansion form factor fit up to order 1 in z(q2, t0). We

find a value of a1/a0 = −4.2 ± 3.2stat ± 0.25syst, which is consistent with previous fits

to D+ → π0e+ν. Though the uncertainty is large, this is the first measurement of the

D+ → ηe+ν form factor.

One reason for performing this study was to see if there were evidence for extra

gluon couplings enhancing the D± → η′e±ν branching fraction. The form factors for

the D to the SU(3) octet component of the η′ should be nearly the same as D→ π form

factors multiplied by FKS constants. If this approximation is valid, and if there were no

extra gluon coupling, then we would expect approximately 1.6 × 10−4 for the branching

fraction of D± → η′e±ν. In our study we find this branching fraction to be (2.16±0.53±

0.05 ± 0.05) × 10−4. This branching fraction is 1 σ above the no-two-gluon prediction.

Though this measurement is 35% larger than the FKS minimum value, the uncertainty

is large enough such that it could still be consistent with no enhancement. However, if

there were no two gluon coupling the central value could have easily been one or two

standard deviations below the FKS minimum rather than above it, and that would have

been strong evidence against two gluon enhancement. Therefore, even though we have

not conclusively shown whether or not there is a two gluon coupling in this decay, the

fact that it has not been ruled out is still a very important piece of information.
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By using a D-tag instead of a semileptonic decay, the same generic reconstruction

algorithm was used to measure the D+ and D0 hadronic branching fractions in terms of

final states involving: π±, K±, K0, π0, η→ γγ. We observed 28 D+ hadronic decays (13

of which are not reported in PDG 2008), found evidence for 6, and set 90% upper limits

on 10. We observed 39 D0 hadronic decays (19 of which are not reported in PDG 2008),

found evidence for 4, and set 90% upper limits on 19. One of the newly discovered

D+ hadronic decays is D+ → π+ηη which has a branching fraction similar in size to

D+ → π+π0π0 despite the phase space restrictions.
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APPENDIX A

HADRONIC SPECTRA FIGURES

The following figures show the spectra of the different daughter particles in the D

hadronic decays that required reweighting. Distributions were only reweighted if the χ2

per degree of freedom for the distribution was greater than 4.

In order to help keep track of the different types of decays, each final state is assigned

a descriptive code given by:

3000 + 2nπ × 3nπ0 × 5nK × 7nK0 × 13nη→γγ , (A.1)

where nπ is the number of charged pions in the decay, nπ0 is the number of π0, nK the

number of K, nK0 the number of K0, and nη→γγ the number of η→ γγ. For example, the

decay D+ → K−π+π+ is represented by 3020 where 3020 is 3000 + 5 × 22.
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Figure A.1: The daughter spectra of the decays D+ → K−π+π+.
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Figure A.2: The daughter spectra of the decays D+ → K−K+π+.
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Figure A.3: The daughter spectra of the decays D+ → K−π+π+π0.

177



 Momentum  GeV + K
0 0.2 0.4 0.6 0.8 1 1.2

 

0
0.02

0.04
0.06
0.08

0.1
0.12
0.14

0.16

 Momentum  distribution for 3120 +K
Data
MC
Corr MC

 Momentum  distribution for 3120 +K

 Momentum  GeV π 
0 0.2 0.4 0.6 0.8 1 1.2

 

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

 Momentum  distribution for 3120 π

Data
MC
Corr MC

 Momentum  distribution for 3120 π

 Momentum  GeV 0π 
0 0.2 0.4 0.6 0.8 1 1.2

 

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18
0.2

 Momentum  distribution for 3120 0π

Data
MC
Corr MC

 Momentum  distribution for 3120 0π

Figure A.4: The daughter spectra of the decays D0 → K−π+π+π−π0.
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Figure A.5: The daughter spectra of the decays D0 → K−π+η.
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Figure A.6: The daughter spectra of the decays D0 → K−π+π0π0π0.
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Figure A.7: The daughter spectra of the decays D0 → K0π+π−π0.
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Figure A.8: The daughter spectra of the decays D0 → K−π+π+π−.
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Figure A.9: The daughter spectra of the decays D0 → K0π+π+.
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Figure A.10: The daughter spectra of the decays D+ → K0π+π+π−.
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Figure A.11: The daughter spectra of the decays D+ → π+π+π−π0.
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Figure A.12: The daughter spectra of the decays D0 → π+π+π−π−π0.
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Figure A.13: The daughter spectra of the decays D+ → π+π+π−π0.
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Figure A.14: The daughter spectra of the decays D+ → K−π+π+π+π−.
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Figure A.15: The daughter spectra of the decays D0 → K−π+π0.
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Figure A.16: The daughter spectra of the decays D0 → K0π+η.
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Figure A.17: The daughter spectra of the decays D+ → KSπ
+π0.
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