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Energy Recovery Linear Accelerators (ERLs) are potential drivers for novel

fourth-generation synchrotron light sources. An ERL combines the high quality

beams of a linear accelerator with the high currents possible in a storage ring.

The excessive power needs of a lone linac are avoided by circulating acceler-

ated particles back through the linac to recover their energy. This dissertation

is focused on the lattice design of a high energy ERL synchrotron light source

at Cornell University. In order to illustrate general ERL requirements, a simpler

design is also presented. The mathematics needed to describe such a machine

are particular to accelerator physics, and so a separate chapter is devoted to

developing all of the relevant concepts.

The short bunch lengths and high bunch charges possible in an ERL can

give rise to Coherent Synchrotron Radiation (CSR) which can potentially limit

the operation of the accelerator. CSR is a collective phenomenon where the en-

ergy radiated at wavelengths longer than the bunch length is enhanced by the

number of charges in the bunch. The final chapter develops an exact model for

CSR from an infinitely thin bunch. It reveals many interesting effects, including

CSR at low energies, through multiple bends in a lattice, and in bunch compres-

sion. The model is also used to obtain the limits of validity of previously known

approximations. Finally, CSR is examined for the ERL designs presented.
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CHAPTER 1

INTRODUCTION

1.1 Synchrotron Radiation

The electromagnetic radiation of an accelerated charged particle has been of

fundamental importance to physics for more than a century now. The power

radiated by a nonrelativistic charge was first calculated by Larmor (1897), and

his result is known today as the Larmor formula. The relativistically correct

version was first derived in Liénard (1898) using potentials for Maxwell’s equa-

tions, and this power radiated is

P =
2
3

rc m
c3 γ4

[
c2 a2 + γ2 (v · a)2

]
, (1.1)

in which v is the velocity vector and a is the acceleration vector of the particle.

Additionally m is the mass of the particle, rc is the classical (electromagnetic)

radius of the particle, γ is the Lorentz factor, and c is the speed of light. For

purely transverse acceleration, this reduces to

P =
2
3

rc m c3 β4 γ4

R2 (1.2)

where R is the instantaneous radius of curvature and β c is the magnitude of the

velocity.

Further developments came from Schott in his Adams Prize1 essay of 1909,

on the subject of “The Radiation from Electric Systems or Ions in Accelerated

Motion and the Mechanical Reactions on their Motion which Arise from It”
1Prior winners of the Adams Prize included J. C. Maxwell in 1857, J. J. Thompson in 1882,

J. H. Poynting in 1893, and J. Larmor in 1899.
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(Schott, 1912, is the published version). Written in a time before the establish-

ment of relativity and quantum mechanics, this work contains interesting dis-

cussions regarding various extended models of the electron, superluminal par-

ticle motion, and the influence of the æther. However, like Larmor and Liénard,

he generally only assumes that Maxwell’s equations are correct, and in examin-

ing the motion of an electron moving in a circle of radius R he finds the spatial

distribution of the radiated fields and, in particular, he finds that the electro-

magnetic power radiated in the nth harmonic of the revolution frequency is

Pn = n
2 β c rc m c2

R2

 β2 J′2n (2n β) − n
(
1 − β2

) β∫
0

dx J2n(2n x)

 , (1.3)

in which Jn is the nth Bessel function of the first kind. It was hoped that the origin

of atomic spectral lines would be explained by such radiation, but this approach

ultimately failed.

Untouched for some thirty years, the subject was picked up by Iwanenko &

Pomeranchuk (1944), who noted that these radiative losses by electrons would

limit the maximum energy attainable in a betatron accelerator. Their remarks

prompted Blewett in 1945 to search for such losses in the 100 MeV betatron at

the General Electric Research Laboratory in Schenectady, New York. He found

(published in Blewett, 1946) that radiative losses accounted for a shrinkage in

the orbit of the electrons in the machine, but in looking at the microwave part

of the spectrum he observed no radiation.

Meanwhile the problem had been introduced to Schwinger in late 1944, and

in 1945 he performed more detailed calculations on these losses. In a then

unpublished report (Schwinger, 1945) he recovers Schott’s results, including

Eq. (1.3). He observes that this expression, for small n, shows none of the de-

pendence on γ that Eq. (1.2) would imply, and concludes that a great many
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Figure 1.1: The General Electric 70 MeV synchrotron in 1947, built and operated
in Schenectady, New York.

harmonics must contribute to the total radiated power. Using approximations

for Bessel functions, such as

Jν(ν β) ≈

√
1 − β2

π
√

3
K1/3

(
ν

3
(1 − β2)3/2

)
, (1.4)

valid for ν � 1, he finds

Pn =

√
3

2π
β rc m c2

R2

(
2n
3

)1/3

ξ2/3

∞∫
ξ

dx K5/3(x) (1.5)

with ξ ≡
2n
3γ3 , which is peaked around n ∼ γ3. Equation (1.5) is the form perhaps

best known by modern physicists (see for example, Jackson, 1999). His find-

ings were circulated privately and presented at the American Physical Society

meeting in New York in September the next year (Schwinger, 1946).

In 1947 a team at General Electric led by Pollock constructed the world’s
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second synchrotron, operating at 70 MeV. Unlike the 100 MeV betatron, the

beam chamber was transparent, and in this machine the soon to be called “syn-

chrotron radiation” was first observed. In a letter to Pollock, fellow team mem-

ber Langmuir writes:

I have very definite and clear remembrances about the discovery of syn-

chrotron radiation. I don’t remember the date (presumably 24 April 1947)

but in the afternoon one of the technicians reported to me that there seemed

to be sparking in the synchrotron tube. He observed this by looking in a

large (about 6 ft high by 3 ft wide) mirror that permitted us to observe the

machine without getting too much radiation. You were at the controls of

the machine. Upon seeing the light, I asked you to ruin the timing, which

you did and the light went away. It returned when you returned the injec-

tion pulse to the proper time. I immediately said that must be Schwinger

radiation. The whole incident took about thirty seconds.

In the following two years the laboratory was visited by many from the aca-

demic community in order to see this light, including six Nobel prize winners.

Other notable visitors included the actor Ronald Reagan (who was not partic-

ularly impressed) and the physicist and Russian spy Klaus Fuchs (convicted in

1950 for disclosing atomic secrets) (Pollock, 1982).

While synchrotron radiation was readily used as an accelerator diagnostic,

there was some question as to whether the classical calculations were valid

(Parzen, 1951). Experiments using the 300 MeV synchrotron at Cornell Uni-

versity confirmed that they were, with the first accurate measurements of the

energy loss by Corson (1953) and the first accurate measurements of the radia-

tion spectrum by Tomboulian & Hartman (1956).
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The subsequent use of synchrotron radiation from accelerators is typically

divided into generations of facilities (much of this history can be found in Robin-

son, 2001). The first generation is characterized by the “parasitic” use of radia-

tion from accelerators primarily designed for particle physics experiments. The

first of these was the Synchrotron Ultraviolet Radiation Facility, which used

the 180 MeV synchrotron at the National Bureau of Standards in the United

States (Madden & Codling, 1963). Facilities in Europe and Asia soon followed.

This generation includes the Cornell High Energy Synchrotron Source (CHESS)

at the Cornell Electron Storage Ring. Accelerators built for the exclusive pro-

duction of synchrotron radiation marked the beginning of a second generation

of light sources. The first of these was the Synchrotron Radiation Source in the

United Kingdom, a 2 GeV electron storage ring which began conducting exper-

iments in 1981.

1.2 Modern Synchrotron Light Sources

Today synchrotron radiation has proven to be an invaluable tool for ex-

panding the frontiers of physics, chemistry, materials sciences, biology, and

medicine (Bilderback et al., 2005). There are approximately 70 major particle ac-

celerators spread around the globe that exist for the production of synchrotron

radiation.

The most advanced of these are of the third generation of accelerators, and

are primarily marked by the use of undulators to produce radiation. These de-

vices (also called wigglers for large deflections) are built out of periodic arrange-

ments of magnets that bend particles through a roughly sinusoidal path (see
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Figure 1.2: Undulator (green) versus Dipole (black) Brilliance

Motz, 1951, for early calculations). The radiation at particular wavelengths can

constructively interfere, resulting in enhancements in the spectrum.

One important quantity of merit for these facilities is the brilliance B, which

is usually defined as the average photon flux per unit volume of transverse

phase space, and is proportional to

B ∝
Iav

εx εy
, (1.6)

in which Iav is the average beam current. The quantities εx and εy are the hor-

izontal and vertical emittances, which are the areas occupied in the horizontal

and vertical phase spaces of the beam, and are properly defined in Chapter 2.

Particles are usually bunched with an R.M.S. length σ, so the peak brilliance B̂

is

B̂ ∝
Iav

εx εy σ
. (1.7)

Figure 1.2 shows how an undulator can further enhance the brilliance over a

dipole magnet. The harmonics can clearly be seen, with the brilliance amplified

by five orders of magnitude over the dipole.
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These photon energies, of course, are only possible if the particles have suffi-

cient energy. Currently there are three high energy (> 4 GeV) dedicated third

generation light sources: the Advanced Photon Source (APS) in Illinois, the

European Synchrotron Radiation Facility (ESRF) in Grenoble, France, and the

SPring-8 facility in Hyogo, Japan. They are all configured as storage rings, in

which particles circulate billions of times through the machine before they are

discarded, producing radiation in every pass. Because of this circulation, stor-

age rings can operate with relatively high average currents (∼ 100 mA), as the

particle energy lost per turn is a small fraction of the total energy. This energy

is restored by accelerating cavities in each pass.

Unfortunately, the quantum nature of synchrotron radiation increases the

emittance in dipole magnets, which is eventually balanced by a damping of the

emittance by the accelerating cavities, resulting in an equilibrium emittance.

Roughly speaking, this equilibrium emittance is determined by the arrange-

ment of elements in the ring, and is decoupled from the initially injected emit-

tance. The bunch length is determined by the ring in a similar manner. Further-

more, the three facilities listed above are operating near their theoretical limits.

These problems can be circumvented if the bends are eliminated, resulting

in a linac. The emittance in a linac actually decreases with energy, because the

transverse momentum becomes smaller relative to the longitudinal momentum

with acceleration. The bunch length is essentially unchanged from injection,

and can even be compressed by a short section of bends.

Unfortunately for a linac, the average current is limited by the available elec-

trical power. Simply from conservation of energy, the power needed to operate
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an electron linac scales as

Plinac = 1 MW
( Iav

mA

) (
∆E

GeV

)
(1.8)

for a total linac energy gradient ∆E. Thus, 100 mA at 5 GeV would require

500 MW of power, which is comparable to the output of a modern nuclear

power plant.

Nevertheless, linac light sources are being pursued, in the form of self am-

plified spontaneous emission free electron lasers, or SASE FELs. Such devices

work by sending very short bunches through a very long undulator. They

rely on an instability that further partitions the bunches into “micro-bunches”,

which then emit photons in phase resulting in a much amplified X-ray brilliance.

One prominent SASE FEL is the Linac Coherent Light Source at the Stanford

Linear Accelerator, which is currently in construction (Arthur et al., 2002).

Another option is to combine the benefits of a linac with the benefits of a

ring, and such an arrangement is an Energy Recovery Linac.

1.3 Energy Recovery Linear Accelerators

An Energy Recovery Linac (ERL) is a potential driver for a novel fourth-

generation synchrotron light source. The concept originated many years ago

with Tigner (1965), in which a machine for accelerating, colliding, and decelerat-

ing beams is described. An ERL light source would combine the low emittances

and short bunch lengths possible from a linac with the high currents possible

in a ring, thus maximizing important quantities such as the peak brilliance in

Eq. (1.7). Additionally, the operating characteristics and X-ray beamline config-
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Figure 1.3: Conceptual Layout for an ERL.

urations of such a machine would be sufficiently familiar to users of the current

storage rings that experiments could be easily transferred to take advantage of

the higher quality synchrotron light (Gruner and Bilderback, 2003).

The simplest conceptual design for an ERL light source is shown in Fig. 1.3.

Particle bunches with low emittance are accelerated to a low energy in an injec-

tor, and then sent to a linac where they are further accelerated to a high energy.

These high energy particles can be sent through a series of insertion devices

(undulators and wigglers) that extract synchrotron light. They are then reintro-

duced to the beginning of the linac, with the timing adjusted so that particles

are decelerated through the linac, thus returning their energy to the fields in the

structure. At the end of the linac they have a low energy, and can be sent to a

dump.

Currently there are small functioning ERLs at the Thomas National Accel-

erator Jefferson Facility (Neil et al., 2000), the Japan Atomic Energy Research

Institute (Sawamura et al., 2003), and the Siberian Synchrotron Radiation Cen-

ter (Antokhin et al., 2004). Several laboratories are pursuing ERL options for

large scale purposes, including an ERL extension to the APS facility (Borland et

al., 2005). A listing of these projects can be found in Smith et al. (2005).
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Table 1.1: The maximum particle energy, average current, horizontal emittance,
and bunch length for the proposed Cornell ERL along with existing light source
facilities.
Name Energy Current Emittance Bunch Length

(GeV) (mA) (pm) (ps)

ESRF 6 200 4000 20
APS 7 100 2514 20
SPring 8 8 100 3000 13
CERL mode A 5 100 31 2

mode B 5 25 8 2
mode C 5 1 511 0.1

The focus of this dissertation is the layout and design of the beam optics

for an ERL light source at Cornell University. The original study for such a

machine can be found in Gruner & Tigner, eds. (2001), and an early layout is

described in Hoffstaetter et al. (2003). All designs have incorporated the existing

CESR ring, thus taking advantage of much of the existing infrastructure and

expertise at Cornell. Beam properties for three operating modes of the Cornell

ERL (CERL) are given in Tab. 1.1, along with parameters from the APS, ESRF,

and SPring8 light sources. While this project is currently in the design phase,

the injector has already been constructed (Liepe et al., 2008).

In order to design an ERL, one must be familiar with a fair amount of back-

ground material, and therefore Chapter 2 is devoted to establishing a mathemat-

ical basis for describing particle motion in an accelerator. Some effort has been

spent to keep it relatively self-contained, and it concludes with an overview of

the simulation and optimization of an accelerator on computer.

The Cornell design contains many features that are particular to that project,

so in order to illustrate general ERL requirements a simpler design, called the

Minimal ERL (MERL), is presented in Chapter 3. The MERL uses the operating
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modes listed in Tab. 1.1. It is built out of sections that are highly symmetric and

periodic, which greatly shortens the the time needed to modify and optimize the

design. Chapter 4 then presents the CERL design. Many of the sections parallel

ones in Chapter 3. Much of this material will be put into the conceptual design

report for the official project proposal. Note that this CERL design has been

regularly used in other studies, for example the influence of ion distributions on

electron dynamics (Hoffstaetter & Spethman, 2008) and intra-beam scattering in

ERLs (Hoffstaetter et al., 2008).

1.4 Coherent Synchrotron Radiation

In 1949 Schwinger published his derivation of the synchrotron radiation spec-

trum in the Physical Review. His 1945 report, however, is in many ways a supe-

rior document. Most notably, this report has calculations and discussions about

the radiation due to multiple accelerating charges, a topic that is becoming rel-

evant for modern particle accelerators (see Murphy, 2004, for a comprehensive

overview). In particular, the radiation due to the short bunch lengths and high

bunch charges possible in an ERL can potentially be a limiting factor for the

operation of such a machine.

Coherent Synchrotron Radiation (CSR), in the far-field, can be thought of as

an enhancement of the synchrotron radiation spectrum due to localized acceler-

ating charges. When N particles are longitudinally bunched with R.M.S. size σ,

the radiation due to the individual particles at wavelengths λ & σ/c are approx-

imately in phase, which enhances the power spectrum per particle by a factor

of N at these long wavelengths. Such an enhancement can be seen in Fig. 1.4.
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Figure 1.4: The power spectrum of N = 6 × 109 charges (corresponding to 1 nC
of electrons) traveling at 5 GeV in a magnet with R = 100 m. These charges
have a longitudinal Gaussian profile with R.M.S. size σ = 0.6 mm. The green
arrow indicates the enhancement by a factor of N for frequencies below c/σ. The
vertical axis is normalized by N · P(1)/ωc, where P(1) is the total power radiated
by a single charge, and ωc is the critical frequency.

Most of the power in the single particle spectrum occurs around the critical

frequency ωc =
3
2
γ3c/R, where R is the bending radius of path of the particles,

and there is relatively little power in the low frequencies. However, if a suffi-

cient number of particles are present, the power in these low frequencies can

dominate the total power. This coherent contribution to the total power be-

comes appreciable when
σ

R
.

N3/4

γ3 . (1.9)

This is particularly relevant for the CERL Mode C parameters shown in Tab. 1.1.

In this mode, a magnet with R = 100 m radiates a total coherent power that is

approximately 180 times the total incoherent power.

The energy radiated is energy that is lost by individual particles. This is

important in particle accelerators, and especially in ERL accelerators, because
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Figure 1.5: The steady-state CSR-wake for a Gaussian bunch density. The black
curve is the second term in Eq. (1.10), which corresponds to CSR in free space.
The red curve includes the effect of a conducting beam chamber, which can
greatly reduce the effect. The scaling factor W0 is defined in Eq. (5.40).

the longitudinal positions and energies must be carefully controlled. For this

reason the “recoil” effect of CSR on the source particles is of particular interest,

and we will refer to this as the CSR-wake.

CSR is difficult to model using discrete particles exactly because the prob-

lem scales with the number of particles N as N2. This can be simplified by us-

ing a 1-dimensional model which projects the transverse particle density onto

the longitudinal dimension. Formulas for the CSR field from this line charge

can then be used to calculate forces on each particle and then propagate the

full bunch distribution. While this makes the calculation tractable, the electro-

magnetic fields on the world-sheet of this charged line are singular. Pioneering

efforts described in Derbenev et al. (1995) and Murphy et al. (1995) circumvent

this problem by examining the non-singular terms only.

In more detail, Saldin et al. (1997) regularize the longitudinal force between
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particle spectrum is shown in Fig. 1.6(b). The parameters used are the same as
in Fig. 1.4, with the plates separated by a distance of 2.54 cm.

two charges traveling on the arc of a circle by subtracting off the Coulomb force,

calculated as if the charges traveled on a straight line, from the force calculated

using Liénard-Wiechert fields. The result is an always finite CSR force. In the

ultra-relativistic limit, their formula for the CSR-wake due to a bunch entering

from a straight path into a bend is

WCSR(z) = −
2 N rc mc2

31/3 R2/3

λ(z − zL) − λ(z − 4zL)

z1/3
L

+

z∫
z−zL

1
(z − z′)1/3

dλ
dz′

dz′


zL ≡

R φ3

24
,

(1.10)

where λ(z) is the normalized longitudinal bunch density centered at z = 0, and

φ is the angle traveled into the magnet by the bunch center.

The first term in Eq. (1.10) is the transient effect when a bunch enters a mag-

net. When zL exceeds several times the bunch length, it becomes irrelevant, and

the CSR-wake assumes a “steady-state” form given by the second term. The
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characteristic shape of such a curve is shown for a Gaussian λ(z) in Fig. 1.5.

There, one sees that the bulk of the bunch loses energy, while the head of the

bunch (z ≈ 2σ) actually gains some energy. This is due to fields propagating

forward from the tail of the bunch, and catching up the the head of the bunch.

Fortunately for particle accelerators, this intense coherent power is typically

suppressed, because particles often travel through conducting beam-pipes with

relatively small transverse size. This CSR “shielding” effect was first pointed

out by Schwinger (1945), who shows that the synchrotron radiation spectrum

gets modified at low frequencies. Such a spectrum is shown in Fig. 1.6(a) for

a Gaussian bunch. The resulting CSR-wake is correspondingly modified, as

shown by the red curve in Fig 1.5.

Calculations using the power spectrum are only valid for steady-state situ-

ations, and CSR-wake formulas such as Eq. (1.10) are often only valid of ultra-

relativistic particles. It is important to understand the range of applicability of

these formulas, so an exact 1-D model for CSR is presented in Chapter 5. The

bulk of this material is published in Mayes & Hoffstaetter (2009). Finally, this

dissertation concludes with a discussions and estimates of the CSR effect in the

MERL and CERL designs.
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CHAPTER 2

ACCELERATOR LATTICE DESIGN

2.1 Beam Optics Fundamentals

The physical principles by which a beam of particles is transported and focused

along an accelerator are referred to as the beam optics. This chapter serves as

an outline of the basic mathematical concepts for optics design in an accelera-

tor, and defines some terms particular to the subject, many of which were first

collected in Courant & Snyder (1958). It draws heavily from classical mechanics

and electrodynamics, about which one is referred to the standard references of

Goldstein (1965), Jackson (1999), and Landau and Lifschitz Vols. I & II (2001,

2002). For more complete expositions on beam optics, the reader is referred an

introduction by Wille (2000) and two volumes by Wiedemann (1999).

Central to optics design is the accelerator lattice, which is the sequential list

of elements that the beam passes through. Possible elements in a lattice include

accelerating cavities, dipole magnets, quadrupole magnets, sextupole magnets,

and undulators, along with their appropriate dimensions and field strengths.

Straight sections without electromagnetic fields are called drifts. The lattice

thus serves as our theoretical model of the accelerator, with which the machine

can be simulated on a computer.
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2.1.1 Accelerator Coordinate System

In a particle accelerator, one is mainly concerned with the dynamics of a par-

ticle bunch, which consists of many localized charged particles traveling rela-

tivistically through the machine. In general, the equation of motion for any one

particle would look quite complicated if written in a fixed Cartesian coordinate

system, so particle coordinates will always be written in terms of a reference

orbit, a path along the accelerator. The reference orbit is often taken as the path

that an ideal particle would take, such as the arc of a circle in a dipole magnet, or

a straight line in a drift or a quadrupole magnet, but it is sometimes defined as

a path that no particle would take, such as a straight line through an undulator.

For the purposes of this section, it will be sufficient to only consider reference

orbits in the horizontal plane. Such is the case for the ERLs studied here. The

extension of the orbit to arbitrary paths is discussed in detail in the monograph

by Berz (1999).

Let the reference orbit be the path R0(s) in space parameterized by distance

s, and define a basis vector eŝ(s) as the unit tangent vector, given by

eŝ(s) ≡
dR0(s)

ds
. (2.1)

Now let two mutually perpendicular unit vectors ex̂(s) and eŷ(s) lie in the plane

perpendicular to eŝ(s), so that {ex̂(s), eŷ(s), eŝ(s)} form a right-handed orthonor-

mal frame. The curvilinear coordinates (x, y, s) therefore describe a point in

space with position

r(x, y, s) = R0(s) + x ex̂(s) + y eŷ(s). (2.2)

We will say that ex̂(s) and eŝ(s) lie in the horizontal plane, so that the coordinates

x and y describe the horizontal and vertical displacement from the reference
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Figure 2.1: The accelerator coordinate system for a path in the horizontal plane.
A particle’s position is uniquely defined by its (x, y, s) coordinates.

orbit, respectively. This moving frame is illustrated in Fig. 2.1. The rotation of

these basis vectors along the reference orbit is given by their derivatives

dex̂(s)
ds

= κ0(s) eŝ(s), (2.3)

deŷ(s)
ds

= 0, (2.4)

deŝ(s)
ds

= −κ0(s) ex̂(s). (2.5)

Here κ0(s) is the curvature at s, and 1/κ0(s) is the radius of curvature of the

osculating circle at s.

Note that while (x, y, s) describe a unique point in space, the converse is only

true for a path that is a straight line. However, if the points of interest always

lie within a tube of radius r < 1/max |κ0(s)| surrounding the reference orbit,

then these points will have unique curvilinear coordinates. In practice this is

almost always the case, because the radius of curvature will typically be on the

order of meters, and the reference orbit is surrounded by a beam chamber with

characteristic size on the order of centimeters.

For an arbitrary path parameterized by distance σ, the infinitesimal line
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length dσ is related to the curvilinear coordinates by

dσ2 = dx2 + dy2 + [1 + κ0(s) x] ds2. (2.6)

With the metric here one can write down all the usual vector calculus deriva-

tive operators and volume elements in curvilinear coordinates (see for example

Gradshteyn & Ryzhik, 2000, section 10.51).

2.1.2 Equations of Motion

Now consider a point particle with charge q and mass m, and with curvilinear

coordinates x(t), y(t), and s(t) as a function of time t. While this is a perfectly good

description, it will prove to be advantageous to use the longitudinal coordinate

s, rather than time t, as the independent variable, so that x(t) → x(s) and y(t) →

y(s). The particle then has position vector

x(s) = R0(s) + x(s) ex̂(s) + y(s) eŷ(s) (2.7)

at time t(s). The velocity vector is

v(s) = ṡ
dx
ds

(2.8)

= ṡ x′ex̂ + ṡ y′eŷ + ṡ (1 + κ0x) eŝ (2.9)

with

ṡ =

[
∂t(s)
∂s

]−1

, (2.10)

and primes denote derivatives with respect to s, as in

x′ ≡
dx
ds
, (2.11)

y′ ≡
dy
ds
. (2.12)
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It will be assumed that ṡ > 0, and each term is to be understood as a function of

s. The magnitude of the velocity is

‖v‖ = ṡ
(
(1 + κ0 x)2 + x′2 + y′2

)1/2

≡ β c.
(2.13)

The regular momentum vector written in terms of the velocity vector is sim-

ply

p = m γ v (2.14)

= px ex̂ + py eŷ + ps eŝ, (2.15)

with magnitude

p =

√
p2

x + p2
y + p2

s . (2.16)

The corresponding mechanical energy of the particle is

E =

√
(p c)2 + m2c4

= γm c2,

(2.17)

where the relativistic factor γ ≡ (1−β2)−1/2. The classical motion of such a particle

in an external electric field E and magnetic field B, neglecting radiative losses,

is governed by the Lorentz force equations:

d
dt
E = q v · E, (2.18)

d
dt

p = q E + q v × B. (2.19)

In terms of the moving frame, the fields are E = E x̂ ex̂ + E ŷ eŷ + E ŝ eŝ and B =

Bx̂ ex̂ + Bŷ eŷ + Bŝ eŝ, where the components are understood to be functions of

(x, y, t, s). Inserting the energy and momenta into Eqs. (2.18–2.19) and equating
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coefficients of the basis vectors gives the following relations

dE
ds

= x′q E x̂ + y′q E ŷ + (1 + κ0x) q E ŝ, (2.20)

dpx

ds
= κ0 ps +

q
ṡ

E x̂ + y′q Bŝ − (1 + κ0x) q Bŷ, (2.21)

dpy

ds
=

q
ṡ

E ŷ + (1 + κ0x) q Bx̂ − x′q Bŝ, (2.22)

dps

ds
= −κ0 px +

q
ṡ

E ŝ + x′q Bŷ − y′q Bŝ. (2.23)

An alternate derivation of Eqs. (2.20–2.23) using the geodesic equations is given

in Appendix A.

Similar to the way we introduced the curvilinear coordinate (x, y, s) to re-

place the Cartesian coordinates of a particle, we will introduce new phase space

coordinates that are more suitable for charges in a particle accelerator. To begin,

we define the reference particle to be a charged particle that always follows the

reference orbit, and which defines the reference time t0(s) and reference mo-

mentum p0(s). Relative to this reference momentum, we define the momentum

deviation δ of any other particle in terms of its total momentum p so that

δ(s) ≡
p(s) − p0(s)

p0(s)
, (2.24)

which is the same as

p = (1 + δ) p0. (2.25)

We will prefer this coordinate to ps.

Associated with δ(s) is the longitudinal position z(s) relative to the reference

particle, which we will define in terms of the particle time t(s) and reference

time as

z(s) = −β(s) c [t(s) − t0(s)] , (2.26)

with β(s) c being the velocity at s. For example, suppose t(s1) > t0(s1), meaning

that our particle arrives at s = s1 at a later time than the reference particle.
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Then, in the laboratory, when the reference particle is at s1, our particle is at a

distance of approximately β(s) c[t(s1) − t0(s1)] behind the reference particle. We

can therefore think of z(s) as the longitudinal displacement of our particle when

the reference particle is at s. The combination (z, δ) is therefore a point in the

longitudinal phase space.

Now define new transverse momenta a(s) and b(s), which are normalized

relative to the reference momentum, as in

a ≡
px

p0
, (2.27)

b ≡
py

p0
, (2.28)

so that a and b are the new horizontal and vertical momenta, respectively. In

terms of the new momenta a, b, and δ, we have the relations

β =

1 +

(
m c

(1 + δ) p0

)2−1/2

, (2.29)

ṡ = β c

√
(1 + δ)2

− a2 − b2

(1 + κ0x) (1 + δ)
. (2.30)

To see the relationship between a and the slope x′, note that

a =
px

ps

ps

p0
, (2.31)

and from the velocity in Eq. (2.9) and the total momentum in Eq. (2.16)

px

ps
=

x′

1 + κ0x
, (2.32)

ps

p0
=

√
(1 + δ)2

− a2 − b2, (2.33)

which lead to
dx
ds

=
(1 + κ0x) a√

(1 + δ)2
− a2 − b2

. (2.34)

Similarly the vertical direction gives

dy
ds

=
(1 + κ0x) b√

(1 + δ)2
− a2 − b2

. (2.35)
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Using these new variables in Eqs. (2.21–2.23) yields

da
ds

= −a
p′0
p0

+ κ0

√
(1 + δ)2

− a2 − b2 +
q
p0

[
1
ṡ

E x̂ + y′Bŝ − (1 + κ0x) Bŷ

]
, (2.36)

db
ds

= −b
p′0
p0

+
q
p0

[
1
ṡ

E ŷ + (1 + κ0x) Bx̂ − x′Bŝ

]
, (2.37)

dδ
ds

= −(1 + δ)
p′0
p0

+
q
p0

[
y′

β c
E ŷ +

x′

β c
E x̂ +

1 + κ0x
β c

E ŝ

]
. (2.38)

Differentiating Eq.(2.26) and using Eqs. (2.29–2.30) finally gives

dz
ds

=
z q

mc2 β2 γ3

[
x′E x̂ + y′E ŷ + (1 + κ0x)E ŝ

]
+
β

β0
−

(1 + κ0x)(1 + δ)√
(1 + δ)2 − a2 − b2

. (2.39)

2.1.3 Accelerator Magnets

Due to the nature of the Lorentz force, in the absence of electric fields, particles

traveling mainly in the longitudinal direction eŝ are primarily influenced by the

transverse magnetic fields Bx̂ and Bŷ. For this reason, the magnets used to bend

and focus the particle beam are typically designed to produce strong transverse

fields, and often have well-defined multipole moments, which can be tuned

independently by the operator of the machine.

Dipole magnets are the primary means by which the beam is bent along the

reference orbit, and are also referred to as bending magnets. The fields in a

dipole are of the form B = Bx̂
0 ex̂ + Bŷ

0 eŷ, where Bx̂
0 and Bŷ

0 are constants over the

length of the magnet. Of course, any realistic magnet will have variations in

the field strengths at its ends, called fringe fields, but for our purposes we will

assume that the fringe fields cover zero extent. Such a simplification is called

the hard edge model.

In such a magnet, consider the motion of a particle with δ = 0 that instan-

taneously travels on the reference orbit at position s, so that x(s) = 0, a(s) = 0,
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y(s) = 0, b(s) = 0, and therefore the velocity β c = ṡ. Equations (2.34-2.38) give

x′(s) = 0, (2.40)

a′(s) = κ0 −
q
p0

Bŷ
0, (2.41)

y′(s) = 0, (2.42)

b′(s) =
q
p0

Bx̂
0. (2.43)

We require that such a particle remain on the reference orbit, meaning that a′ = 0

and b′ = 0, which imply

Bx̂
0 = 0, (2.44)

Bŷ
0 =

p0

q
κ0(s). (2.45)

Thus the reference orbit defines the necessary dipole fields. Conversely, the

dipole fields along with a reference particle can be considered as defining the

reference orbit. For simplicity, the curvature of the reference orbit κ0(s) will

always be considered as a step function along s, and nonzero only in dipole

magnets, so κ′0 = 0. The reference orbit then consists of straight lines and arcs of

circles in the horizontal plane.

While the reference particle is guided along the accelerator with dipole mag-

nets, other particles in its vicinity will not necessarily remain so well-controlled.

In special circumstances a series of dipoles can be designed to manage such

particles as well through symmetry and fringe field effects, but more often mul-

tipole magnets are employed to perform this duty.

Multipole expansions for static magnetic fields can be constructed from

Apère’s law and Gauss’ law, which in regions without source currents or electric
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fields are

∇ × B = 0, (2.46)

∇ · B = 0. (2.47)

These imply that the magnetic field can be described by a scalar function ψ so

that

B = −∇ψ, (2.48)

with ψ satisfying Laplace’s equation

∇2ψ = 0. (2.49)

In our curvilinear coordinates the Laplacian operator is

∇2 =
∂2

∂x2 +
κ0

1 + κ0x
∂

∂x
+
∂2

∂y2 +
1

(1 + κ0x)2

∂2

∂s2 , (2.50)

which contains some cumbersome factors of 1 + κ0x. Fortunately, other than

dipoles, we will nearly always be concerned with multipole fields in sections

where the reference orbit is straight, i.e. κ0 = 0. The Laplacian can then be written

in cylindrical coordinates (r, θ, s) with x = r cos θ and y = r sin θ, so that

∇2 =
1
r
∂

∂r
r
∂

∂r
+

1
r2

∂2

∂θ2 +
∂2

∂s2 . (2.51)

Neglecting the s dependence, in accordance with our hard edge model, a pure

multipole potential of order n is the solution

ψn = −an rn sin (n θ + θn) , (2.52)

where an and θn are constants. A potential for a general transverse field is then

a sum over multipole components, as in

ψ =

∞∑
n=1

ψn, (2.53)
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Table 2.1: Field strengths for selected upright magnets

Type −
q
p0
ψ

q
p0

Bx̂ q
p0

Bŷ

Dipole k0 y 0 k0

Quadrupole k1 x y k1 y k1 x

Sextupole 1
6 k2 (3 x2 y − y3) k2 x y 1

2 k2 (x2 − y2)

Octupole 1
6 k3 (x3 y − x y3) 1

6 k3 (3 x2 y − y3) 1
6 k3 (x3 − 3 x y2)

and is therefore completely described by the sets {an} and {θn}.

For planar accelerators, the most important magnets are ones that exhibit

midplane symmetry. These magnets have Bx̂ = 0 in the horizontal plane at

y = 0, so that particles with trajectories in this plane are not deflected vertically,

and are called upright magnets. They are described by a sum over multipole

potentials in Eq. (2.52) with all θn = 0. The coefficients an can be written in terms

of derivatives of the magnetic field,

an =
1
n!

∂n−1Bŷ

∂xn−1

∣∣∣∣∣∣x=0
y=0

, (2.54)

and in terms of the reference particle we can define the upright multipole mo-

ments

kn ≡ (n + 1)!
q
p0

an+1

=
q
p0

∂nBŷ

∂xn

∣∣∣∣∣∣x=0
y=0

,
(2.55)

which have units of m−(n+1). From before, we can identify k0 = κ0.

Table 2.1 lists the potentials and magnetic field components in (x, y) coordi-

nates for a few of the lowest order upright multipoles. Figure 2.2 shows field

patterns and equipotential lines for upright quadrupole and sextupole magnets.
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(a) Quadrupole Field

x

y

(b) Sextupole Field

Figure 2.2: Magnetic field patterns and equipotential lines in quadrupole and
sextupole magnets.

2.1.4 Accelerating Cavities

Of equal importance to the magnets in an accelerator are the accelerating struc-

tures that deliver and extract energy from the beam. For us, these elements

will be a series of resonant cavities operating with standing waves at radio fre-

quencies (RF). The design and manufacture of such devices is an active area of

research, and the reader is referred to Chao & Tigner (2006) for technical details

and references.

As a simple model of an accelerating cavity, consider a perfectly conducting

cylinder aligned with the reference orbit that has an outer radius R and a length

L. Electromagnetic boundary conditions restrict the possible fields, with the
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lowest order TM010 fields being

E = E0 J0

(
j01

r
R

)
cos (ω010 t) eŝ, (2.56)

B = −
E0

c
J1

(
j01

r
R

)
sin (ω010 t) eθ̂, (2.57)

at the angular frequency ω010 = j01 c/R. Here E0 is the maximum electric field at

r = 0, Jn is a Bessel function of the first kind, and j01 ' 2.4048255 is the first root

of J0 (see, for example, section 8.7 of Jackson, 1999).

Now let a highly relativistic (β ≈ 1) reference particle enter this cavity

through a tiny hole on axis and exit through the opposite side. Assuming that it

always maintains relativistic speeds, the energy gain of the particle through the

cavity is

∆E =

L/2∫
−L/2

ds qE0 cos (krf s + φrf)

= qE0
2 sin (krfL/2)

krf
cos (φrf) ,

(2.58)

where krf = ω010/c is the angular wavenumber, and φrf is the phase when the

particle is in the center of the cavity. The maximum acceleration is achieved

when φrf = 0 and krf L = π, so that the average energy change per unit length

is 2 q E0/π. This means that structures with lengths on the order of centimeters

have optimal operating frequencies on the order of a GHz.

Modern accelerating elements can consist of several such cavities grouped

together, with shapes and materials optimized to deliver a maximum acceler-

ating field. Ultimately, however, they are designed to deliver effective acceler-

ating voltages V̂ and therefore a particle with longitudinal displacement z from

the reference particle will experience a change of energy of the form

∆E = qV̂ cos (φrf − krf z) . (2.59)
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We will usually consider particle bunches that are localized enough to be accel-

erated in the same RF wave, meaning that |krf z| ≤ π/2. With krf = 2π frf/c > 0,

this implies that |z| .
1
4

c
frf

, which translates to |z| . 8 cm for frf = 1 GHz.

2.1.5 Linear Optics

Up to this point, Eqs. (2.34-2.38) are exact in the sense of classical electrodynam-

ics, and look rather complicated. Now several important approximations will

be made that are relevant for particle accelerators which will allow us to use

these equations to solve for the transverse motion of a charged test particle. The

longitudinal phase space will then be treated and combined with the transverse

motion to give the first order evolution of the six-dimensional phase space.

First, we will assume that the charges travel at relativistic speeds (γ � 1) pri-

marily parallel to the reference orbit. This is called the paraxial beam approx-

imation, or small angle approximation, which means that |a| � 1 and |b| � 1.

Second, the transverse coordinates x and y are nearly always small relative to

the size of the system, being on the order of millimeters compared with, for

example, bending radii on the order of tens of meters. Third, the longitudinal

coordinate z is typically on the order of millimeters and thus on the same order

as x and y. Finally, the energies of all particles will be assumed to be similar to

that of the reference particle, so that |δ| � 1.

Now we can see the benefit of these special phase space coordinates: if each

of x, a, y, b, z, and δ can be considered as “small”, then functions can be well ap-

proximated by simultaneous Taylor expansions in terms of them. In particular,
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the horizontal and vertical slopes from Eq. (2.34) and Eq. (2.35) are

x′ = a − δ a + κ0x a + O
(
ε3

)
, (2.60)

y′ = b − δ b + κ0x b + O
(
ε3

)
, (2.61)

where εn is any combination of the phase space variables with (positive) powers

summing to n. To first order x′ = a and y′ = b, and therefore the pairs (x, x′) and

(y, y′) are often referred to as the horizontal and vertical phase space, respec-

tively, when discussing first order motion.

For now, we will specialize to regions with only static upright magnetic

fields, expanded in terms of their multipole moments given in Tab. 2.1. Ne-

glecting radiative losses, δ′ = 0 in such regions. Expanding Eqs. (2.36-2.38) and

combining with Eqs. (2.60-2.61) then give

d
ds



x

a

y

b


=



a

κ0 δ −
(
κ2

0 + k1

)
x

b

k1y


+ O

(
ε2

)
(2.62)

as the first order evolution of the transverse phase space. Reducing these to a

pair of second order differential equations finally yields

x′′(s) +
[
κ2

0(s) + k1(s)
]

x(s) = κ0(s) δ, (2.63)

y′′(s) − k1(s) y(s) = 0. (2.64)

These two equations form the basis for the linear optics. One now sees the use of

upright dipole and quadrupole fields: they decouple the transverse equations

of motion.
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Hill’s Equation

Equations (2.63-2.64) have the form of Hill’s equation

x′′(s) + K(s) x(s) = f (s), (2.65)

for which, given an arbitrary function K(s), it is impossible to write down a

general solution analytically. For regions of constant K, however, the solutions

are simple. In terms of the particle position and slope at s = 0, the homogeneous

solutions are

x(s) = CK(s) x(0) + S K(s) x′(0), (2.66)

x′(s) = C′K(s) x(0) + S ′K(s) x′(0), (2.67)

with the functions CK and S K defined as

CK(s)

S K(s)

 ≡




cos

(√
K s

)
1
√

K
sin

(√
K s

)
 for K > 0


1

s

 for K = 0


cosh

(√
|K| s

)
1
√
|K|

sinh
(√
|K| s

)
 for K < 0

. (2.68)

These solutions can also be written as a matrix equation x(s)

x′(s)

 = MK(s)

 x(0)

x′(0)

 , (2.69)

with the transformation matrix

MK(s) ≡

CK(s) S K(s)

C′K(s) S ′K(s)

 . (2.70)
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x
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y
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(b) Vertical Phase Space

Figure 2.3: The action of a quadrupole with k1 > 0 on an initial grid of points in
(x, x′) and (y, y′) phase space.

Note that dx dx′ is an invariant volume element, because det MK = 1. A partic-

ular solution with f (s) , 0 can then be formed from these solutions with

F(s) =

s∫
0

ds′ f (s′)
[
CK(s′) S K(s) − S K(s′) CK(s)

]
, (2.71)

which satisfies

F′′(s) + K(s) F(s) = f (s). (2.72)

As an example, consider a particle with phase space coordinates x0, x′0, y0, y′0,

and δ = 0 at the beginning of a quadrupole magnet with constant k1 > 0 and

length L. The coordinates at the end of the magnet are then x

x′

 =


cos

(√
k1 L

) 1
√

k1
sin

(√
k1 L

)
−
√

k1 sin
(√

k1 L
)

cos
(√

k1 L
)


x0

x′0

 , (2.73)

 y

y′

 =


cosh

(√
k1 L

) 1
√

k1
sinh

(√
k1 L

)
√

k1 sinh
(√

k1 L
)

cosh
(√

k1 L
)


y0

y′0

 . (2.74)
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Figure 2.3 illustrates the effect of this quadrupole on the transverse phase space.

Now assume that this magnet is sufficiently short and weak, so that
√

k1 L � 1.

The final coordinates are then approximately x

x′

 ≈
 1 L

−k1 L 1


x0

x′0

 , (2.75)

 y

y′

 ≈
 1 L

k1 L 1


y0

y′0

 . (2.76)

From the change in slopes, these equations have the form of linearly focusing

and defocusing lenses in the horizontal and vertical directions with focal lengths

f = ±1/(k1 L), respectively. Similarly, if we had used k1 < 0, such a quadrupole

would be defocusing in the the horizontal direction and focusing in the verti-

cal direction. This brings up an important difficulty in beam optics: a single

quadrupole magnet cannot simultaneously focus the beam in both the horizon-

tal and vertical directions.

This matrix form suggests a way to extend such solutions to multi-element

lattices. Consider K(s) as a step function, which can be thought of as a sequence

of elements starting at s = 0 with lengths Li and values Ki for i ε N. The solution

within element N is therefore x(s)

x′(s)

 = MKN (s − sN−1) ·MKN−1(LM−1) · . . . ·MK1(L1)

 x(0)

x′(0)

 , (2.77)

with sN ≡
∑N

i=1 Li.

Identifying these Ki with κ2
0(s) + k1(s) in the horizontal direction and −k1(s) in

the vertical direction, assuming hard edge dipole and quadrupole magnets, this

is therefore the solution to Eqs. (2.63-2.64) with δ = 0. In other words, the phase

space coordinates of a particle at s are linear functions of their values at 0, with
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the transformation matrix being the concatenation of matrices corresponding to

all of the elements between 0 and s.

Twiss Parameters

The individual particle trajectories can be utilized to characterize the evolution

of a beam of particles through this system. To do this, we write the transverse

coordinate in the form

x(s) =
√

2 J βx(s) sin (ψx(s) + φ) . (2.78)

The positive βx(s) is called the beta function, and ψx(s) + φ is called the betatron

phase. The constants J and φ are called the particle amplitude and particle

phase, respectively. The function ψx(s) is chosen as

ψx(s) ≡

s∫
0

1
βx(s)

ds, (2.79)

so that φ is the betatron phase at s = 0. Inserting Eq. (2.78) into Hill’s equation,

Eq. (2.65), gives

K = −
1

4 β2
x

(
β′x

)2
+

1
2 βx

β′′x −
(
β′x

)−2 . (2.80)

The slope of the beta function defines another function

αx ≡ −
1
2
β′x, (2.81)

so now we have

α2
x + βx α

′
x − K (βx)2 + 1 = 0. (2.82)

Finally, with the definition γx ≡ K βx − α
′
x, we get

γx =
1 + α2

x

βx
. (2.83)
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The functions βx, αx, and γx are called Twiss parameters.

Differentiating Eq. (2.78), the particle’s transverse phase space coordinates

are related to the Twiss parameters by x

x′

 =
√

2 J


√
βx 0

−
αx
√
βx

1
√
βx


sin (ψx + φ)

cos (ψx + φ)

 . (2.84)

This can also be written as x(s)

x′(s)

 = tx(s) ·R(ψx) ·
√

2 J

sin φ

cos φ

 , (2.85)

where

R(θ) ≡

 cos θ sin θ

− sin θ cos θ

 (2.86)

is a rotation matrix, and

tx(s) ≡


√
βx(s) 0

−
αx(s)√
βx(s)

1√
βx(s)

 . (2.87)

The Twiss parameters can thus be used to form a transformation matrix that

evolves a point in phase space with initial amplitude J and phase φ to a point at

s, and therefore must be equivalent to the transformation matrix MK(s). To see

this, we insert Eq. (2.85) into Eq. (2.69), giving

tx(s) ·R(ψx) = MK(s) · tx(0). (2.88)

Multiplying by the transpose gives

Tx(s) = MK(s) · Tx(0) · [MK(s)]T , (2.89)

with the Twiss matrix defined as

Tx(s) ≡ tx(s) · [tx(s)]T

=

 βx(s) −αx(s)

−αx(s) γx(s)

 .
(2.90)
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So,if the Twiss parameters are know at any s, then the Twiss parameters at any

other s can be determined from MK(s).

As an example, consider the beta function in a drift. The transfer matrix in a

drift (K = 0) is simply

M0(s) =

1 s

0 1

 . (2.91)

If we assume that the Twiss parameters at the beginning of the drift are βx0 and

αx0, understanding that γx can be written in terms of these, Eq. (2.89) gives

βx(s) = βx0 − 2αx0 s +
1 + α2

x0

βx0
s2, (2.92)

quadratic in s. As long as αx0 > 0, the beta function will focus to a minimum at

s∗ = αx0 βx0/(1 + α2
x0), with a value βx(s∗) = βx0/(1 + α2

x0). Alternately written, the

beta function in a drift given as the distance from the minimum at s∗ with value

β∗x is

βx(s − s∗) = β∗x +
(s − s∗)2

β∗x
. (2.93)

The shape of the beta function in a drift always has the form of a parabola.

The form of Eq. (2.84) also reveals an important relation. Multiplying by t−1
x

and squaring both sides shows that

βx x′2 + 2αx x x′ + γx x2 = 2 J (2.94)

is a constant of motion, called the Courant-Snyder invariant. This equation has

the form of an ellipse in (x, x′) phase space, with dimensions shown in Fig. 2.4.

Particles with the same amplitude J and various phases φ lie on this ellipse,

while particles with smaller amplitude lie within. This is important, because

a beam of particles is therefore completely characterized by a set of (J, φ) and

initial Twiss parameters, with its evolution governed by MK .
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Figure 2.4: The phase space ellipse with a fixed amplitude J and all possi-
ble phases φ, according to Eq. (2.85) with Twiss parameters βx, αx, and γx =(
1 + α2

x

)
/βx. Particles distributed uniformly on this ellipse represent an emit-

tance εx = J.

For many particles, this set can be approximated by a density ρ(J, φ). Typi-

cally this density assumes a Gaussian distribution, modeled by

ρG(J, φ) dJ dφ =
1

2πεx
e−J/εx dJ dφ, (2.95)

where εx is called the emittance. Using such a distribution, one can calculate the

average amplitude of a particle

〈J〉 =

∞∫
0

dJ

2π∫
0

dφ J ρG(J, φ)

= εx.

(2.96)

Similarly, the average position squared

〈
x2

〉
=

∞∫
0

dJ

2π∫
0

dφ
[
2 J sin2 φ

]
ρG(J, φ)

= εx βx,

(2.97)
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the average slope squared

〈
x′2

〉
=

∞∫
0

dJ

2π∫
0

dφ
2 J
βx

[
cos2 φ + α2

x sin2 φ − 2αx cos φ sin φ
]
ρG(J, φ)

= εx γx,

(2.98)

and the average correlation

〈x x′〉 =

∞∫
0

dJ

2π∫
0

dφ 2 J
[
sin φ cos φ − αx sin2 φ

]
ρG(J, φ)

= −εx αx.

(2.99)

Identifying these terms in the average of Eq. (2.94) gives

εx =

√〈
x2〉 〈

x′2
〉
− 〈x x′〉2. (2.100)

So, for this Gaussian distribution the emittance is the area in phase space

circumscribed by a collection of particles with the average amplitude and which

contains (e − 1)/e ≈ 63% of the particles in the distribution. A collection of

particles all with an amplitude 3 εx circumscribes 95% of the distribution. This is

useful because the various expectation values can be calculated for an arbitrary

distribution, and then fit with such an ellipse.

When the emittance is calculated using Eq. (2.100) it is called the geometric

emittance. During acceleration, however, our transverse momentum is reduced

due by the reference momentum P0. To account for this, we define the normal-

ized emittance as

εN = γ β ε, (2.101)

which is invariant through acceleration.

From Eq. (2.97), we see that the root mean squared (RMS) width of the beam

is
√
εx βx. Therefore the beta function describes the beam envelope, and must
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be kept small enough to avoid colliding the outermost particles with the beam

chamber. Fortunately, the the largest ERL emittance considered is on the order

of a nm, which would give a beam width of 1 mm for a 1000 m beta function.

However, if there are particles with more or less energy than the reference mo-

mentum, then the beam width can become larger where there is dispersion.

Dispersion

The preceding calculations are valid for δ = 0. For nonzero δ the vertical equa-

tion of motion, Eq. (2.64), is unchanged because there are no vertical bends in

this planar lattice, but the horizontal equation of motion, Eq. (2.63), has a right

hand side f (s) = κ0 δ within a bend. To account for this, we add the particular

solution of Eq. (2.71) to the homogenous solution Eq. (2.66), which can be easily

integrated for constant κ0 and δ, giving

δD(s) = δ
1
κ0

[1 − cos (κ0 s)] , (2.102)

where D(s) is called the dispersion function. The general solution for the hori-

zontal coordinates of a particle in a bend is then, in matrix form,
x(s)

x′(s)

δ

 =


cos (κ0 s)

1
κ0

sin (κ0 s)
1
κ0

[1 − cos (κ0 s)]

κ0 sin (κ0 s) cos (κ0 s) sin (κ0 s)

0 0 1




x(0)

x′(0)

δ

 . (2.103)

The dispersion function therefore represents an additional horizontal offset of

an off-energy (δ , 0) particle from the reference orbit, which arises from the fact

that particles with higher energy than the reference particle are bent less (i.e.

have a larger radius of curvature) in a dipole magnet, and vice versa, with the

degree of offset proportional to their momentum deviation δ.

39



Due to the linearity of these equations, the dispersion can be thought of as

separate from the motion of an otherwise on-energy (δ = 0) particle, which

evolves according to
D(s)

D′(s)

1

 =


CK(s) S K(s)

1
κ0

[1 − cos (κ0 s)]

C′K(s) S ′K(s) sin (κ0 s)

0 0 1




D(0)

D′(0)

1

 , (2.104)

and thus the dispersion through multiple lattice elements can be calculated

by concatenating matrices, similar to the method in Eq. (2.77). The form of

Eq. (2.104) also shows that while dispersion is “created” in bending magnets,

it can be affected by quadrupole magnets as well, which will turn out to be

useful.

The particle coordinate and slope in terms of beta function, phase, and dis-

persion are then

x(s) = xβ(s) + δD(s), (2.105)

x′(s) = x′β(s) + δD′(s), (2.106)

with the definitions

xβ(s) ≡
√

2 J βx(s) sin (ψx(s) + φ) , (2.107)

x′β(s) ≡

√
2 J
βx(s)

[
cos (ψx(s) + φ) − αx sin (ψx(s) + φ)

]
(2.108)

coming directly from Eq. (2.84). In phase space, particles with the same ampli-

tude and momentum deviation, but different phases still form an ellipse as in

Fig. 2.4, but with the center shifted to (δD(s), δD′(s)). Sets of particles with dif-

ferent energies therefore separate in dispersive sections, which tends to increase

the apparent size of the beam. When a section begins and ends with D(s) = 0

and D′(s) = 0, it is called achromatic.
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Time of Flight

Thus far we have considered the transverse coordinates x, x′, y, y′ of a particle

relative to the reference orbit, with momentum deviation δ relative to a reference

particle on that orbit. The fifth coordinate to discuss is the longitudinal position

z(s) relative to the reference particle, which is also called the time of flight due

to its relationship with t(s) in Eq. (2.26).

In absence of electric fields, expanding Eq. (2.39) gives

dz
ds

= −κ0x + O
(
ε2

)
, (2.109)

noting that the ratio β/β0 = 1 + O
(
ε3

)
, because

β

β0
= 1 +

δ

γ2
0

−
3
2
β2

0

γ2
0

δ2 + . . . . (2.110)

Integrating Eq. (2.109) then gives

z(s) = z(0) −

s∫
0

κ0(s̃) x(s̃) ds̃ + O
(
ε2

)
. (2.111)

Note that if we write the horizontal coordinate x(s) in terms of Twiss parame-

ters and dispersion function, as in Eq. (2.105), then the change in longitudinal

coordinate is

z(s) − z(0) = −

s∫
0

κ0(s̃)
[ √

2 J βx(s̃) sin (ψx(s̃) + φ) + D(s̃) δ
]

ds̃. (2.112)

Manipulation of the dispersion function within bends therefore allows the lat-

tice designer to change the longitudinal phase space, and in particular bunch

compression, discussed in Section 3.5.

The longitudinal coordinate to first order can only change within a bend,

and we know the first order trajectory in a bend from the first row of Eq. (2.103),

x(s) = cos (κ0 s) x(0) +
1
κ0

sin (κ0 s) x′(0) +
1
κ0

[1 − cos (κ0 s)] δ. (2.113)
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Using this in Eq. (2.111) gives

z(s) = z(0) − sin (κ0 s) x(0) +
1
κ0

[cos (κ0 s) − 1] x′(0) +

[
1
κ0

sin (κ0 s) − s
]
δ. (2.114)

This result, combined with Eq. (2.103), the vertical motion, and the fact that δ is

unchanged, gives the six-dimensional phase space evolution through a bending

magnet in matrix form as

x(s)

x′(s)

y(s)

y′(s)

z(s)

δ(s)



=



cos (κ0 s)
1
κ0

sin (κ0 s) 0 0 0
1
κ0

[1 − cos (κ0 s)]

−κ0 sin (κ0 s) cos (κ0 s) 0 0 0 sin (κ0 s)

0 0 1 s 0 0

0 0 0 1 0 0

− sin (κ0 s)
1
κ0

[cos (κ0 s) − 1] 0 0 1
1
κ0

sin (κ0 s) − s

0 0 0 0 0 1





x(0)

x′(0)

y(0)

y′(0)

z(0)

δ(0)



.

(2.115)

The six-dimensional transfer matrices for other common elements can be de-

rived similarly, and are listed in Appendix B. In particular, the fifth element of

the sixth column of these matrices is often called the first order time of flight

term r56, which is important in controlling the length of a bunch. When r56 = 0

for a section, it is called isochronous to first order. It and higher order time of

flight terms are discussed in Section 2.1.6.

Acceleration

For simplicity we will model accelerating cavities as in section 2.1.4, which as-

sumes that particles are sufficiently relativistic with velocity v ≈ c so that they

travel essentially with the accelerating wave. If E(0) is the energy of a particle at

the beginning of a cavity, then the energy of the particle at the end of the cavity,
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according to Eq. (2.59), is

E(L) = E(0) + qV̂ cos
[
φrf − krf z(0)

]
, (2.116)

where qV̂ is the maximum energy that the cavity can deliver over its length

L. Also in this relativistic assumption, the longitudinal coordinate is approxi-

mately unchanged, as in z(L) = z(0). Because the energy through many cavities

is simply accumulated, the passage of a particle through many adjacent cavities

with energies qV̂1, qV̂2, etc., the final energy through N such cavities is given by

Eq. (2.116) with qV̂ =
∑N

n=1 qV̂n, so long as the phases φrf are the same.

For particles with momentum p � m c, the momentum deviation δ is ap-

proximately the same as the energy deviation

E − E0

E0
≈

p − p0

p0
, (2.117)

where E is the energy of the particle and E0 is the energy of the reference particle.

For example, an electron with energy 11 MeV has a momentum deviation of

δ = 0.10025 compared to a reference electron at energy 10 MeV, and because the

machines considered will operate at energies above 10 MeV, the terms energy

deviation and momentum deviation will be used interchangeably.

Now let the reference particle enter the cavity with energy E0, so that its

energy at the end of the cavity E1 = E0 + qV̂ cos φrf . For a particular particle,

rearranging Eq. (2.116) gives the energy deviation at the end of the cavity

δ(L) =

{
1 −
E0

E1

}{
cos

[
φrf − krf z(0)

]
cos φrf

− 1
}

+
E0

E1
δ(0). (2.118)

The cosine term expanded in small z is

cos
[
φrf − krf z

]
cos φrf

− 1 = krf z tan φrf −
1
2

(krf z)2
−

1
6

(krf z)3 tan φrf + O
(
z4

)
. (2.119)
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This gives the first order transfer matrix for the longitudinal phase space asz(L)

δ(L)

 =

 1 0

[1 − E0/E1] krf tan φrf E0/E1


z(0)

δ(0)

 . (2.120)

With these explicit formulas it is possible to calculate the longitudinal phase

space density ρ1 at the end of a linac given the density ρ0 at the beginning. This

is done by first writing the initial phase space coordinates (z0, δ0) in terms of the

final phase space coordinates (z1, δ1), as in

z0(z1, δ1) = z1, (2.121)

δ0(z1, δ1) =

[
1 −
E1

E0

] [
cos (φrf − krf z1)

cos φrf
− 1

]
+
E1

E0
δ1. (2.122)

Simply changing variables gives

ρ0(z0, δ0) dz0 dδ0 = ρ0 (z0(z1, δ1), δ0(z1, δ1))

∣∣∣∣∣∣∣∣∣∣
∂z0

∂z1

∂z0

∂δ1
∂δ0

∂z1

∂δ0

∂δ1

∣∣∣∣∣∣∣∣∣∣ dz1 dδ1, (2.123)

and we can therefore identify

ρ1(z1, δ1) = ρ0 (z0(z1, δ1), δ0(z1, δ1))
E1

E0
, (2.124)

where the Jacobian factor has been calculated. Typically the standard deviation

of z and δ using such densities are called the bunch length and energy spread,

respectively.

To illustrate the effect of a linac, consider a bunch with an initial Gaussian

distribution in z and δ,

ρ0(z, δ) =

exp
(
−z2

2σ2
z

)
√

2πσz

exp
(
−δ2

2σ2
δ

)
√

2πσδ

, (2.125)

with bunch length σz, energy spread σδ, and energy E0 = 10 MeV shown in

Fig. 2.5(a). It is then sent through a linac with φrf = 0 and accelerated to an
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(a) Before Linac (b) After Linac

Figure 2.5: The longitudinal phase through a linac. The bunch begins with a
Gaussian density according to Eq. (2.125) with bunch lengthσz = 0.6 mm, energy
spread σδ = 2× 10−3, and energy E0 = 10 MeV, and is accelerated through a linac
with φrf = 0 and frf = 1.3 GHz to an energy of E1 = 5 GeV, according to Eq. (2.124)
combined with Eqs. (2.121–2.122).

energy E1 = 5 GeV, shown in Fig. 2.5(b). There one sees that the final energy

spread is dominated by the cosine-like curvature of the density, with the initial

energy spread giving little contribution.

For an arbitrary φrf , the variance of z1 and δ1 at the end of a linac can be

calculated exactly using the distribution in Eq. (2.125), yielding

σ2
z1 = σ2

z0, (2.126)

σ2
δ1 =

(
1 −
E0

E1

)2 e−2ε (eε − 1) (eε − cos 2φrf)
2 cos2 φrf

+

(
E0

E1

)2

σ2
δ0, (2.127)

where ε ≡ (krf σz0)2. The bunch length σz is unchanged by the linac. Typically ε

is small, so expanding Eq. (2.127) gives

σ2
δ1 '

(
1 −
E0

E1

)2 [
(krf σz0 tan φrf)2 +

(
cos 2φrf

cos2 φrf
−

1
2

)
(krf σz0)4 + . . .

]
+

(
E0

E1

)2

σ2
δ0. (2.128)

The energy spread for on-crest acceleration (φrf = 0) of a Gaussian bunch is
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therefore approximately σδ1 ≈
1
√

2
(krf σz0)2, and for sufficient off-crest accelera-

tion (φrf , 0) it is approximately σδ1 ≈ | krf σz0 φrf |.

The evolution of the transverse phase space in an accelerating cavity is

worked out in Rosenzweig & Serafini (1994), and for completeness we give their

result here. The transfer matrix is

Mrf =


cosα −

√
2 cos ∆φ sinα A 2

√
2 cos ∆φ sinα

−
sinα

A

 1
√

2
cos ∆φ +

1

2
√

2 cos ∆φ

 B
[
cosα +

√
2 cos ∆φ sinα

]
 , (2.129)

with parameters written in our terms as

∆φ ≡ φrf − krf z(0), (2.130)

A ≡
[

1 + δ(0)
E1/E0 − 1

] [
cos φrf

cos ∆φ

]
L, (2.131)

B ≡
A

A + L
, (2.132)

α ≡
1

2
√

2 cos ∆φ
log B. (2.133)

The transverse coordinates at the end of the cavity are then x(L)

x′(L)

 = Mrf

 x(0)

x′(0)

 , (2.134)

 y(L)

y′(L)

 = Mrf

 y(0)

y′(0)

 . (2.135)

2.1.6 Nonlinear Optics

The motion in a classical deterministic system can be completely predicted

given the fields and initial phase space points, and the six-dimensional transfer

matrices of this form give the full first-order classical motion in the accelerator.
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For compactness, we will call the vector of phase space coordinates ~z , with an

arrow to distinguish it from the coordinate z(s). The components ~z i of ~z are

numbered according to

(
~z 1, ~z 2, ~z 3, ~z 4, ~z 5, ~z 6

)
≡ (x, a, y, b, z, δ) . (2.136)

Equations like Eq. (2.115) can then be written as

~z i(s) = Ri
j(s)~z j(0) + O

(
ε2

)
, (2.137)

with i and j numbering the row and column of an element of the the transfer

matrix, respectively. Repeated indices are summed from 1 to 6 according to

the Einstein summation convention. Similar to Eq. (2.77), the phase space co-

ordinates the end of the nth element with position s = sn given the phase space

coordinates at the beginning of the first element at s = 0 are

~z i(sn) = Ri
(n) jn R jn

(n−1) jn−1
. . . R j3

(2) j2
R j2

(1) j1
~z j1(0) + O

(
ε2

)
, (2.138)

associating Ri
(m) j with the components of the transfer matrix for the mth element.

The first order particle motion can thereafter be used to calculate higher or-

der motion. The reader may be familiar with this method from perturbation

theory in quantum mechanics (see for example Landau & Lifschitz Vol. 3, 2002).

Let M be the exact map of phase space coordinates, so that ~z i(0) at s = 0 is

mapped to ~z i(s) through a portion of the accelerator according to

~z i(s) =Mi (~z (0), s
)

(2.139)

= Ri
j(s)~z j(0) + T i

j k(s)~z j(0)~z k(0) + U i
j k l(s)~z j(0)~z k(0)~z l(0) + O

(
ε4

)
, (2.140)

where the map has been Taylor expanded about ~z i = 0, the reference particle

coordinates. The matrix Ri
j(s) is the first order map which we have solved for
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in terms of individual elements, as in Eq. (2.138). The coefficients T i
j k(s) and

U i
j k l(s) represent the second and third order motion, respectively.

Phase space coordinates evolve according to the first order differential equa-

tion
d
ds
~z i(s) = f i (~z , s) , (2.141)

where the functions f i have been calculated at the end of Section 2.1.2. Alterna-

tively, they can be found from the Hamiltonian K of the system, by

(
f 1, f 2, f 3, f 4, f 5, f 6

)
=

(
∂K

∂a
, −

∂K

∂x
,
∂K

∂b
, −

∂K

∂y
,
∂K

∂δ
, −

∂K

∂z

)
. (2.142)

In fact, all analysis could start with such a Hamiltonian, as shown in Courant &

Snyder (1958).

Now Taylor expand f about ~z = 0, so that

d
ds
~z i = Li

j~z
j +N i (~z , s) (2.143)

= Li
j~z

j + N i
j k~z

j~z k + N i
j k l~z

j~z k~z l + O
(
ε4

)
, (2.144)

where Li
j are the linear terms,N i are all of the nonlinear terms, and the N are ex-

pansions of the nonlinear terms of f . For example, given a horizontal trajectory

within static upright magnetic fields we have

d
ds



x

a

y

b

z

δ



=



a

κ0 δ −
(
κ2

0 + k1

)
x

b

k1y

−κ0x

0



+



κ0x a − a δ

−
(
κ0 k1 + 1

2k2

)
x2 − 1

2κ0 a2 + 1
2k2y2 − 1

2κ0 b2

κ0x b − b δ

(κ0 k1 + k2) x y

−1
2 (κ0x)2

− 1
2a2 − 1

2b2

0



+ O
(
ε3

)
,

(2.145)
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where the first vector on the r.h.s. contains the first order terms Li
j, and the

second vector on the r.h.s. contains the second order terms N i
j k. Along with

this, write ~z as

~z i = ~z i
[1] +~z i

[2] +~z i
[3] + O

(
ε4

)
, (2.146)

where terms up to ~z[n] represent the nth order solution to Eq. (2.144). The first

order equation
d
ds
~z i

[1] = Li
j~z

j
[1] (2.147)

has already been solved, with solution

~z i
[1](s) = Ri

j(s)~z j
[1](0). (2.148)

This is equivalent to
d
ds

Ri
j = Li

k Rk
j. (2.149)

The second order equation is

d
ds

(
~z i

[1] +~z i
[2]

)
= Li

j

(
~z j

[1] +~z j
[2]

)
+ N i

j k~z
j

[1]~z
k
[1]. (2.150)

Subtracting off the first order Eq. (2.147) and some manipulation gives

d
ds

[(
R−1

)i

j
~z j

[2]

]
=

(
R−1

)i

k
Nk

l m~z
l
[1]~z

m
[1], (2.151)

where R−1 is the inverse matrix of R. With the definitions ~z[n](0) = 0 for n ≥ 2,

integrating Eq. (2.151) gives

~z j
[2](s) = Ri

j(s)

s∫
0

ds̃
[
R−1(s̃)

] j

k
Nk

l m(s̃)~z l
[1](s̃)~z m

[1](s̃) (2.152)

= T i
j k(s)~z j(0)~z k(0), (2.153)

where the coefficients T i
j k are given explicitly in terms of Ri

j and N i
j k by

T i
j k(s) = Ri

a(s)

s∫
0

ds̃
[
R−1(s̃)

]a

b
Nb

c d(s̃) Rc
j(s̃) Rd

k(s̃). (2.154)
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Because T i
j k = T i

k j, it is more convenient in practice to refer to symmetrized

versions of nonlinear terms, defined as

ti j k ≡


T i

j k for j = k

2 T i
j k for j , k

, (2.155)

and similarly for higher orders. Also define

ri j ≡ Ri
j. (2.156)

Note that the dispersion D = r16, and its slope D′ = r26. This method can be

similarly continued to higher orders.

Sextupole Magnet

As an example, consider the motion in an upright sextupole magnet with length

L and sextupole moment k2. The first order transfer matrix Ri
j(s) is simply that

of a drift given by Eq. (B.1). The phase space coordinates at the entrance of the

sextupole at s = 0 are

~z i
[1](0) =



x0

a0

y0

b0

z0

δ



. (2.157)
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Multiplying by the transfer matrix and inserting the solution into the second

term on the r.h.s. of Eq. (2.145) gives the second order terms

Nk
l m(s̃)~z l

[1](s̃)~z m
[1](s̃) =



−δ a0

−
1
2

k2 (x0 + s̃ a0)2 +
1
2

k2 (y0 + s̃ b0)2

−δ b0

k2 (x0 + s̃ a0) (y0 + s̃ b0)

−
1
2

a2
0 −

1
2

b2
0

0



. (2.158)

Multiplying by transfer matrices and integrating as in Eq. (2.152) finally gives

~z[2](L) =



k2 L4

[
−

1
4

( x0

L

)2
−

1
2

( x0

L

)
a0 −

1
24

a2
0 +

1
6

(y0

L

)
b0 +

1
24

b2
0

]
− L a0 δ

k2 L3

[
−

1
2

( x0

L

)2
−

1
2

( x0

L

)
a0 −

1
6

a2
0 +

1
2

(y0

L

)
b0 +

1
6

b2
0

]
k2 L4

[
1
2

( x0

L

) (y0

L

)
+

1
6

(y0

L

)
a0 +

1
6

( x0

L

)
b0 +

1
12

a0 b0

]
− L b0 δ

k2 L3

[( x0

L

) (y0

L

)
+

1
2

(y0

L

)
a0 +

1
2

( x0

L

)
b0 +

1
3

a0 b0

]
−

1
2

L
(
a2

0 + b2
0

)
0



. (2.159)

From this one is able to read off all of the second order terms. For example,

t126 = −L and t244 =
1
6

k2 L3.

By definition, a sextupole moment can only affect the second order motion

and higher of a particle. This is useful for the lattice designer, because once the

first order optics have been determined then sextupole magnets can be intro-

duced and tuned. In particular, they are useful for controlling the second order

dispersion.

It should be noted that, in practice, the nonlinear transfer map terms are cal-

culated numerically using techniques from differential algebra, and with great

efficiency. For an overview, see section 2.3.7 of Chao & Tigner (2006).
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Nonlinear Dispersion and Time of Flight

In general, the dispersive orbit is the result of mapping a particle that has phase

space coordinates all zero except for a finite momentum deviation. In other

words, ifM is a phase space map, then the dispersive orbit through the map is

given by 

xδ

aδ

yδ

bδ

zδ

δ



=M◦



0

0

0

0

0

δ



, (2.160)

where the subscript δ is a reminder of the δ dependence. For horizontal refer-

ence orbit we always have yδ = 0 and bδ = 0, because there are no vertical bends

to create vertical dispersion. Expanding these functions in δ gives

xδ(s) = D(s) δ + t166(s) δ2 + O
(
ε2

)
, (2.161)

aδ(s) = D′(s) δ + t266(s) δ2 + O
(
ε2

)
, (2.162)

zδ(s) = r56(s) δ + t566(s) δ2 + O
(
ε2

)
, (2.163)

revealing the first order dispersion function D(s) and its slope D′(s). The time of

flight term r56(s) can be found using Eq. (2.111), giving

r56(s) = −

s∫
0

κ0(s̃) D(s̃) ds̃. (2.164)

The dispersive orbit is dependant on the reference location, chosen here to

be at s = 0. For example, suppose that the map from s = 0 to s = s1 is known to

second order, and that we have a sextupole magnet with length L and sextupole
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moment k2 beginning at s = s1. The dispersive orbit at s2 = s1 + L, the end of this

element, is then

xδ(s2)

aδ(s2)

zδ(s2)

δ


=



D(s1) + L D′(s1)

D′(s1)

r56(s1)

1


δ +



t166(s2)

t266(s2)

t566(s2)

0


δ2 + O

(
δ3

)
, (2.165)

with the second order terms

t166(s2) =t166(s1) + L t266(s1) −
1
4

k2L2 [D0(s1)]2

−
1
2

k2L3D(s1) D′(s1) −
1

24
k2L4 [

D′(s1)
]2
− L D′(s1), (2.166)

t266(s2) =t266(s1) −
1
2

k2L [D(s1)]2 −
1
2

k2L2D(s1) D′(s1), (2.167)

t566(s2) =t566(s1) −
1
2

L
[
D′(s1)

]2 . (2.168)

This shows that a sextupole must be in a section with nonzero first order disper-

sion in order to affect the second order dispersion, and that, roughly speaking,

sextupole strengths can be weakened as the first order dispersion is strength-

ened.

2.2 Radiative Emittance Growth

When a bunch is accelerated, each particle can emit photons by synchrotron ra-

diation, which perturb the orbits of these particles and can result in an increase

in emittance. The following argument, which originated in Sands (1970), gives

an estimate for this emittance growth.

Suppose that a particle with energy E0 is traveling in a dipole magnet with

horizontal position x(s) and slope x′(s) at s, and emits a photon with energy Eγ.
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Neglecting the opening angle of this radiation, the particle’s position and slope

are approximately unchanged, but its energy has been lowered, and therefore

according to Eqs. (2.105–2.106) its position and slope due to betatron motion are

changed by

∆xβ(s) = D(s)
Eγ

E0
, (2.169)

∆x′β(s) = D′(s)
Eγ

E0
, (2.170)

which corresponds to a variation in amplitude

2 ∆J = βx ∆
(
x′β

2
)

+ 2αx ∆
(
xβ x′β

)
+ γx ∆

(
x2
β

)
. (2.171)

The variation in x2
β is calculated as

∆
(
x2
β

)
=

(
xβ + ∆xβ

)2
− x2

β,

= 2 xβ ∆xβ +
(
∆xβ

)2
,

= 2 xβ D
Eγ

E0
+ D2

E2
γ

E2
0

,

(2.172)

and similarly

∆
(
xβ x′β

)
= xβ D′

Eγ

E0
+ x′β D

Eγ

E0
+ D D′

(
Eγ

E0

)2

, (2.173)

∆
(
x′β

2
)

= 2 x′β D′
(
Eγ

E0

)
+ D′2

(
Eγ

E0

)2

. (2.174)

Factoring out the energies, we have

2 ∆J = H(s)
(
Eγ

E0

)2

, (2.175)

H(s) ≡ βx(s)
[
D′(s)

]2
+ 2αx(s) D(s) D′(s) + γx(s) [D(s)]2 . (2.176)

Averaging over the synchrotron radiation power spectrum and integrating

through a distance L in the lattice gives the change in normalized emittance

as

∆εN =
55

48
√

3

rc~c
mc2

L∫
0

H(s) |κ(s)|3 γ6 ds. (2.177)
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This formula is especially useful for lattice design, because it is written in terms

of the Twiss parameters and dispersion.

2.3 Accelerator Simulation

In the previous sections we have seen how the evolution of a beam through an

individual element can be understood through the linear and nonlinear maps

of phase space coordinates through that element, and we have seen how to cal-

culate these maps. The transportation of a beam through a lattice is then under-

stood through the concatenation of individual element maps.

For lattices of few elements or high symmetry it can occasionally be enlight-

ening to do such calculations by hand. Realistic accelerators, however, are of-

ten described by complicated lattices with many elements, and the modeling of

these machines requires the inclusion of many effects beyond the single parti-

cle equations of motion, for example coherent synchrotron radiation, described

in Chapter 5. Furthermore, lattices often need to be designed to provide certain

beam characteristics, such as beta functions at a point, by simultaneously tuning

attributes of several elements, such as quadrupole moments, and these charac-

teristics often depend on the element attributes in highly nonlinear ways. For

these reasons the aid of a computer is necessary in the design and simulation of

modern particle accelerators.

Many different codes are in use, with some in more active development than

others. A table of some of the more easily available ones is shown in section 2.2.7

of Chao & Tigner (2006). Many are derived from MAD (Methodical Accelerator

Design), which is perhaps the most commonly known program (Grote & Iselin,
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1991). The work in this dissertation is primarily done using a code called Bmad .

2.3.1 Bmad & Tao

Bmad is a set of subroutine libraries for simulating relativistic charged beams

in a particle accelerator, and has been in development and use at Cornell Uni-

versity since 1996 (for a brief introduction see Sagan, 2006). It is written in a

modular fashion, primarily in Fortran 90, so that a user may relatively easily

build a custom program to perform a particular simulation. A lattice in Bmad is

described by a text file written in an extended form of the MAD syntax, and can

describe an arbitrary arrangement of common accelerator elements, e.g. bends,

quadrupole magnets, and accelerating cavities.

The capabilities of Bmad include essentially all of the calculations described

in this chapter. Once a lattice is loaded, it can compute Twiss parameters and

dispersion through multiple elements, calculate and manipulate Taylor maps to

arbitrary order, integrate emittance growth formulas such as Eq. (2.177), and cal-

culate a myriad of other important accelerator physics quantities not discussed

here. In particular, Bmad has the ability to track point particles through the lat-

tice and apply effects to these particles along the way.

Designing and testing accelerator lattices is such a common use for Bmad

that Sagan, along with Jeffrey Smith, created the Tao (Tool for accelerator opti-

mization) program, which is now in active development along with Bmad . Tao

is an interactive command-line environment (along with a plot window) that

calls Bmad routines to perform lattice and beam calculations. Many of the plots

in Chapters 3 and 4 were generated using Tao .
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The main capability of Tao is multi-dimensional optimization of an acceler-

ator lattice. Optimization in general is an important mathematical topic in the

field of operations research, and has a wide variety of applications ranging from

stock portfolio allocation to the timing of traffic lights in a city. In optimization,

one is concerned with a system S that is determined by a set of independent

variables Vm, and a merit function M that somehow encapsulates the overall

quality of S. This merit function is typically composed of out of a set of con-

straints Cn with the form

M =
∑

n

wn C
2
n. (2.178)

Each constraint represents some property of S that should be minimized, and

the set of weights wn determines the relative importance each constraint. A

constraint is typically of the form

C = X(S) − X̂, (2.179)

where X is a number that can be computed from S, and X̂ is the desired value

for that number. For example, if S is an accelerator lattice, then X could be the

horizontal beta function βx in meters at the center of an undulator, and X̂ = 2.5

could be a value specified by a beamline user. Constraints occasionally have the

form of

C = max
[
X(S) − X̄, 0

]
, (2.180)

which is zero as long as X(S) is less than X̄ For example, X(S) could be the

maximum beta function in meters through a section of the lattice, and X̄ = 100

could be the maximum allowed.

An optimizer is an algorithm that takes an initial set Vm and varies each

to find a minimum for M. An optimizer generally knows nothing of the un-

derlying logic or physics that determines the merit function, and can often be
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treated as a ‘black box’ for solving complicated systems. Tao incorporates a va-

riety of optimizers, but typically only two are needed for lattice design. One is

the Differential Evolution (Price et al., 2005) method, which is a heuristic algo-

rithm inspired by evolutionary biology. It works by taking an initial random

population of variables {Vi} corresponding to a set of merit functions {M}, and

combines and alters them to produce a new population of variables with lower

associated merit functions. It is a very effective global optimizer. The other is

the Levenberg–Marquardt algorithm, which is a modified method of steepest

descent (see for example Press et al., 2007). It takes an initialVn and varies each

variable to calculate a local derivative of the merit function, and steps the so-

lution accordingly. This algorithm is especially useful when the initial solution

is close to the desired solution, meaning that it is a good local optimizer. It can

also be surprisingly good even when the solution seems to not be very local.

2.3.2 Optimization Example

As an example of a typical optimization, consider a section of an accelerator at

the end of a linac in Fig. 2.6, which shows all of the constraints for the section.

Particles exit the linac at 5 GeV, and must have a specified width in undulator,

which translates into the constraints βx = βy = 2.5 m and αx = αy = 0 in the center

of the undulator. The dispersion and its slope must also be zero in the undula-

tor, but that is automatically satisfied because there is no dispersion exiting the

linac. A first optimization uses the five quadrupole strengths prior to the first

undulator as variables with a merit function composed of these constraints, and

results in the beta functions plotted.
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Following the undulator is a three bend isochronous achromat, which must

end with D = 0, D′ = 0, and r56 = 0. Because the section begins with D = 0

and D′ = 0, and is symmetric about the center bend, the achromatic condition

can be satisfied by using a constraint of D′ = 0 in the middle of the center bend,

and varying quadrupole strengths in pairs about this point. Also because of

the symmetry, using r56 = 0 at this point will satisfy the isochronous condition,

and using the constraints that αx = αy = 0 at this point will result in beta func-

tions that lead into the second undulator with the same Twiss parameters as

the first undulator. Finally these presence of bends will result in radiative emit-

tance growth ∆εN according to Eq. (2.177), so this is used as constraint with the

form in Eq. (2.180). A second optimization thus varies the quadrupole strengths

between the undulators symmetrically, resulting in the beta functions and dis-

persion plotted.

The second order dispersion is required to give t266 = 0 and t566 = 0 in the

middle of the second undulator. Using the four sextupole strengths as variables

and a merit function with these constraints, a third optimization results in the

second order dispersion t166 plotted.

In principle all three optimizations could be combined, using all of the con-

straints mentioned and varying all of the quadrupole and sextupole strengths.

In practice, such an approach can be very time consuming, with the optimiza-

tion taking perhaps days to complete on modern computer hardware. Instead,

an intelligent partitioning of this optimization, and recognizing the symmetries,

can reduce the computation time to be on the order of minutes.
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Undulator

Quadrupole

Dipole

Sextupole

RF Cavity

Figure 2.6: Example of the optimization of a section following a linac. The constraints at different points are indicated by
the arrows. The vertical size of the quadrupole and sextupole magnets represents their k1 and k2 strengths, respectively.
This section is identical to one later shown in Section 3.2.3.
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Figure 2.7: Trajectories of particles in the horizontal plane using the Twiss parameters and dispersion from Fig. 2.6. The
particles are initially distributed with the same amplitude and different phases and energies shown in Fig. 2.8(a), and
represent a normalized emittance of 0.3 mm-mrad at 5 GeV and momentum deviations δ ε
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(b) Middle of Undulator
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(c) Near Peak Dispersion
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(d) Middle of Achromat

Figure 2.8: Particles in the horizontal phase space at selected points in Fig. 2.7.
The colors represent different momentum deviations δ, with blue representing
positive δ, and red representing negative δ. They all have the same amplitude J
with different phases φ.

Finally, to illustrate what the result of these optimizations will do to a beam,

individual particle trajectories in the horizontal plane are shown in Fig. 2.7.

They are calculated using the Twiss parameters and dispersion from Fig. 2.6

according to Eqs. (2.105–2.106). The initial distribution of particles is a matched

ellipse shown in Fig. 2.8(a). This ellipse contains particles with different ener-

gies. Manipulation by the first five quadrupole magnets brings this distribution

to have a small width shown in Fig. 2.8(b). At the point where the dispersion

is largest, ellipses with different energies separate, shown in Fig. 2.8(c). The

distribution in the center of the achromat is show in Fig. 2.8(d).
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CHAPTER 3

MINIMAL ERL

3.1 Introduction & Layout

The Minimal ERL (MERL) is a realistic lattice and layout for a high energy ERL

X-ray light source. It is used to show all of the major issues that one must an-

alyze when designing an ERL. The layout is especially designed to be as com-

pact as possible given practical attributes for typical beam transport elements,

without reference to any particular topography. It is highly symmetric, which

greatly simplified the amount of effort needed to design and optimize the beam

optics. This machine is essentially a simplification of Cornell ERL described in

Chapter 4, and uses many of the same operating parameters as that design. In

particular, it uses the same operating modes for particle bunches, as listed in

Tab. 3.1.

The MERL is primarily a light source, and has space for 18 insertion devices.

In order to produce high quality X-rays, it must:

• Accelerate particles from 10 MeV to 5 GeV

• Send bunches with low emittance through 18 insertion devices

• Control bunch length

We will assume the existence of a injector that can merge bunches of 10 MeV

electrons into the main linacs of the MERL. In the default operating mode (Mode

A), these bunches will have 77 pC of charge and will occur at a repetition rate

of 1.3 GHZ, which corresponds to an average current of 100 mA.
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Table 3.1: MERL & CERL operating modes at 5 GeV

Mode A Mode B Mode C

E 5 5 5 GeV
I 100 25 1 mA
Q 77 19 1000 pC
εN,x, εN,y 0.3 0.08 5.0 mm-mrad
εx, εy 31 8.2 511 pm
σz/c 2000 2000 100 fs
σδ 2 2 30 10−4

As mentioned in Chapter 1, such a high current an energy would require

an unreasonable amount of electrical power for a linear machine, so the MERL

recovers energy from these bunches. In order to operate as an ERL, the machine

must then:

• Ensure the survival of all particles

• Decelerate and recover 4.990 GeV per particle (minus radiative losses)

• Discard 10 MeV particles

Here we assume the existence of a dump that can extract and absorb 10 MeV

electrons.

The MERL layout is divided into six sections, shown in Fig. 3.1. The injector

(IN) delivers a 10 MeV bean into Linac A (LA), which accelerates it to 2.505 GeV.

The beam then goes through a Turnaround Arc (TA) and connects to Linac B

(LB), which further accelerates it to 5 GeV. It then traverses a Return Arc (RA)

containing eighteen insertion devices. The beam is then reintroduced to the

beginning of LA at the decelerating phase and returns 2.495 GeV per particle to

the RF cavities. Now at 2.505 GeV, the beam goes through the same TA, and then

into LB where 2.495 GeV per particle is recovered. Finally, the 10 MeV beam is
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sent to the dump (DU) at the end of LB.

The dimensions of this machine are primarily governed by the lengths of the

linacs and the number and lengths of the insertion devices. The linacs are each

taken to be 318 m long, based on the Cornell ERL designs, and all 18 insertion

devices are taken to be 5 m long undulators. Allotting a minimal amount of

space for dipole, quadrupole, and sextupole magnets, with suitable drifts in

between leads to a 465 m long RA containing the undulators, which lies roughly

on a circle with a 122 m radius. The TA is designed to be as short as possible with

special consideration given to the heat load on the chamber wall. In general, the

power per unit length radiated on the beam chamber wall in a dipole magnet

due to incoherent synchrotron radiation is given by〈P
L

〉
=

2
3

rc m c2 β3 γ4 κ2 I
q
, (3.1)

where I is the average current, q is the elementary charge, and 1/κ is the magnet

bending radius. Here the bends are chosen to give ≈ 750 W/m for 200 mA

electron beam in the TA, and allotting for focusing elements makes it 116 m

long. Incidentally, Eq. (3.1) gives ≈ 500 W/m for a 100 mA electron beam in the

RA. The total length of the machine is then 1217 m.
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LB

TARA

200 m

IN

DU

Figure 3.1: The MERL layout with section labels. A bunch is accelerated to 10 MeV in the injector (IN), and injected into
the beginning of Linac A (LA), which accelerates it to 2.5 GeV. The bunch traverses Turnaround A (TA), and gains another
2.5 GeV through Linac B (LB). At 5 GeV, the bunch travels through 18 undulators in the Return Arc (RA). It then reenters
LA off phase, which decelerates it to 2.5 GeV, enters Turnaround B (TB), and is decelerated to 10 MeV through LB. Finally
it is extracted and sent to the Dump (DU).
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3.2 Optics

The majority of the optics design is focused on the linear optics. The selection

and ordering of dipole magnets and quadrupole magnets is chosen with this in

mind. Once the lengths of drifts and strengths of bends have been settled upon,

fixing the layout, the optics optimization typically then only involves choosing

the quadrupole strengths. Second order effects can be adjusted separately by

sextupole strengths.

The optics in the MERL must be tuned to be in accordance with the X-ray

and ERL requirements described above. For the X-ray requirements, this means

that the initially injected bunch emittance must be preserved through the linacs

and through TA, which amounts to minimizing the radiative emittance growth

given by Eq. (2.177). Additionally, the beta functions and dispersion in the

undulators determine the X-ray source spot size, and must be well controlled

throughout the entire machine. Controlling the bunch length amounts to con-

trolling time of flight terms and linac phases, and is further discussed in Sec-

tion 3.5. For the ERL requirements, the linac optics must be able control two

beams of different energies, and nonlinear effects must be controlled to insure

that all particles survive their passage through the machine. Finally, the time of

flight terms need to be controlled to minimize the energy spread at the dump.

The following sections describe the choice and optimization of the optics for

each of the major sections. By design, each of these sections can be optimized

separately and pieced together to form the total optics solution. The complete

solution for the beta functions and dispersion is shown in Fig. 3.3. The radiative

emittance growth is shown in Fig. 3.2.
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Figure 3.2: Beta functions and dispersion for the MERL, including the energy recovery pass.
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RA TA TA LA LB LA  LB 
18 Undulators      Energy Recovery 

Energy Recovery 

Figure 3.3: Radiative emittance growth εN and total energy E in the MERL, including the energy recovery pass.
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3.2.1 Linacs

The linacs are the engines of an ERL lightsource. The linacs in the MERL

consist of 64 identical cryomodules, each of which can give or take approxi-

mately 78 MeV to or from the beam, and operate at a fundamental frequency of

frf = 1.3 GHz. Each cryomodule contains one quadrupole magnet. Because these

are similar to those of the CERL, they are further described in Section 4.3.1.

The main optics requirement in a linac section is to keep the beta functions

as small as possible for both the accelerating and decelerating beams. This is

done primarily to suppress the effect of wakefields in the accelerating cavities,

which can result in the beam breakup instability (see for example section 4.3 of

Chao & Tigner, 2006). Additionally, the Twiss parameters must be matched to

the adjacent sections. In particular, the Twiss parameters at the end of LA must

be the same for both beams, and similarly must be the same at the beginning of

LB, in order to have a single set of optics in the TA. There is no dispersion in the

linacs. Some optics guidelines for ERL linacs can be found in Douglas (2000)

and Bazarov et al. (2001).

A solution satisfying these constraints is sought by varying the quadrupole

fields. Due to the symmetry in the layout, a good solution for both LA and LB

can be found by finding a solution for one linac, and mirroring the quadrupole

strengths in the other. Such a scheme is shown in Fig 3.4. In this case it is

simplest to optimize LB by varying the 32 quadrupole gradients as well as the

beginning Twiss parameters, set to be the same for both beams.

The difficulty in this optimization is due to the presence of two beams of

different energies . In nearly all other sections the quadrupole strength k1 is
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Figure 3.4: A mirroring scheme for the MERL linac optics. Different Twiss pa-
rameters from the IN and RA converge to a single set at the entrance of the TA.
The TA optics reverse the signs of αx and αy to enter into LB. Similarly, the RA
optics reverse the signs of αx and αy from the high energy beam at the end of LB.

treated as a variable, as that is the quantity that affects linear optics. Multi-

pole strengths, however, are normalized by the reference particle momentum

according to Eq. (2.55), so here we vary the physical magnetic field gradient in-

stead. This means that the ratio of the quadrupole strengths seen by the beams

is inversely proportional to the ratio of their momenta, as in

[k1]d =

[
p0

]
a[

p0
]
d

[k1]a , (3.2)

in which the subscripts a and d denote the decelerating and accelerating beams,

respectively. For example, in the first quadrupole magnet in the first cryomod-

ule of LA, where the accelerating beam is at (10 + 78) MeV and the decelerating

beam is at (5000−78) MeV, we have the quadrupole strength [k2]d ' [k2]a /56. The

resulting strengths for all 64 quadrupole magnets seen by the different beams

are shown in Fig 3.5. Both beams have the same energy at the end of LA. Be-

cause quadrupole gradients at the beginning of LA and end of LB must be weak
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enough so as to not over-focus the low energy beam, it becomes difficult for

them to focus the high energy beam.

The beta functions for the first pass (accelerating) beam and energy recov-

ery (decelerating) beam in LB are shown in Fig. 3.6. Near the entrance to this

section the beams are at similar energies, and the beta functions are therefore

similar. Near the end, where the beam energies are the most different, so are the

beta functions. There is no known rule for finding good solutions in this situa-

tion, though in practice it has been found that alternating positive and negative

quadrupole strengths gives a good starting point. In this solution, we see that

the end of LB for the second pass beam has very regularly focusing and defo-

cusing beta functions, while the beta functions for the first pass beam behave

similar to those in a long drift. The optics for LA are shown in Fig. 3.7.

The relative effectiveness of quadrupole magnets on the different beams

happens to be a virtue for matching from the IN and to the DU, because

quadrupole fields near those sections can be tuned for the low energy beam

with little effect on the high energy beam. Therefore matching from the IN and

to the DU is relatively simple compared to the overall optimization. For sim-

plicity, they are just taken to be the same in this design.
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Figure 3.5: Quadrupole k1 strengths seen by the accelerating beam (blue bars) and decelerating beam (red bars). Because
of the mirroring scheme shown in Fig. 3.4, these strengths are symmetric between quadrupoles 32 and 33.
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2.505 GeV

10 MeV

2.505 GeV

5 GeV

LB Energy Recovery

LB First Pass

Figure 3.6: Beta functions for the first pass (accelerating) beam and energy recovery (decelerating) beam in LB. The
optimization criteria are to keep the beta functions as small as possible and to match the low energy beam at s = 0 to the
Twiss parameters from the IN.
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Figure 3.7: Beta functions for the first pass (accelerating) beam and energy recovery (decelerating) beam in LA. This is
essentially the mirror image of the optics for LB shown in Fig. 3.6
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Figure 3.8: Layout for the TA. This section is divided into three

3.2.2 Turnaround Arc

The purpose of the TA is to connect LA to LB and reverse the slope of the beta

functions, according to the scheme in Fig 3.4. In order to deliver zero dispersion

to LB, this section is made to be achromatic to second order. Additionally, to

control the bunch length and to aid efficient energy recovery (further described

in Section 3.4), the time of flight terms r56 and t566 are set to zero, making the

section isochronous to second order.

The TA layout is shown in Fig. 3.8. It is partitioned into three types of sec-

tions, called Cells:

Cell A Straight section with five quadrupole magnets, matches Twiss parame-

ters from LA into Cell B

Cell B Periodic section containing a three-bend isochronous achromat – occurs

seven times

Cell C The mirror image of Cells A and B, matches Twiss parameters into LB
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Figure 3.9: The layout for the beginning of the MERL TA, showing the cell par-
titions.

The bulk of the TA is built out of Cell B sections, so most of the effort in opti-

mizing the TA is focused a single such section. The beta functions are required

to by periodic, so that many sections can be linked together. Once a good Cell B

optics is found, the five quadrupole strengths in Cell A are varied to match the

Twiss parameters from LA into the first Cell B. Because of the symmetry, Cell C

quadrupole strengths can be set to the mirror image of those from Cell A and

the first Cell B, and will automatically end with the correct Twiss parameters for

LB. Note that there are a total of eight sets of three-bend isochronous achromats

in the TA.

The layout and optics for Cell A and the first Cell B are shown in Fig. 3.9

and Fig. 3.10, respectively. The linear optics in Cell B are optimized by varying

the nine quadrupole strengths. For simplicity these strengths are varied in pairs

symmetric about the center bend, so effectively there are only five variables.

To make the section achromatic, we demand that the dispersion r16 = 0 and its

slope r26 = 0 at the end of the third bend. To make the section isochronous,

we demand that r26 = 0 and r56 = 0 in the center of the middle bend. Finally,

we demand that the radiative emittance growth, described by Eq. (2.177), be as

small as possible.
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Also shown in Fig. 3.10 is the second order dispersion t166. This is manip-

ulated by varying the four sextupole strengths in Cell B, and is related to the

second order time of flight t566. It would be simplest to make a single Cell B

isochronous to second order (t566 = 0) and achromatic to second order (t166 = 0,

t266 = 0), but it was found that such constraints demanded very large sextupole

strengths. These strengths need not be as large if the achromatic constraint is

relaxed for the cell, and so these constraints are replaced by the demand that

t266 = 0 in the center of the eighth quadrupole magnet. Because the layout and

strengths are symmetric about this point, sextupole strengths in the following

Cell B can be set to those in the reverse ordering of those in the first Cell B, auto-

matically making a pair of Cell B sections isochronous and achromatic to second

order.

The optics for the entire TA are shown in Fig. 3.11. There one can see the

pairing of the Cell B sections as related to the second order dispersion. The

radiative emittance growth and time of flight terms are shown in Fig. 3.12.
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TA Cell A TA Cell BLA TA Cell B

Figure 3.10: Optics for the MERL TA Cell A and first Cell B. Cell B is optimized to have periodic beta functions, to
be isochronous, to be achromatic, and to minimize radiative emittance growth by varying nine quadrupole strengths
symmetrically about the center of the center dipole magnet. It is made to be isochronous to second order by varying four
sextupole strengths, and a pair of Cell B sections is made to be achromatic to second order by makeing t266 = 0 in the
center of the eight quadrupole, and mirroring sextupole strengths for the following Cell B.
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Figure 3.11: Optics for the full MERL TA section. Here one can see that each Cell B is achromatic to first order, and that
pairs of Cell B sections are achromatic to second order. One also sees that the exiting beta functions have reversed slopes
relative to the entering beta functions, as required by the linac optics scheme in Fig. 3.4.
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Figure 3.12: Radiative emittance grown and time of flight terms in the full MERL TA section. Here one can see that each
Cell B is isochronous to second order. This emittance growth is very small compared to the initial Mode B normalized
emittance of 8 × 10−2 mm-mrad.
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3.2.3 Return Arc

The RA optics, similar to the TA optics, need to accept the Twiss parameters

from LB an reverse the signs of αx and αy from the entrance to the end, and

furthermore need to be isochronous and achromatic. This section houses all 18

undulators, and the beam quality needs to be preserved through each of them.

Additionally, in order to recover the energy from this 5 GeV beam, the total time

for the center of a bunch to traverse the RA needs to be adjustable by one period

of the fundamental mode of the linacs (1/ frf), so that it will arrive out of phase

with LA by π radians. The TA avoids such a problem because the RF phase

of LB can be chosen relative to the RF phase of LA. We will assume that these

technical challenges will be solved in the machine operation.

The beginning of the RA layout is shown in Fig. 3.8. It is divided into three

types of cells:

Cell A Straight section with five quadrupole magnets, matches Twiss parame-

ters from LB into Cell B

Cell B Periodic section containing a three-bend isochronous achromat – occurs

eighteen times

Cell C The mirror image of Cell A, matches Twiss parameters into LA for en-

ergy recovery

Note that this is similar to the partitioning in the TA, and the same symmetries

exist.

The RA Cell B is essentially the same as the TA Cell B, except that the dipole

magnet lengths are doubled from (1 m, 2 m, 1 m) to (2 m, 4 m, 2 m), respectively,
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in order to reduce the radiation load on the wall. Additionally, a 5 m undulator

with quadrupole magnets at the ends replaces the eighth quadrupole magnet,

and some of the drifts have changed lengths. The optimization criteria are also

nearly the same: r16 = 0 and r26 = 0 at the end of the third bend, and r26 = 0

and r56 = 0 in the center of the second bend. The second order dispersion is also

controlled symmetrically over two cells by sextupole magnets. Note that this is

the same section used as an example in Section 2.3.2.

The beta functions are periodic, but unlike the TA Cell B, the RA Cell B has

fixed entering Twiss parameters. This is because the Twiss parameters in the

undulator are chosen by the X-ray user. For baseline values we will assume

them to be half the length of the undulator; that is, βx = βy = 2.5 m and αx = αy =

0 in the center of the undulator. Because the undulator to first order basically

behaves like a drift, these values can propagated to the beginning of the cell

using Eq. (2.93), giving the entering Twiss parameters as βx = βy = 6.1 m and

αx = αy = 1.2.

The optics for Cell A and two Cell B sections are shown in Fig. 3.14. The

optics for the entire RA are shown in Fig. 3.15, with the radiative emittance

growth and time of flight terms shown in Fig. 3.16.
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LBRA

Cell A

 Cell BCell B

50 m 

Cell B

Figure 3.13: The layout for the beginning of the MERL RA, which contains 18 undulators. The blue lines are 80 m long
and represent the X-ray beamlines projecting out of the undulators.
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RA Cell B01 RA Cell B02RA Cell ALB . . .

Figure 3.14: Optics for the MERL RA Cell A and two Cell B sections. The five quadrupole magnets in Cell A are used
to match the exiting Twiss parameters from LB into Cell B. The Twiss parameters in the beginning and end of Cell B are
fixed by the Twiss parameters in the center of the undulator. Cell B is further made to be achromatic and isochronous by
requiring that r56 = 0 and D′ = 0 in the center of the center bend, and mirroring quadrupole strengths about this point.
The second order dispersion is controlled by the sextupole magnets to make a pair of Cell B sections achromatic and
isochronous to second order.
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Figure 3.15: Optics for the MERL Return Arc
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Figure 3.16: Radiative Emittance Growth and Time of Flight terms in the MERL RA.
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3.3 Particle Tracking

Much effort has been taken in designing a lattice that controls the Twiss pa-

rameters, dispersion, and time of flight terms in the lattice. The emittance in

Eq. (2.100), however, is only invariant for linear transformations. To verify that

nonlinear terms do not ruin the initial emittance, we employ the method of

tracking particles through the lattice.

As mentioned in Section 2.3.1, Bmad has the ability to track particles element

by element through the lattice. Each element is treated as a truncated Taylor

map of phase space coordinates, and particles are propagated through these ele-

ments by applying the maps in the appropriate order. At each element, statistics

such as emittance and bunch length are computed and saved.

The initial distribution, for simplicity, is taken to be a Gaussian in the hor-

izontal, vertical, and longitudinal phase space planes. Each transverse phase

space is furthermore generated to match the phase space ellipse shown in

Fig. 2.4 for the appropriate Twiss parameters.

In practice, it is impossible to simulate all of the particles in a typical bunch,

the number of which can be on order of billions. Therefore we take a fraction

of these particles to represent a bunch. This can be either be done by taking

equally weighted particles and distributing them in phase space randomly ac-

cording to the desired distribution, or by placing particles in phase space, and

then differently weighting them according to the distribution. Both methods are

useful, but the latter has the advantage of sampling more of the outlying parti-

cles. Such a method is shown in Fig. 3.17, in which particles in the horizontal,

vertical, and longitudinal phase spaces are placed on discrete ellipses sampling
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the bunch out to three standard deviations in each dimension.

These particles at the beginning and end of the RA are shown in Fig. 3.18.

At the beginning of the RA, we see that the longitudinal phase space takes on

the characteristic shape of an on-crest distribution through a linac, previously

seen in Fig. 2.5. The horizonal phase space looks relatively unperturbed, while

the vertical phase space shows the signs of chromaticity, meaning that particles

with different energies have different phase advances. Particles at the end of the

RA are more noticeably disturbed, indicating that there may be some emittance

growth.

The calculated horizontal and vertical widths σx and σy for these particles

through the RA are shown in Fig. 3.20, along with the normalized horizon-

tal and vertical emittances. These quantities show some marginal increases

as particles advance through the arc, with the vertical phase space suffering

slightly more than the horizontal phase space. Normalized emittances and en-

ergy spread through the entire MERL are shown in Fig. 3.21. The bunch widths

and length are shown in Fig. 3.22.

The particles at the end of the MERL are shown in Fig. 3.19, calculated

with and without the sextupole magnets turned on. Here we pleasantly find

that turning off the sextupole magnets results in negligible emittance growth

through the lattice. The cost is a small increase in energy spread.

89



Figure 3.17: Phase space slices of the initial particle distribution used in the MERL. The colors represent different energies,
with blue being higher and red being lower than the reference particle energy. The sizes of the particles in these plots are
indicative of their sampling weight. Note that particles “overlap” in these plots, masking the fact that there are 36,000
particles present.
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Figure 3.18: MERL Mode A phase space slices for particles at the beginning of the RA (top row), and at the end of the RA
(bottom row).
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Figure 3.19: Particles at the end of the MERL. The top row is with sextupoles on, and the bottom row is with sextupoles
off.
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Figure 3.20: Bunch widths and normalized emittances through the RA, calculated using an initial distribution shown in
Fig. 3.17.
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Figure 3.21: MERL normalized emittances and energy spread from particle tracking, using an initial distribution shown
in Fig. 3.17.
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Figure 3.22: MERL bunch widths and bunch length from particle tracking, using an initial distribution shown in Fig. 3.17.
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3.4 Time of Flight in ERL Arcs

A linac does not accelerate all particles uniformly, and likewise does not decel-

erate particles uniformly. When an ERL is built out of linacs connected by arcs,

care must be taken to insure that all particles in a bunch arrive at the beginning

of each linac with the correct phases in order to achieve maximum efficiency.

To make this happen, the TA and RA are ideally isochronous, and designed to

be so to second order in Sections 3.2.2 and 3.2.3. This section will examine how

precisely isochronous these arcs must be.

From Eq. (2.118), the longitudinal phase space coordinates (z1, δ1) at the end

of a linac given initial coordinates (z0, δ0) at the beginning of the linac are

z1 = z0, (3.3)

δ1 =

[
1 −
E0

E1

] [
cos (φrf − krf z0 + φerror)

cos φrf
− 1

]
+
E0

E1
δ0, (3.4)

where a possible phase error φerror has been added, representing an error in

the arrival time of the center of a bunch with respect to the ideal accelerating

wave. An arc, on the other hand, evolves initial coordinates (z0, δ0) according to

Eq.(2.163) as

z1 = z0 + r56 δ0 + t566 δ
2
0 + u5666 δ

3
0 + . . . , (3.5)

δ1 = δ0, (3.6)

which includes a possible third order time of flight term u5666. Synchrotron ra-

diation losses have been neglected for simplicity.

Successful energy recovery can be quantified by requiring the distribution

of energy deviations to have max |δ| < 0.5 at the dump. These energy deviations

are straightforwardly calculated by successive maps of Eqs. (3.3–3.4) through
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the linacs and Eqs. (3.5–3.6) through the arcs, starting with coordinates (z, δ)IN at

the injector and ending with coordinates (z, δ)DU at the dump. When there are

no linac phase errors, and the arcs are isochronous to all orders, then this map

is simple: (z, δ)DU = (z, δ)IN. The maximum absolute energy deviation will then

be on the order of 3 × σδ0, where σδ0 in the injected energy spread.

In the MERL, all bunches are to be injected with a bunch length σz0 = (2c) ps

and energy spread σδ0 = 2×10−4. Perfect linac phases and perfectly isochronous

arcs therefore result in final energy deviations well within the 50% range at the

dump. When the arcs are imperfectly isochronous, the energy deviation at the

dump can be expanded for small injected particle position zIN and small φrf ,

giving

δDU =

[(
ETA

EIN
+
EIN

ETA
− 2

)
krf rTA +

(
ERA

EIN
+
EIN

ERA
− 2

)
1
2

krf rTA

]
×

[
3 φrf k2

rf z2
IN − k3

rf z3
IN

]
+ . . . ,

(3.7)

where rTA and rRA represent the r56 terms for the linear maps of the TA and RA,

respectively. The ratio ERA/ETA ' 2, and the ratio ERA/EIN � 1, so this equation

is approximately

δDU '
1
2
ERA

EIN
(krf rRA + krf rTA)

(
3 φrf k2

rf z2
IN − k3

rf z3
IN

)
(3.8)

This implies that particles with |zIN| ≤ 3 ×σz0 will end up within the 50% energy

spread range at the dump as long as

|rTA + rRA| .
1

54
EIN

ERA

1
k3

rf σ
2
z0 (|φrf | + krf σz0)

(3.9)

Note that krf σz0 ≈ 1.6 × 10−2 corresponding to approximately 0.94◦, and

EIN/ERA = 1/500. When all bunches are synchronized with φrf = 0 for both

linacs, then Eq. (3.9) implies that |rRA + rTA| . 31 cm. This can be seen in Fig. 3.23,
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(a) φrf = 0 and no linac phase errors (b) φrf = 0 and 0.1◦ linac phase errors

Figure 3.23: Maximum absolute energy deviation at the dump for combina-
tions of r56 in the TA and RA, assuming an injected bunch with particles
zINε

[
−3σz0, 3σz0

]
. The white area indicates max |δDU| < 0.1, the gray area indicates

0.1 < max |δDU| < 0.5, and the black area indicates max |δDU| > 0.5. Figure 3.23(a)
is without linac phase errors, and Fig. 3.23(b) is with all possible combinations
of 0.1◦ phase errors, defined in Eq. (3.4).

which shows the maximum energy deviations for different combinations of rRA

and rTA with no higher order time of flight terms. This figure also includes the

possibility of 0.1◦ phase errors in all both passes of a bunch through the linacs.

When both rRA = 0 and rTA = 0, one must examine the degree that the sec-

ond order time of flight terms need to be controlled. This is shown for φrf = 0

in Fig. 3.24, which is essentially the same as Fig. 3.23 but for t566 instead of r56

terms. This indicates that t566 terms should be controlled to be within 150 m. A

separate calculation shows that we must have all φerror . 0.6◦ even when the arcs

are perfectly isochronous.
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(a) No linac phase errors (b) 0.1◦ linac phase errors

Figure 3.24: Similar to Fig. 3.23, but for t566 terms in the TA and RA, assuming
all r56 = 0.

When operating at φrf , 0, the range of allowed time of flight terms in the

arcs becomes more restricted. Figure 3.25 shows the allowed ranges for r56 and

t566 in the TA and RA for φrf = 9◦. Equation (3.9) implies that |rRA + rTA| . 3 cm,

and the more exact calculation shown in the figure indicates that this absolute

sum should be less that 2 cm. When phase errors φerror = 0.1◦ are introduced,

this value should be less than 0.5 cm.
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(a) φrf = 9◦ and no linac phase errors (b) φrf = 9◦ and 0.1◦ linac phase errors

(c) φrf = 9◦ and no linac phase errors (d) φrf = 9◦ and 0.1◦ linac phase errors

Figure 3.25: The same as Figs. 3.23–3.24, but with φrf = 9◦. Note the much more
restricted range of possible r56 and t566 terms in the TA and RA.
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3.5 Bunch Compression

Accelerating bunches off-crest increases the energy spread, requires a higher

peak accelerating voltage, and restricts time of flight terms in the TA and RA

versus on-crest acceleration. However, off-crest acceleration creates a correla-

tion between z and δ in the longitudinal phase space, which can be taken ad-

vantage of with nonzero time of flight terms in an arc to compress the bunch.

When sent through undulators, these short bunches emit short pulses of X-rays.

This technique is well known, and similar formulas can be found in Bazarov &

Hoffstaetter (2003).

To see how this works, consider a single linac and a single arc. The energy

deviations at the end of the linac are, according to Eq. (3.4),

δ1 '
cos (φrf − krf z0)

cos φrf
− 1, (3.10)

assuming that E0/E1 � 0. Sending these particles through an arc gives modifies

the longitudinal positions according to Eq. (3.5) as

z2 ' z1 + r56

[
cos

[
φrf − krf z0

]
cos φrf

− 1
]

+ t566

[
cos

[
φrf − krf z0

]
cos φrf

− 1
]2

+ . . . (3.11)

Now assume that the initial distribution is a Gaussian according to

Eq. (2.125), which has moments

〈
z2

0

〉
= σ2

z0, (3.12)〈
z4

0

〉
= 3σ4

z0, (3.13)〈
z6

0

〉
= 15σ6

z0 (3.14)

...
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Figure 3.26: The minimum possible bunch length for first order compression
(red) and second order compression (blue), assuming that all higher order time
of flight terms are zero, versus φrf . The initial distribution has σz/c = 2 ps and
the linac operates at frf = 1.3 GHz.

The variance of z2 in Eq. (3.11) can then be calculated by expanding and averag-

ing in z0, resulting in

σ2
z2 = σ2

z0
[
1 + k r tan φ

]2

+σ4
z0

3
2

k3
[
k r2 − 2 (r + 6 t) tan φ − 2 k r (r + 8 t) tan2 φ

+12 u tan3 φ + 4 k
(
t2 + 3 r u

)
tan4 φ

]
+O

(
σ6

z0

)
(3.15)

in which k, φ, r, t, u, and are abbreviations for krf , φrf , r56, t566, and u5666, re-

spectively. One can then choose r56 = −k−1
rf cot φrf to eliminate the leading term,

resulting in a bunch length compressed to first order with a new leading term[
σz2

]
min 1 '

√
3 krf σ

2
z0

∣∣∣∣∣12 cot φrf + krf t566 tan2 φrf

∣∣∣∣∣ . (3.16)

To compress to second order, one can then choose t566 = −
1

2 krf
cot3 φrf, resulting

in a new [
σz2

]
min 2 '

√
15 k2

rf σ
3
z0

∣∣∣∣∣16 +
1
2

cot2 φrf + krf u5666 tan3 φrf

∣∣∣∣∣ , (3.17)
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(a) Before Compression (b) After Compression

Figure 3.27: Longitudinal phase space before and after second order compres-
sion for φrf = 9◦. The bunch length in Fig. 3.27(a) is 2000 fs, while the bunch
length in Fig. 3.27(b) is 100 fs.

and so on. These minimum lengths, assuming t566 = 0 in Eq. (3.16) and u5666 = 0

in Eq. (3.17) for MERL parameters are compared in Fig. 3.26.

Similar to Fig. 2.5, the longitudinal phase space density for a com-

pressed bunch can be calculated by inverting z2(z0, δ0) and δ2(z0, δ0), and using

Eq. (2.124). The results of the inversion are

z0(z2, δ2) = z2 − r56 δ2 − t566 δ
2
2 − u5666 δ

3
2, (3.18)

δ0(z2, δ2) =
E1

E0
δ2 −

cos
(
φrf − krf

(
z2 − r56 δ2 − t566 δ

2
2 − u5666 δ

3
2

))
cos φrf

− 1

 . (3.19)

This is shown in Fig. 3.27 for φrf = 9◦ off-crest acceleration, and full compression

to second order.

The short bunch mode in the MERL is Mode C from Tab. 3.1, which has

σz/c = 100 fs. According to Fig. 3.26, this requires the linac phase to be at least

6◦. We will choose φrf = 9◦, which allows for a range in combinations of r56
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Figure 3.28: Contours of bunch lengths for combinations of r56 and t566 terms,
given the parameters in Fig. 3.26.

and t566 terms in an arc to compress the bunch, shown in Fig. 3.28. Practically

speaking, it is often easiest to optimize for time of flight terms near zero, so we

will choose a point on the bottom left of the 100 fs contour that has r56 = −0.225 m

and t566 = −2.9 m.

The first four Cell B sections in the RA can be used as a bunch compressor

by optimizing them to provide these special time of flight values. This requires

large dispersion, because r56 is proportional to the integral of the dispersion

over the bending radius from Eq. (2.164). The sextupole strengths can further be

changed to adjust t566. The eleven undulators following the bunch compression

section will then ideally receive the short bunches. To have energy recovery,

the last four Cell B sections of the RA must decompress the bunch by exactly

reversing the time of flight terms to make the whole of the RA isochronous.
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Compression Decompression

Figure 3.29: Dispersion and time of flight terms in the RA for Mode C bunch compression.

105



Figure 3.30: Bunch widths and length in the RA for Mode C bunch compression. The minimum bunch length in the
middle eleven undulators is approximately σz/c = 100 fs.
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(a) First short pulse undulator, σz/c ' 90 fs (b) Last short pulse undulator, σz/c ' 110 fs

Figure 3.31: Longitudinal phase space in the first undulator after compression
and in the last undulator before decompression in the MERL RA.

The resulting first and second order dispersion from this optimization are

shown in Fig. 3.29, along with the first and second order time of flight terms.

This compression is tested by tracking particles, with the resulting bunch widths

and length shown in Fig. 3.30. It was found in this tracking that the sextupole

strengths in the middle cells did more harm than good, so they are set to zero

here, resulting in a marginal degradation in the bunch length. The longitudinal

phase space in the first and last undulators that have short bunches are shown

in Fig. 3.31. It should be noted that the decompression in this solution is not

perfect, as the bunch does not exactly return to its original length at the end of

the arc, and also the bunch widths become relatively large.
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CHAPTER 4

CORNELL ERL

4.1 Site

The development of an ERL at Cornell presents many unique challenges in

addition to those for the Minimal ERL. Primarily, the Cornell ERL (CERL) is

planned to make as much use as possible from the existing facilities at the Wil-

son Synchrotron Laboratory, which include the Cornell Electron Storage Ring

(CESR), the Cornell High Energy Synchrotron Source (CHESS) G-line beamline,

and the Wilson Lab building. Because the CESR components were designed to

sustain 8 GeV electrons, this section can comprise part of the 5 GeV return arc.

The location of Wilson Lab, shown in red in Fig. 4.1, lies on a hillside between

the Cornell campus and Cascadilla creek. The CESR tunnel is approximately 15

meters below the soccer field to the north. Early designs for an ERL at Cornell

extended CESR to the north by twin linacs that avoided buildings, but it was

found that these linacs were too short to deliver the full 5 GeV energy given

current technology. With the creek to the south and buildings to the west and

the north, the ERL linacs must then connect to CESR and extend to the east.

Several possibilities have been considered, all of which utilized a single tunnel

to house the two linacs, with a small turnaround loop to the east. It was found

that the bending radius of this loop was too small for any modern tunneling

machine to dig, and that it would be more cost effective for the linacs to occupy

their own tunnels, with the turnaround being a simple arc. Additionally, in

order to have separate control over accelerating and decelerating beams, the

linacs are to run at different energies, so that the turnaround can house two
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beam transport lines, one for each energy.

The most current design, as of the writing of this document, is shown in

Fig. 4.1. The logic in choosing this design is discussed in the following sections.

The layout is divided into nine discrete sections, shown in Fig. 4.2, roughly in

accordance with their function: The injector (IN) delivers a 10 MeV beam into

Linac A (LA), which accelerates it to 2.8 GeV. This beam feeds into Turnaround

A (TA), which bends it around to connect to Linac B (LB). The beam is accel-

erated through LB to 5 GeV into the South Arc (SA) containing up to fourteen

undulators, which connects to part of CESR (CE), which connects to the North

Arc (NA) containing eight more undulators. The NA connects back into LA,

which decelerates the beam to 2.2 GeV, recovering 2.8 GeV. A demerging dipole

separates this beam from the 2.8 GeV accelerating beam into TB. Thereafter a

merging dipole combines this decelerating beam with the accelerating beam

from TA and directs it into LB, where it is decelerated to 10 MeV, recovering

2.2 GeV. Finally the beam is sent to the Dump (DU).
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Figure 4.1: The Cornell campus map in the area immediately surrounding Wilson Lab, shown in red. Other buildings
are shown in blue. The CESR tunnel lies 15 meters below the soccer field to the north. Due to the length of the linacs
required for a 5 GeV ERL, the only viable direction to build is to the east.
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Figure 4.2: The CERL layout with section labels. A bunch is accelerated to 10 MeV in the injector (IN), and injected
into the beginning of Linac A (LA), which accelerates it to 2.8 GeV. The bunch traverses Turnaround A (TA), and gains
another 2.2 GeV through Linac B (LB). At 5 GeV, the bunch travels through undulators in the South Arc (SA), the CESR
tunnel (CE), and undulators in the North Arc (NA). It then reenters LA off phase, which decelerates it to 2.2 GeV, enters
Turnaround B (TB), and is decelerated to 10 MeV through LB. Finally it is extracted and sent to the Dump (DU).
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4.2 Layout

In order to be a competitive and cost-effective light source, it has been deter-

mined that the CERL must:

• Utilize as much of CESR as possible

• Provide at least 18 X-ray beamlines with easy access

• Have a single building to house all X-ray beamlines outside of Wilson Lab,

as well as the injector and dump

• Accommodate at least two 25 m long undulators

• Include the CHESS G-line beamline

As mentioned before, the natural extension of the CERL from CESR is to the

east. Taking advantage of the curved hillside in this direction, the South Arc

is shaped to conform to the terrain, with the North Arc beamlines terminating

as close as possible to this arc, which can be seen in Fig. (SA and NA). In this

manner, beamlines from both arcs can be housed in a single building. Space

has been allotted for four beamlines in Wilson lab, including G-line and a 25 m

undulator, with the new building containing up to eighteen beamlines. Of these

beamlines, up to ten are from the South Arc and up to eight are from the North

Arc, with each contributing a long undulator. Thus the CERL can accommodate

three 25 m undulators and nineteen 5 m undulators.

Tunneling technology requires the bending radius of the turnaround tunnel

to be at least 250 feet, and this minimum is used in the design. The bends and the

beginning of the SA and the end of the NA are adjusted so that, when connected

via the linacs, the turnaround loop is a pure arc. The linacs then have a relative
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angle of approximately 22 degrees, and therefore TA and TB bend the beam by

approximately 202 degrees.

Bends in the CERL are designed so that:

• The angle between undulators is large enough to be able to place the first

optical element, outside the shielding wall, at approximately 30 m down

the X-ray line after the end of the undulator

• The radiation load on the beam chamber does not exceed 1 kW/m

All undulators are separated by two-bend achromatic sections that satisfy the

first constraint. For the second constrant, from Eq. (3.1), the average power per

unit length lost on the beam chamber walls in a magnet with radius of curvature

ρ is, in practical units,〈P
L

〉
' 14.08

W
m

(
E

GeV

)4 ( I
mA

) (
ρ

m

)−2
, (4.1)

where E is the beam energy and I is the average current. For a 100 mA beam,

this implies that bends in the SA, CE, and NA must have a minimum radius of

curvature of approximately 30 m. The bends in TA and TB must have a mini-

mum radius of curvature of 10 m and 6 m, respectively, which are easily satisfied

given the dimensions of the turnaround tunnel.
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Figure 4.3: The CERL on the campus map
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4.3 Optics

In order to deliver a high quality beam to the undulators and perform energy

recovery, the optics in the CERL must overall:

• Accommodate simultaneously accelerating and decelerating beams in the

LA and LB sections

• Accommodate one high energy beam in the SA, CE, and NA sections

• Limit radiative emittance growth as much as possible prior to undulators

The bulk of TA and TB maneuver the accelerating and decelerating beams sep-

arately, and the SA, CE, and NA sections only manage the high energy beam,

so the only sections that must handle both beams are LA, LB, and the ends of

TA and TB. The optimization of these sections is challenging, and discussed in

sections 4.3.1 and 4.3.2. Emittance growth occurs in every bending magnet due

to the quantum nature of synchrotron radiation, at a rate given by Eq. (2.177).

It must be controlled everywhere, especially in TA and between the SA undu-

lators. Unfortunately, the CESR magnet arrangement reused in CE does not ad-

mit a low emittance solution, and therefore the emittance in the NA is relatively

large. For this reason, an upgrade option to CE is given in section 4.3.4.
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In order to provide the desired transverse beam size and length to undula-

tors, and to avoid nonlinearities in magnets, the linear optics are subject to the

following:

• Flexible time of flight term r56 for each turnaround loop

• Zero time of flight term in the return arc, i.e. r56 = 0 from the end of the LB

section to the beginning of the LA section

• Tunable r56 within subsections

• Flexible beta functions and zero dispersion in all undulators

• Beta functions must be less than 100 m everywhere

In general, the time of flight term r56 and the phase of the accelerating cavities

can be used to manipulate the longitudinal phase space, as described in Sec-

tion 3.5. In particular, r56 must be zero from the end of LB to the beginning in

LA in order for the energy spread profile to correctly match the decelerating RF

voltage and therefore perform energy recovery, as described in Section 3.4.
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The beta functions in all undulators must be flexible in order to satisfy the

requirements of individual users of these devices. The dispersion is zero in

undulators to avoid an apparent increase in beam size. As a rule of thumb,

the beta functions are also kept below 100m as much as possible to limit their

sensitivity to field errors in magnets, and it is generally advantageous to keep

them small in order to limit emittance growth.

For further refinement of the transverse beam size and length, the nonlinear

optics are subject to the following:

• Zero second order dispersion t166 in all undulators

• All sections achromatic to second order, i.e. t166 = 0 and t266 = 0 from the

beginning to end of each section

• Flexible second order time of flight term t566 in all sections, close to zero

Similar to the first order dispersion, the zero second order dispersion in undu-

lators avoids an apparent increase in beam size. As a rule of thumb, it is often

easiest to control second order dispersion when t166 = 0 and t266 = 0 for every

subsection.
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Figure 4.4: Radiative emittance growth εN and total energy E in the CERL, including the energy recovery pass.
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Figure 4.5: Beta functions and dispersion for the CERL, including the energy recovery pass.
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9.821 m
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7 Cell Cavity Quadrupole

Standard Cryomodule

Figure 4.6: The standard CERL cryomodule.

4.3.1 LA & LB – Linac A and B

The CERL linacs consist of 64 identical cryomodule cells divided among LA

and LB, with the layout for the standard CERL cryomodule shown in Fig. 4.6.

Each cryomodule contains six superconducting accelerating cavities and a sin-

gle quadrupole magnet, along with other elements, e.g. higher order mode ab-

sorbers, gate valves, and beam position monitors, that can be considered to be

drifts for purposes of the beam optics. Some technical details regarding the de-

velopment of such cryomodules and cavities can be found in McIntosh et al.

(2006). Each cavity contains seven elliptical cells operating at the fundamental

frequency frf = 1.3 GHz, which corresponds to krf ' 27.25 m−1 and a wavelength

λrf = 23.06 cm. They are designed to deliver accelerating gradients in the range

of 15-20 MV/m for currents up to 100 mA. Using the dimensions in Fig. 4.6, in

order to bring a 10 MeV beam to 5 GeV, each cavity must provide an average

energy gradient of 16.12 MeV/m, and therefore a single cryomodule can give or

take 78 MeV to or from a beam.
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Because the CERL has two turnaround loops TA and TB operating at differ-

ent energies, one linac needs to be longer than the other. In general, for NA and

NB standard cryomodules in LA and LB, respectively, the changes in energy of

the beam in these linacs are

∆ELA =
NA

NA + NB
(Emax − Emin) , (4.2)

∆ELB = Emax − Emin − ∆ELA, (4.3)

where Emin is the injection energy and Emax is the full operating energy of the

ERL. For NA = 36 and NB = 28, with energies Emin = 10 MeV and Emax = 5 GeV,

we get ∆ELA = 2.806875 GeV and ∆ELB = 2.183125 GeV. The beam in TA is

therefore has an energy of Emin + ∆ELA = 2.816875 GeV, and the beam in TB has

an energy of Emax − ∆ELA = 2.193125 GeV, which will often be abbreviated as

2.8 GeV and 2.2 GeV, respectively.

The beam optics in the linacs must satisfy the following criteria:

• Zero dispersion

• Keep beta functions as small as possible for both accelerating and deceler-

ating beams
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• Accept Twiss parameters from the IN for LA

• Provide correct Twiss parameters for the DU from LB

The adjacent sections provide zero dispersion to LA and LB, and because there

are no bends within the linacs there can be no creation of dispersion. The beta

functions are manipulated by the 36 and 28 quadrupole magnets in LA and LB,

respectively.

The optimization of the Twiss parameters in LA and LB is very similar to

the MERL linac optimization described in Section 3.2.1. Here, however, the ex-

istence of two turnaround loops means that the two beams do not need to have

the same Twiss parameters as they enter the turnaround tunnel, and are thus

more flexible. Nevertheless, the MERL LA and LB solutions can still be used

as a starting point. The resulting quadrupole strengths seen by each beam are

shown in Fig. 4.7. The optics are shown in Figs. 4.8–4.9.
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Figure 4.7: Quadrupole k1 strengths seen by the accelerating beam (blue bars) and decelerating beam (red bars) in the
CERL linacs.
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LA Energy Recovery

LA First Pass

2193 MeV

2817 MeV10 MeV

5 GeV

Figure 4.8: Beta functions for the first pass (accelerating) beam and energy recovery (decelerating) beam in LA. The
optimization criteria are to keep the beta functions as small as possible and to match the low energy beam at s = 0 to the
Twiss parameters from the IN. This section is most effectively optimized by propagating the beta functions “backwards”
from the end of LA by varying βx and βy there along with the 36 quadrupole fields.
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2817 MeV

LB Energy Recovery

LB First Pass

Figure 4.9: Beta functions for the first pass (accelerating) beam and energy recovery (decelerating) beam in LB. Optimiza-
tion is similar to that in LA described in Fig. 4.8

125



TB

A

B

C

TA

B

B

LA LB
Figure 4.10: Layout for the TA and TB sections showing the partitions into Cells
A, B, and C.

4.3.2 TA & TB – Turnaround A and B

Two turnaround arcs provide an additional level of flexibility in the optics

relative to the single turnaround in the MERL. In particular, having two

turnarounds allows for the compensation of wake-fields by tuning time of flight

terms, a scheme described in Hoffstaetter & Lau (2008). First pass particles exit

LA at 2.8 GeV, and follow TA. The second pass beam exits LA at 2.2 GeV, and

follows TB.

TA is divided into five cell types:

Cell A Controls and separates the two beams after LA

Cell B Periodic section containing 4 bends and 4 quadrupole magnets for beam

transport – occurs three times

Cell C Similar to the reverse of Cells A and B, matches Twiss parameters into

LB for both beams
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These cells are shown in Fig. 4.10. Cells for TB are very similar to those of TA.

The bulk of TA (and similarly TB) is built out of four three-bend achromats,

described in a Cell B section. These are similar to the MERL achromats in Sec-

tion 3.2.2, except that the bends and drifts are much longer. The beginning of

Cell A for each turnaround contains shared elements, including a demerging

bend, shown in Fig. 4.11. This bend is part of a two-bend achromat for each Cell

A, which give fixed r56 and t566 time of flight terms.

We would like both TA and TB to be isochronous, so the interior Cell B sec-

tions are optimized to compensate for the fixed time of flight terms in Cells A

and C. The optics for the TA Cell B are shown in Fig. 4.12. In addition to the time

of flight contributions, this cell is optimized for periodic Twiss parameters, low

radiative emittance growth, and to be achromatic by varying the quadrupole

strengths. The second order dispersion and time of flight are optimized by vary-

ing the sextupole strengths.

With these periodic beta functions at hand, the TA and TB Cell A sections

are optimized simultaneously to match into their respective Cell B sections. The

optics for these cells are shown in Fig. 4.13. Additionally, radiative emittance

growth is controlled.

The optics for all of TA are shown in Fig. 4.14. The TA radiative emittance

growth and time of flight terms are shown in Fig. 4.15. There one sees how

the interior cells compensate for the outer cells to make all of TA achromatic

and isochronous to second order. Note that the radiative emittance growth is

approximately 20% of the Mode B normalized emittance.
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2193 MeV

Figure 4.11: The layout of the beginning of TA and TB. The first pass beam follows the outer arc at 2.8 GeV, while the
second pass beam follows the inner arc at 2.2 GeV. The quadrupole magnet after the demerging bend is seen by both
beams.
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 TA Cell B01TA Cell A  TA Cell B02

Figure 4.12: Optics for the first TA Cell B. This section is optimized for periodic beta functions and low radiative emittance
growth. The dispersion and its slope are brought to zero at the end of the third bend, making the section achromatic.

129



LA

TB Cell A
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 Separate Beam Pipes Shared Beam Pipe

Figure 4.13: Beta functions for the TA Cell A and TB Cell A. These sections need to be optimized simultaneously to match
Twiss parameters into the next cells.
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Figure 4.14: Optics for the entire TA section
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Figure 4.15: Radiative emittance growth and time of flight terms r56 and t566 for the entire TA section.
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Figure 4.16: Layout showing the SA.

4.3.3 SA – South Arc

The SA section, shown in Fig. 4.16, is approximately 500 m long and contains

the majority of undulators in the CERL. It is the first section after the beam has

been accelerated to 5 GeV by LB, and therefore receives bunches with the lowest

possible emittance. It is divided into five cell types:

Cell A Matches Twiss parameters from LB into Cell B and contains a 25 m un-

dulator

Cell B Periodic section containing a 5 m undulator and a two-bend achromatic

section – occurs eight times

Cell C Matches Twiss parameters from the last Cell B into the first Cell D

Cell D Periodic section consisting of a two-bend achromat for beam transport

only – occurs three times

Cell E Matches Twiss parameters from Cell D into four undulators, and ends

with the 6 m G-line undulator.

The layout for the beginning of the SA is shown in Fig. 4.17 with Cell A and

the first three Cell B sections. The first four bends comprise a pair of two-bend
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Figure 4.17: The layout for the beginning of the SA section, showing Cell A with
the long undulator and two Cell B sections, each with an undulator. The beam
moves to the left from the end of LB.

achromatic sections that serve to rotate the linacs and turnaround to the south,

and thus avoid tunneling under the College of Veterinary Medicine. The first

25 m undulator follows, and that is followed by a single two-bend achromat to

match into the first Cell B.

The linear optics for Cell A are shown in Fig. 4.19. Because the beta functions

exiting LB are large, five quadrupole magnets are used to focus them down to

manageable values. The following four bends direct the beam into the 25 m un-

dulator, with quadrupole magnets interspersed to give αx = 0, αy = 0, and spec-

ified values for the beta functions in the center of this undulator. Additionally

the the quadrupole magnets between the first two bends focus the dispersion

and its slope to zero at the end of the second bend, and similarly for the third

and fourth bends. After the undulator a two-bend achromat matches Twiss pa-

rameters into the undulator in the first Cell B. With the Twiss parameter and

dispersion constraints satisfied, the quadrupole strengths are further optimized

to reduce the radiative emittance growth as much as possible.
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The second order dispersion, also in the figure, is manipulated by six sex-

tupole magnets. Four sextupole magnets placed in areas of large dispersion are

used to make t166 = 0 and t266 = 0 from the beginning of the first bend to the end

of the fourth bend. Similarly, two sextupole magnets at the end of the section

make t166 = 0 and t266 = 0 from the beginning of the fifth bend to the end of the

sixth bend, making the last two bends achromatic to second order.

The linear optics for Cell B are shown in Fig. 4.20. The cell consists of a 5 m

undulator followed by a two-bend achromat, and occurs eight times. The bends

provide an angle between the beginning and end of the cell so that the beam-

lines emitted from the undulators of consecutive cells have sufficient clearance

after 30 m. The Twiss parameters at the beginning and the end of the cell are

fixed by the requirements of the undulators at the beginning of the cell and the

beginning of the next cell. Seven quadrupole magnets, arranged symmetrically

about the center of the achromat, are used to match these requirements, with

the center three additionally used to focus the dispersion and its slope to zero

at the end of the second bend. As with the previous sections, emittance growth

is reduced as much as possible while maintaining the Twiss parameter and dis-

persion requirements. Two sextupole magnets placed symmetrically about the

center of the achromat are used to set t166 = 0 and t266 = 0 through the two bends.

Cells C and D serve as beam transport lines between the last Cell B and the

first undulator in Cell E. Both are very similar to Cell B without an undulator.

The linear and nonlinear optics are thus treated similarly.

Cell E contains the four Wilson lab undulators, including G-line, and con-

nects to CE. The optics are shown in Fig. 4.21. The first two undulators are of

the same type as in Cell B, separated by the same type of two-bend achromat
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CE SA SA Cell E
G-line

Figure 4.18: The layout for the end of the SA showing Cell E lying within Wil-
son Lab with four undulators. The G-line beamline radiates from the leftmost
undulator. Beyond that one sees the first magnets of CE

and optimized similarly. A pair of two-bend achromats follow the second undu-

lator, and are optimized similarly to the beginning of Cell A to provide specified

beta functions and αx = αy = 0 in the center of the 25 m undulator. Finally, an-

other pair of two-bend achromats focus the beam into the 6 m G-line undulator.

The second order dispersion is controlled by sextupole magnets similarly to the

previous sections.

The optics for the entire SA section are shown in Fig. 4.22. Radiative emit-

tance growth and time of flight terms r56 and t566 are shown in Fig. 4.23. One

sees that the emittance growth is dominated by portions of Cell E. This is due

to the relatively strong bends needed to place the undulators appropriately in

Wilson lab.
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Figure 4.19: Optics for Cell A in the SA. Five quadrupole magnets focus the large beta functions exiting LB down to
manageable values. The first sixteen quadrupole strengths are varied to match αx = αy = 0, βx = βy = 12.5 m in the center
of the 25 m undulator, as well as r16 = 0 and r26 = 0 at the ends of the second and fourth bends, all while attempting to
keep the beta functions below 100 m and minimizing emittance growth. Then the last seven quadrupole strengths are
varied to provide r16 = 0 and r26 = 0 at the end of the last bend and to match into the Twiss parameters for the undulator
in the following Cell B. Sextupole magnets places in dispersive sections serve to set t166 = 0 and t266 = 0 between the first
and fourth bends, and between the fifth and sixth bends, making this section achromatic to second order.
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Figure 4.20: Optics for the first SA Cell B, which consists of a 5 m undulator followed by a two-bend achromat. The
undulator at the beginning of the next Cell B is seen to the right. Here βx = βy = 2.5 m and αx = αy = 0 in the center of both
undulators, and the dispersion and its slope are brought to zero at the end of the second bend. Due to the symmetry, this
system can be optimized by varying quadrupole strengths symmetrically about the center of the achromat. Two sextupole
magnets placed symmetrically about the center of the achromat provide t166 = 0 and t266 = 0 from the beginning of the
first bend to the end of the second, making these bends achromatic to second order.
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Figure 4.21: Optics for the SA Cell E section. The quadrupole strengths between the first two undulators are optimized
similarly to Cell B. The following pair of two-bend achromats and 25 m undulator are very similar to the beginning of
Cell A, so the quadrupole strengths are optimized in the same way to provide αx = αy = 0, βx = βy = 12.5 m in the center
of this undulator. The final pair of two-bend achromats focus the beam into the 6 m G-line undulator. The second order
dispersion is controlled by sextupole magnets in the same way as portions of Cells A and B.
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Figure 4.22: Optics for the entire SA section.
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Figure 4.23: Normalized radiative emittance growth εN and time of flight terms r56 and t566 for the SA. Emittance growth
for this section is dominated by relatively strong bends in Cell E.
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Figure 4.24: Layout for the CE section.

4.3.4 CE – CESR

The CERL baseline design intends to reuse most of the currently existing CESR

elements. The layout for the CE is shown in Fig. 4.24. This section is approx-

imately 540 m long, containing 58 dipole magnets, 72 quadrupole magnets,

and 60 sextupole magnets. It is configured in an alternating dipole-quadrupole

(FODO) arrangement.

Unfortunately, this configuration is not completely regular, and it does not

lend itself to periodic cells as in the other sections. Therefore it is optimized

as a whole for controlled beta functions and emittance growth, as well as con-

trolled time of flight terms, by varying all quadrupole strengths for the linear

optics, and all sextupole strengths for the second order optics. These optimiza-

tions were performed by James Crittenden and Carol Johnstone, with the optics

shown in Fig. 4.25, and the radiative emittance growth and time of flight terms

are shown in Fig. 4.26.
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Figure 4.25: Optics for the entire CE section.
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Figure 4.26: Normalized radiative emittance growth εN and time of flight terms r56 and t566 (note the scaling) for CE.
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Roughly speaking, the reason for the poor emittance growth is that there are

not enough quadrupole magnets per dipole magnet to simultaneously control

the beta functions and dispersion enough to minimize Eq. (2.177).

Low Emittance Upgrade

The CESR magnets can effectively transport the beam from the SA to the NA,

but they contribute to the vast majority of the emittance growth in the CERL.

Here an upgrade option for the CE section is presented that provides very low

emittance growth. It uses the same 6.57 m long dipole magnets as in the CESR,

with the addition of quadrupole and sextupole magnets.

The CESR tunnel is a mixture of pure arcs connected by straight sections.

In this upgrade, the CESR dipole magnets are rearranged to span the arcs by

periodic cells containing two bends. The straight sections are drifts with three

quadrupole magnets. For optimization, CE is divided into seven cell types:

Cell P Periodic cell with two bends – Occurs twenty times

Cell A Matches optics from the SA into the first Cell P

Cell B, C, D, E Matches optics from a Cell P to a Cell P

Cell F Matches optics from the last Cell P into the NA

145



NA

SA
(2) P

(5) P

(5) P

(5) P

(3) P

F

ED

C

B

A

CE Upgrade

Figure 4.27: Layout for a low emittance upgrade for the CE section.

The positions of these cells are shown in Fig.4.27. Essentially multiple Cell

P sections comprise most of CE, with matching cells A and F for connecting to

the SA and the NA, respectively. Cells B, C, D, and E account for the straight

sections in the tunnel. Each is similar to two Cell P sections, with an extended

drift and extra quadrupole magnets between the third and fourth bends.

The beta functions and first and second order dispersion in Cell P are shown

in Fig. 4.28. The four quadrupole strengths are optimized to produce periodic

beta functions and first order dispersion that yield a specified value for the r56

contribution and low radiative emittance growth. Those quantities can be seen

in Fig. 4.29. Next the two sextupole strengths are optimized to produce a speci-

fied value for the t566 contribution, also seen in Fig. 4.29.

The optics for Cell B are shown in Fig. 4.30. Due to symmetry, it is sufficient
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to optimize the section by setting the Twiss parameters and dispersion at the

entrance to those of the end of Cell P, and vary quadrupole strengths symmet-

rically about the center quadrupole magnet in the straight section to produce

αx(sc) = 0, αy(sc) = 0, and D′(sc) = 0, with s = sc in the center of that magnet.

The value of D(sc) can be chosen freely, and therefore the r56 contribution by the

section is adjustable. The two sextupole strengths are optimized symmetrically

to match t266(sc) = 0.

Cells C and E are practically identical to Cell B, all having a 6.3 m straight

section. Cell D has a longer straight section of 12.2 m, but the optimization

strategy is the same as that of Cell B.

The optics for the matching Cells A and F can be seen in Fig. 4.31 and

Fig. 4.32, respectively. There are enough quadrupole and sextupole magnets

in these sections to match Twiss parameters between the adjacent sections, and

to fine tune the total r56 and t566 contributions by CE. The resulting optics for

all of CE are shown in Fig. 4.33. Radiative emittance growth and time of flight

terms are shown in Fig. 4.34. There one sees that, due to the similarity of all the

cells, emittance growth is very regular and relatively small in the bulk CE.

147



Figure 4.28: Optics for the CE Upgrade Cell P section. The four quadrupole strengths are varied to produce periodic
beta functions and dispersion with a specified contribution time of flight term r56 (in this case near zero) and as low as
possible radiative emittance growth. The two sextupole strengths are then optimized to produce periodic section order
dispersion with a specified time of flight term t566 contribution.
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Figure 4.29: Normalized radiative emittance growth εN and time of flight terms r56 and t566 for the CE Upgrade Cell P
section.
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Figure 4.30: Optics for the CE Upgrade Cell B section. This section begins with Twiss parameters and dispersion from
a Cell P. Quadrupole strengths are varied symmetrically about the quadrupole magnet in the center of the 6.2m straight
section to produce αx(sc) = 0, αy(sc) = 0, and D′(sc) = 0, with s = sc in the center of that magnet. Additionally the
dispersion is adjusted to produce a specified value for the r56 contribution by the cell. Sextupole strengths are varied
symmetrically to produce t266(sc) = 0. Cells C,D, and E are optimized similarly.
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Figure 4.31: Optics for the CE Upgrade Cell A section, which matches Twiss parameters and dispersion from the end
of the SA into the first CE Cell P section. All quadrupole and sextupole strengths are varied independently to achieve
this matching, with the additional constraints of providing specified time of flight terms and as low as possible radiative
emittance growth.
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Figure 4.32: Optics for the CE Upgrade Cell F section, which matches Twiss parameters and dispersion from the last CE
Cell P section into the NA. All quadrupole and sextupole strengths are varied independently to achieve this matching,
with the additional constraints of providing specified time of flight terms and as low as possible radiative emittance
growth.
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Figure 4.33: Optics for the entire CE Upgrade section.
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Figure 4.34: Normalized radiative emittance growth εN and time of flight terms r56 and t566 for the entire CE Upgrade
section.
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Figure 4.35: Layout for the NA section. Part of the SA is shown for reference.

4.3.5 NA – North Arc

The NA is approximately 354 m long and contains the final set of seven 5 m un-

dulators and a single 25 m undulator before energy recovery in LA. It is divided

into four cell types:

Cell A Matches optics from CE into Cell B

Cell B Periodic section containing a three-bend isochronous achromat and a

5 m undulator – occurs seven times

Cell C Matches optics from the last Cell B into a 25 m undulator

Cell D Bunch decompression section, matches optics into LA for energy recov-

ery

The layout for these cells is shown in Fig. 4.35.
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Figure 4.36: Layout showing the NA Cell D.

In the bunch compression mode, where CE compresses the bunch, it is nec-

essary to keep the bunch short in all undulators. Therefore, in addition to be-

ing achromatic, the bends between all undulators are also isochronous. This is

achieved by adding a short “negative” bend between the two long bends in an

achromat, which can be seen in all Cell B and Cell C sections. This short bend is

also designed to produce an adjustable quadrupole moment.

Besides this short bend, all Cell B sections have the same layout as the SA

Cell B sections, with altered drift lengths and bend strengths, and each begins

with the bends as opposed to an undulator. Cell C is similar to a Cell B section,

except with a longer 25 m undulator. Optimization for these cells is therefore

similar to the method described in Section 4.3.3 for SA Cell B, with the addi-

tional constraint that r56 = 0 through a cell. Two sextupole magnets make the

section achromatic to second order. The resulting optics for these sections are

shown in Figs. 4.37-4.38.
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The NA Cell A section matches Twiss parameters and dispersion from CE

into the first NA Cell B. Optics for this cell are shown in Fig. 4.39. The first and

second order dispersion are fine tuned to give the desired r56 and t566 terms from

the beginning of CE to the beginning of the first NA undulator.

After the 25 m undulator, the NA ends with a ten bend arc that connects the

beam back into LA for energy recovery, shown in Fig. 4.36. In the mode where

the bunch arrives compressed, this section serves to decompress the bunch by

providing rather large dispersion through the central bends and correspond-

ingly large r56 compensation. The optics for this cell are shown in Fig. 4.40, with

the resulting time of flight terms shown in Fig. 4.41.

Optics for the entire NA section are shown in Fig. 4.42, with radiative emit-

tance growth and time of flight terms shown in Fig. 4.43. Because the time of

flight terms are calculated starting at the beginning of the SA, one sees that they

indeed go to zero at the end of the NA and thus the SA-CE-NA sections together

are achromatic and isochronous to second order.
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Figure 4.37: Optics for the first NA Cell B section. The layout is the same as the SA Cell B section, shown in Fig. 4.20, with
the addition of a short “negative” bend between the 4 m dipole magnets, which allows the section to be isochronous.
Optimization is therefore the same as in the SA Cell B, with the additional constraint that r56 = 0 through the bends.
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Figure 4.38: Optics for the NA Cell C section. This section is very similar to the NA Cell B section shown in Fig. 4.37,
except with a longer 25 m undulator.
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Figure 4.39: Optics for the NA Cell A section. This section accepts Twiss parameters and dispersion from the end of CE,
and matches them to the first NA Cell B section. Additionally the time of flight terms r56 and t566 are fine tuned when
the ERL is operating in bunch compression mode. All quadrupole and sextupole strengths are varied independently to
satisfy these constraints.
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Figure 4.40: Optics for the NA Cell D section. Because there are many quadrupole magnets in this section, the optimiza-
tion of the beta functions and dispersion is greatly simplified by varying the quadrupole strengths symmetrically about
the quadrupole between the 5th and 6th bends in the section, and requiring that αx(sc) = 0, αy(sc) = 0, and D′(sc) = 0, with
s = sc located in the center of that quadrupole magnet. Once a solution is found with the desired r56 contribution, the last
few quadrupole strengths are varied independently to match Twiss parameters into LA for energy recovery. Sextupole
strengths are finally adjusted to provide t166 = 0, t266 = 0, and a specified t566 through the section.
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Figure 4.41: Normalized radiative emittance growth εN and time of flight terms r56 and t566 for the NA Cell D. The time of
flight terms are calculated relative to the beginning of the SA, so here one sees how they are adjusted to make r56 = 0 and
t566 = 0 at the end of the section.
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Figure 4.42: Optics for the entire NA section.
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Figure 4.43: Normalized radiative emittance growth εN and time of flight terms r56 and t566 for the entire NA section.
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Figure 4.44: Phase space slices of the initial particle distribution used in the
CERL. The colors represent different energies, with blue being higher and red
being lower than the reference particle energy. The sizes of the particles in these
plots are indicative of their sampling weight.

4.4 Particle Tracking

Just as with the MERL, our efforts in designing the CERL lattice are tested by

tracking particles through the lattice. The initial distribution is in accordance

with the Mode A parameters shown in Tab. 3.1, and is accelerated on-crest with

φrf = 0. It is very similar to the MERL one, only matched to different incoming

Twiss parameters, shown in Fig. 4.44.

Particles at the beginning and end of the SA are shown in Fig. 4.45. There it

is evident that the TA does a good job in preserving the transverse phase space.

The end of the SA shows some chromaticity, but negligible emittance growth.

Transportation through CE does disturb the transverse phase space, with par-

ticles in the first NA wiggler shown in Fig. 4.46. Notice that the longitudinal

phase space has been sheared due to time of flight terms in the SA and NA. The

end of the NA corrects for this, as seen in the same figure.

The calculated horizontal and vertical widths σx and σy for these particles

through the SA are shown in Fig. 4.48, along with the normalized horizontal
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and vertical emittances. Although it is difficult to see in the figure, the emittance

shows negligible increase in emittance through the SA. The same quantities are

shown through the NA in Fig. 4.49. Even though the particles in Fig. 4.46 look

distorted, it turns out that the emittance growth is negligible through CE and

the NA.

Normalized emittances and energy spread through the entire CERL are

shown in Fig. 4.50. The bunch widths and length are shown in Fig. 4.51. There

one sees that the bunch width in the horizontal plane becomes very wide in CE

due to the large dispersion there.

The particles at the end of the CERL are shown in Fig. 4.47, calculated with

and without the sextupole magnets turned on. Here we see that the CERL does

not fare well with sextupole magnets turned off, showing a large increase in

energy spread. Additionally the normalized beam emittance in CE is increased

from 0.3 mm-mrad to approximately 0.6 mm-mrad when sextupoles are off (not

plotted).
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Figure 4.45: Particles at the beginning (top row) and end (bottom row) of the SA for Mode A.
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Figure 4.46: Particles at the beginning (top row) and end (bottom row) of the NA for Mode A.
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Figure 4.47: Particles at the end of the CERL. The top row is with sextupoles on, and the bottom row is with sextupoles
off.
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Figure 4.48: Mode A bunch widths and normalized emittances through the SA, calculated using an initial distribution
shown in Fig. 4.44.
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Figure 4.49: Mode A bunch widths and normalized emittances through the NA, calculated using an initial distribution
shown in Fig. 4.44. The normalized emittance at the end is marginally larger than the initial 0.3 mm-mrad emittance.
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Figure 4.50: CERL Mode A normalized emittances and energy spread from particle tracking, using an initial distribution
shown in Fig. 4.44.
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Figure 4.51: CERL Mode A bunch widths and bunch length from particle tracking, using an initial distribution shown in
Fig. 3.17.
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4.5 Bunch Compression

Bunch compression, described in Section 3.5, can be performed when there is a

correlation in (z, δ) phase space that can be manipulated by time of flight terms.

This correlation is created by sending bunches off-crest through the linacs, and

optimizing the r56 and t566 terms in an arc.

Mode C in Tab. 3.1 is the bunch compression mode for the CERL. Just as in

the MERL, we choose φrf = 9◦, along with r56 = −0.225 m and t566 = −2.9 m in

order to compress the bunch to σz/c = 100 fs at the end of CE. The optimized

dispersion and time of flight terms that give these values are shown in Fig. 4.52.

This compression is tested by tracking particles. Unfortunately, even with r56

and t566 properly tuned,the bunch is unable to achieve the desired compressed

length, shown in Fig. 4.53. This is due to the third order time of flight term u5666,

which becomes large at the end of CE. Perhaps equally troublesome is an erratic

bunch length through CE in which, unintentionally, the first and second order

time of flight terms occasionally conspire to give a 150 fs length.

Fortunately, the upgraded CE lattice fares much better, and is able to achieve

100 fs lengths through the NA undulators. This is shown in Fig. 4.54, along

with u5666, which remains small through the compression, and only grows in

the decompression section at the end of the NA.
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Figure 4.52: CERL Mode C (bunch compression) dispersion and time of flight terms through the SA, CE, and NA sections.
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Figure 4.53: CERL Mode C bunch length and third order time of flight term u5666 through the SA, CE, and NA sections.
Due to the difficult to control time of flight terms using the existing CESR magnets, the bunch unintentionally becomes
short ( σz/c = 150 fs) near the beginning of CE. The final compressed length in the NA undulators is 800 fs, which is very
different from the intended 100 fs length due to the large u5666.
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Figure 4.54: The same as Fig. 4.53, but with the upgraded CE lattice. The additional quadrupole magnets in CE aid in
controlling the time of flight terms, so that the bunch attains and maintains the intended 100 fs length through the NA
undulators.
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(a) Compression in CE, σz/c ' 800 fs (b) Compression in the upgraded CE, σz/c '
100 fs

Figure 4.55: Longitudinal phase space in the first undulator after compression
with the existing CESR magnets and the upgraded CESR magnets.

The longitudinal phase space in the first NA undulator using the non-

upgraded CE is shown in Fig. 4.55(a). High order time of flight terms shear this

phase space at relatively large δ and spoil the intended bunch length. The corre-

sponding phase space using the upgraded CE is shown in Fig. 4.55(b). There the

bunch is properly compressed to second order without noticeable contributions

from higher order time of flight terms.
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CHAPTER 5

COHERENT SYNCHROTRON RADIATION

This final chapter examines the effect of Coherent Synchrotron Radiation (CSR)

in a particle accelerator. It uses the less widely known Jefimenko forms of

Maxwell’s equations (Jackson, 1999), which allow one to calculate electromag-

netic fields by directly using the evolving charge and current densities, and

which internally incorporate all retardation effects. These equations are related

to forms used in Derbenev et al. (1995) and Warnock et al. (2006). This is in con-

trast to the usual Liénard-Wiechert approach, which gives fields due to charges

at their retarded times t′ and positions x(t′), and one must invert equations of

the form t − t′ = |x(t′) − xo|/c for the retarded time t′, where xo is an observa-

tion point at a later time t and c is the speed of light. While this latter method

has proven useful in deriving equations for (incoherent) synchrotron radiation

of single particles, the former is found to be useful for the coherent fields of

particle distributions.

5.1 Exact 1D model for CSR

In general, for given charge and current densities ρ(x, t) and J(x, t) at position x

and time t, the electric field E(x, t) can be calculated using Jefimenko’s form of

Maxwell’s equations (Jackson, 1999)

E(x, t) =
1

4πε0

∫
d3x′

[
r
r3 ρ(x′, t′) +

r
c r2 ∂t′ρ(x′, t′) −

1
c2 r

∂t′J(x′, t′)
]

t′=t−r/c
, (5.1)

in which r ≡ x − x′, r ≡ ‖r‖, ε0 is the vacuum permittivity and t′ is the retarded

time. In this formulation, the retarded points x′ and times t′ are independent
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variables, so there are no functions that need to be inverted. Therefore, if one

knows ρ, ρ̇, and J̇ at all points in space x′ and times t′ ≤ t, with a dot denoting the

time derivative, then this formula gives the electric field by direct integration.

Now consider a line charge distribution, which follows a path X(s) param-

eterized by distance s, has a unit tangent u(s) = dX(s)/ds, and moves with con-

stant speed βc along this path. A bunch with total charge Q and normalized line

density λ therefore has one-dimensional charge density and current

ρ(s, t) = Q λ(s − sb − β ct),

J(s, t) = Q βc u(s) λ(s − sb − β ct),
(5.2)

where sb is the location of the bunch center at time t = 0.

The rate of energy change per unit length of an elementary charge q at po-

sition s is dE/ds = q u(s) · E(s, t). Functions of this type are called wake-fields.

Using Eq. (5.1) with the one-dimensional bunch in Eq. (5.2) gives

dE
ds

(s, t) = Nrcmc2

∞∫
−∞

ds′
[
u(s) · r(s, s′)

r(s, s′)3 λ(sr) − β
u(s) · r(s, s′)

r(s, s′)2 λ′(sr)

+β2 u(s) · u(s′)
r(s, s′)

λ′(sr)
]
,

(5.3)

with the definitions

sr ≡ s′ − s0 + β r(s, s′), (5.4)

s0 ≡ sb + β ct, (5.5)

r(s, s′) ≡ X(s) − X(s′), (5.6)

r(s, s′) ≡ ‖r(s, s′)‖, (5.7)

where N = Q/q is the number of elementary particles with mass m and classi-

cal radius rc = q2/
(
4πε0mc2

)
, and the prime on λ indicates a derivative of this
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function with respect to its argument, i.e. λ′(x) = dλ/dx. Additionally, s0 is the

center of the bunch at time t, and this is the only place where the time depen-

dence appears. The integrand is thus the contribution to the wake-field due to

particles between the retarded positions s′ and s′ + ds′, with N λ(sr) being the

charge density at retarded position s′ and retarded time t′.

Unfortunately the integral in Eq. (5.3) diverges as s − s′ → 0, which is a

consequence of the one-dimensional line charge model. This problem can be al-

leviated by using the regularization procedure originating in Saldin et al. (1997),

where the electric field E is split into two parts

E = ECSR + ESC. (5.8)

The space charge (SC) part is the electric field of a line charge moving on a

straight path,

ESC(s, t) =
Q

4πε0
u(s)

∞∫
−∞

ds̃
[

s − s̃
|s − s̃|3

λ(sl) − β
s − s̃
|s − s̃|2

λ′(sl) + β2 1
|s − s̃|

λ′(sl)
]
, (5.9)

with sl ≡ s̃ − s0 + β |s − s̃|, which can be integrated by parts, simplifying to

ESC(s, t) = −
Q u(s)
4πε0γ2

∞∫
−∞

ds̃
λ′ (s̃ − s0 + β|s − s̃|)

|s − s̃|
. (5.10)

It will turn out to be useful to change variables in this expression, so that when

combined with Eq. (5.3) the function λ′ can be factored. This can be done by

setting s̃ − s0 + β |s − s̃| = s′ − s0 + β r(s, s′), with the convention that sgn(s − s̃) =

sgn(s − s′). Noting that ∂r(s, s′)/∂s′ = −r(s, s′) · u(s′)/r(s, s′), this leads to

−1
|s − s̃|

= sgn(s′ − s)
1 + β sgn(s′ − s)
s − s′ − β r(s, s′)

, (5.11)

ds̃ =
1 − β r(s, s′) · u(s′)/r(s, s′)

1 + β sgn(s′ − s)
ds′, (5.12)
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so that

ESC(s, t) =
Q

4πε0

u(s)
γ2

∞∫
−∞

ds′ λ′(sr) sgn(s′ − s)
1 − β r(s, s′) · u(s′)/r(s, s′)

s − s′ − βr(s, s′)
. (5.13)

The resulting wake-field due to ECSR, called the CSR-wake, is(
dECSR

ds

)
= q u(s) · [E(s, t) − ESC(s, t)] . (5.14)

This expression is finite, and shown in Saldin et al. (1997) to correctly account

for the coherent energy loss due to synchrotron radiation.

The approach here is to be contrasted with the conventional one taken in the

literature using Liénard-Wiechert formulas. In terms of the quantities above,

the electric field at position s due to a charge q at retarded time t′ = t − r(s, s′)/c

and retarded position s′ is

ELW(s, s′) =
q

4πε0

 r − β r u(s′)

γ2 [
r − β r · u(s′)

]3 +
r ×

{[
r − β r u(s′)

]
× β2 u′(s′)

}
[
r − β r · u(s′)

]3

 , (5.15)

with r as in Eq. (5.3) suppressing the arguments. Therefore, the electric field at

s due to a charge ρ(st, t) dst between st and st + dst, as in Eq. (5.2), is found by

inverting st = s′ + β r(s, s′) for s′ and using Eq. (5.15). This is often impossible

to do analytically, but fortunately for a distribution of charges the inversion can

be circumvented by changing variables. Because ∂r(s, s′)/∂s′ = −r · u(s′)/r from

before, the charge is

ρ(st, t) dst = Q λ(s′ − sb − β ct + β r)
[
1 − β

r · u(s′)
r

]
ds′, (5.16)

and the total electric field is

E(s, t) =

∞∫
−∞

dst ELW

(
s, s′(st)

)
ρ(st, t) (5.17)

= Q

∞∫
−∞

ds′
[
1 − β

r · u(s′)
r

]
ELW(s, s′) λ(sr). (5.18)
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Figure 5.1: Geometry for a single bend. The variable s parameterizes the curve
with radius 1/κ. The coordinates are X(s), and the unit tangent vector is u(s).

We can use this to verify that ESC computed this way agrees with the result

using the Jefimenko approach. For the SC field one has r(s) = (s− s′)u(s), u(s′) =

u(s), and u′(s) = 0, giving

ESC(s, t) =
Q u(s)
4πε0

∞∫
−∞

ds′
β + sgn(s − s′)

(s − s′)2 λ
(
s′ − s0 + β |s − s′|

)
. (5.19)

Equation (5.19) agrees with Eq. (5.10) when integrated by parts because, for

s0 = 0,
∫

(β+ sgn(s− s′))(s− s′)−2 ds′ = (β+ sgn(s− s′))(s− s′)−1, and − ∂
∂s′λ(s′ + β (s−

s′) sgn(s − s′)) = −(1 − β sgn(s − s′))λ′(s′ + β |s − s′|), and similarly for all s0.

5.2 Single Bending Magnet

Now we apply Eq. (5.3) to the geometry of an arc of a circle of curvature κ and

length B, shown in Fig. 5.1. Set s = 0 at the entrance of the bend so that θ = κ s

is the angle into the bend. In terms of fixed Cartesian unit vectors êa and êb, the
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path coordinates and tangent vector are

X(s) = κ−1 sin (κ s) êa − κ
−1 [1 − cos (κ s)] êb, (5.20)

u(s) = cos (κ s) êa − sin (κ s) êb. (5.21)

Consider a bunch with its center at angle θ0 = κ s0, and a test particle at angle

θ. The contribution to Eq. (5.3) of this finite arc is

dE
ds

(s)
∣∣∣∣∣
B

= Nrcmc2

κ B∫
0

dθ′
[

sinα
(κ rα)3 κ λ(sα) − β

sinα
(κ rα)2λ

′(sα) + β2 cosα
κ rα

λ′(sα)
]
, (5.22)

with s = κ−1θ and the following definitions:

α ≡ θ − θ′, (5.23)

sα ≡
1
κ

(θ − θ0 − α) + β rα, (5.24)

rα ≡
1
κ

√
2 − 2 cosα. (5.25)

Thus α is the angle between the test particle and the retarded source particle,

and is positive when the former is ahead of the latter. The first term of Eq. (5.22)

can be integrated by parts because ∂(2 − 2 cosα)−1/2/∂θ′ = sin (α) (2 − 2 cosα)−3/2,

and the wake greatly simplifies to

dE
ds

(s)
∣∣∣∣∣
B

= Nrcmc2
{
−κ λ(sα)
√

2 − 2 cosα

∣∣∣∣∣∣α=θ

α=−(κ B−θ)

+

θ∫
−(κ B−θ)

dα
β2 cos (α) − 1
√

2 − 2 cosα
λ′(sα)

}
. (5.26)

In terms of the variable α, the space charge term in Eq. (5.13) can be split as

dESC

ds
(s) = −Nrcmc2


−(κ B−θ)∫
−∞

dα ISC(α) +

θ∫
−(κ B−θ)

dα ISC(α) +

∞∫
θ

dα ISC(α)

 , (5.27)

with the integrand

ISC(α) ≡ −
sgnα
γ2

1 −
β sin (α)
√

2 − 2 cosα
α − β

√
2 − 2 cosα

λ′(sα), (5.28)
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so that the contribution of the bend to the CSR-wake is

dECSR

ds
(s)

∣∣∣∣∣
B

=Nrcmc2

 −κ λ(sα)
√

2 − 2 cosα

∣∣∣∣∣∣α=θ

α=−(κ B−θ)

+

θ∫
−(κ B−θ)

dα λ′(sα)
[
β2 cos (α) − 1
√

2 − 2 cosα
+

sgn(α)
γ2

1 −
β sin (α)
√

2 − 2 cosα
α − β

√
2 − 2 cosα

]

−

−(κ B−θ)∫
−∞

dα ISC(α) −

∞∫
θ

dα ISC(α)

 .
(5.29)

5.2.1 Steady State

In the practical environment of a particle accelerator with a bunched beam, one

is typically only concerned with electric fields around the bunch center. Due to

the rotational symmetry, there will be an angle into a bending magnet beyond

which the CSR-wake, relative to the bunch center, does not change. Note that in

Eq. (5.24) the quantity z = κ−1(θ − θ0) is the distance along the path ahead of the

bunch center, and define the extent of the bunch lb ≡ z+− z−, where z+ is the head

particle coordinate, and z− is the tail particle coordinate. Henceforth the symbol

z will refer to the longitudinal coordinate relative to the bunch center: z = s− s0.

The particle at z+ is affected by a particle at z− at retarded angle αmax found by

inverting

κ lb = αmax − β
√

2 − 2 cosαmax. (5.30)

Similarly, a particle at z− is affected by a particle at z+ at retarded angle αmin

found by inverting

−κ lb = αmin − β
√

2 − 2 cosαmin. (5.31)

When the bunch center is at an angle θ0 > αmax − κ z+, only particles within
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Figure 5.2: The inverse of Eq. (5.33) for positive α at various energies. The
dashed green curve (γ → ∞) is α = (24 κ∆)1/3, the inverse of Eq. (5.35).

the bend affect the wake-field. The “steady-state” (s.s.) CSR-wake is then

WCSR
s.s.

(z) = Nrcmc2

αmax∫
αmin

dα
[
β2 cos (α) − 1
√

2 − 2 cosα

+
sgn(α)
γ2

1 −
β sin (α)
√

2 − 2 cosα
α − β

√
2 − 2 cosα

 λ′ (z − ∆(α)) ,

(5.32)

where

∆(α) = κ−1(α − β
√

2 − 2 cosα) (5.33)

is the distance behind the test particle at z. The notation

WCSR(z) ≡
dECSR

ds
(s0 + z) (5.34)

is used to refer to the CSR-wake immediately surrounding the bunch center at

s0.

In the ultra-relativistic approximation (β → 1) with a small normalized

bunch length κ lb � 1, and thus α � 1, the steady-state formula in Eq. (5.32)
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Figure 5.3: The steady-state CSR-wake for various relativistic γ using Eq. (5.32),
compared to Eq. (5.36) plotted as green. Here κ σ = 3 × 10−5 for a Gaussian
bunch, represented in light blue.

greatly simplifies. The 1/γ2 term in Eq. (5.28) puts ISC → 0, and the term in the

integrand (β2 cos (α) − 1)/(2 |sin (α/2)|) ≈ −|α|/2. The function ∆(α) for γ → ∞ is

approximately

∆(α) ≈


α3/(24κ) for α > 0

2α/κ for α < 0
. (5.35)

Figure 5.2 plots the inverse of Eq. (5.33) for positive α and various energies.

One sees that the approximation in Eq. (5.35) is increasingly good for higher en-

ergies, but greatly overestimates α at the smallest distances. Changing variables

using Eq. (5.35), the ultra-relativistic steady-state CSR-wake is

WCSR
γ→∞

(z) = −Nrcmc2 κ

lb∫
0

d∆

[
2 λ′(z − ∆)
(3 κ∆)1/3 +

κ∆

8
λ′(z + ∆)

]
. (5.36)

The first term in this integral is derived by an alternate method in Saldin et al.

(1997). The scaling here is apparent by writing the distribution in the normal-
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Figure 5.4: The steady-state CSR-wake for various relativistic γ due only to par-
ticles ahead of the test particle, i.e. negative α in Eq. (5.32), and the second term
in the integrand of Eq. (5.36). A Gaussian bunch is used, with κ σ = 3×10−5, and
the wake has been scaled by (κ σ)−4/3. Compared with Fig. 5.3 this demonstrates
that the contribution to the CSR-wake of particles ahead of the test particle is
insignificant compared to those behind.

ized form

λ(z − ∆) ≡
1
σ
λ̃

(
z − ∆

σ

)
, (5.37)

λ′(z − ∆) ≡
1
σ2 λ̃

′

(
z − ∆

σ

)
. (5.38)

where σ2 is the variance of λ, so that λ̃ has unit variance. Also using normalized

z̃ ≡ z/σ and ∆̃ ≡ ∆/σ gives

WCSR
γ→∞

(̃zσ) = −Nrcmc2 (κ σ)2/3

σ2

lb/σ∫
0

d∆̃

[
2 λ̃′(̃z − ∆̃)

(3 ∆̃)1/3
+ (κ σ)4/3 ∆̃

8
λ̃′(̃z + ∆̃)

]
. (5.39)

Now one can see that the particles in front of the test particle, represented in the

last term in the integrand, influence the wake by roughly a factor of (κ σ)4/3 less

than particles behind, and that the primary contribution to the CSR-wake scales

with the factor in front of the integral in Eq. (5.39). However, it is interesting to

note that even as γ → ∞, where a charge radiates infinitely more power in the
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Figure 5.5: The ratio of the average energy of a Gaussian bunch using the exact
Eq. (5.32) to that using approximate Eq. (5.36) in a practical range of the param-
eters γ and κ σ.

forward direction than the backward direction, there is still a finite CSR force

from particles ahead of the test particle. In light of the primary scaling, we

define a characteristic CSR energy change per unit length as

W0 ≡ Nrcmc2 (κ σ)2/3

σ2 . (5.40)

The ultra-relativistic approximation in Eq. (5.36) is compared to the exact

formula Eq. (5.32) in Fig. 5.3 for various energies and a particular value of κ σ.

One sees that Eq. (5.36) represents the largest possible effect. The CSR-wake due

only to particles in front of the test particle is shown in Fig. 5.4, emphasizing

again that these forward particles contribute only a small amount to the total

CSR-wake.
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Figure 5.6: Similar to Fig. 5.5, but with the ratio of the average energy of
Eq. (5.32) to Eq. (5.41), showing that the latter is an excellent approximation
at relatively low energies.

Neglecting the contribution due to forward particles, the ultra-relativistic

stead-state CSR-wake in Eq. (5.39) scales with W0 and depends only on the shape

of λ̃. Factoring out W0 from the exact steady-state CSR-wake in Eq. (5.32), the

exact result additionally depends on γ and κ σ. Therefore, to quantify the appro-

priateness of the ultra-relativistic approximation, the ratio of the average energy

lost (per unit length) of a Gaussian bunch using the exact Eq. (5.32) to that using

approximate Eq. (5.36) is shown in Fig. 5.5 for a practical range of these param-

eters. At a given energy, one sees that Eq. (5.36) is a good approximation for

the relatively long bunches. This can be understood from Fig. 5.2, because the

approximation in Eq. (5.35) has a relative error for a finite energy that diverges

for small α.
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A systematic method for calculating the CSR-wake using Liénard-Wiechert

formulas in the small angle, relativistic approximations has been developed in

Sagan et al. (2008) for arbitrary combinations of drifts and bends. Using the

corresponding equation in Sagan et al. (2008) for the geometry of a bend, and

the appropriate Jacobian factor, the steady-state CSR-wake to second order in α

and 1/γ is

WCSR
SHMS,s.s.

(z) = −Nrcmc2

αmax∫
0

dα
(

1
2γ2 +

α2

8

) (
2 + γ2α2

α + γ2α3/4
−

1
α/2 + γ2α3/24

)

× λ′
(
z − κ−1

(
α

2γ2 +
α3

24

))
.

(5.41)

Compared to Eq. (5.36), this expression is a significantly better approximation

of Eq. (5.32) for low γ and a practical range of κσ, shown in Fig. 5.6.

5.2.2 Shielding by Parallel Plates

The presence of a conducting beam chamber can have a strong effect on the

CSR wake-field. For a rectangular cross section, it has been observed that the

dominant effect comes from the smaller of the height and width (see, for exam-

ple, Sagan et al. (2008)). If particle trajectories are planar, then a finite chamber

height can be represented by infinite parallel plates. In such a geometry, CSR

wake-fields can be calculated using the image charge method.

The kick due to a single image bunch at height h is easily adapted from

Eq. (5.3) as

dE
ds

(s, t, h) = Nrcmc2

∞∫
−∞

ds′
{

u(s) · r
(r2 + h2)3/2λ(sh)

+

[
β2 u(s) · u(s′)

(r2 + h2)1/2 − β
u(s) · r
r2 + h2

]
λ′(sh)

}
,

(5.42)
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with the argument

sh ≡ s′ − sb − βc t + β
√

r2 + h2, (5.43)

and with r and u retaining their meaning from Eq. (5.3). Parallel plates require

an image bunch for each plate, and an image bunch for each of those, ad in-

finitum. For the real bunch with orbit midway between plates separated by a

distance H, symmetry gives the total image kick

dEimages

ds
(s, t) =

∞∑
n=−∞
n,0

(−1)n dE
ds

(s, t, n H) (5.44)

= 2
∞∑

n=1

(−1)n dE
ds

(s, t, n H). (5.45)

If the real bunch has a vertical offset V , the total image kick is modified to

dEimages

ds
(s, t) =

∞∑
n=−∞,n,0

even

dE
ds

(s, t, n H) −
∞∑

n=−∞
odd

dE
ds

(s, t, n H − 2V). (5.46)

In a bend, the contribution of the image bunches to the CSR-wake within the
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bend, following Eq. (5.26), is

dEimages

ds
(s)

∣∣∣∣∣∣
B

= Nrcmc2
∞∑

n=1

2(−1)n

{
−κ λ(sα,n)

rα,n

∣∣∣∣∣∣α=θ

α=−(κ Lm−θ)

+

θ∫
−(κ Lm−θ)

dα
β2 cos (α) − 1

rα,n
λ′(sα,n)

}
,

(5.47)

with the definitions

rα,n ≡
√

2 − 2 cosα + (n κH)2, (5.48)

sα,n ≡ κ−1 (
θ − θ0 − α + β rα,n

)
. (5.49)

Notice that the integrands do not need to be regularized by the SC term, because

they are always finite due to the always positive factor (n κH)2.

Due to the infinite number of image layers needed, a finite bend can never

be exactly in the steady-state. However, due to their increased distances and an-

gles, the relevant contribution image number n will be negligible beyond some

maximum image number. This point is illustrated in Fig. 5.7, where the contri-

butions to the CSR-wake of five individual images are shown along with their

sum with the free space wake, to give the total shielded wake.

Shielded Steady-State CSR

CSR effects in a vacuum chamber have been computed by the Green’s func-

tion of grounded parallel plates (Schwinger, 1945; Warnock, 1990). These for-

mulas are difficult to compute numerically, due to the presence of high order

Bessel functions, so we will use an excellent approximation developed by Agoh

& Yokoya (2004). The impedance for the steady-state in a dipole with horizontal
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plates separated by a distance h is

Z(k) = Z0
2π
h

(
2

kR

)1/3 ∞∑
p=0

FAY(β2
p), (5.50)

βp ≡ (2p + 1)
π

h

( R
2k2

)1/3

, (5.51)

FAY(x) ≡ Ai′(x)
[
Ai′(x) − i Bi′(x)

]
+ x Ai(x) [Ai(x) − i Bi(x)] . (5.52)

where Z0 = cµ0 is the free space impedance, k is the wave number, and Ai and

Bi are Airy functions. The parallel plate wake-field due to a bunch with longi-

tudinal density λ(z) is obtained by Fourier transform:

(
dE
ds

)
p.p.
γ→∞

= −Nercmc2 <

 4
Z0

∞∫
0

Z(k) λ̂(k) eiksdk

 , (5.53)

λ̂(k) =

∞∫
−∞

λ(z)e−ikzdz . (5.54)

Some manipulation reveals that

βp = (2p + 1) π 2−1/3 b−1
s (kσ)−2/3 (5.55)

Z(k) = Z0 24/3 π b−1
s (kσ)−1/3 κ2/3σ−1/3

∞∑
p=0

FAY(β2
p) (5.56)

where the bunch length σ has been added and we define a shielding factor

bs ≡ h
(
κ

σ2

)1/3
. (5.57)

This is useful because the CSR wake shielded by parallel plates (p.p.), in the

steady-state and ultra-relativistic approximations, is then

Wp.p
γ→∞

(z) = −W0<


∞∫

0

Ib(̃k) λ̂
 k̃
σ

 exp
(
i k̃

z
σ

)
d̃k

 , (5.58)

Ib

(̃
k
)
≡

210/3π

bs k̃1/3

∞∑
p=0

FAY

 (2p + 1)2 π2

22/3 b2
s k̃4/3

 , (5.59)
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Figure 5.8: Average energy loss and energy spread versus the shielding param-
eter bs.

which, besides scaling with W0, only depends on z/σ and bs.

Two principal effects of CSR on the bunch distribution are a loss of energy

and an increase in energy spread. These are calculated using the CSR-wake

WCSR(z) and the bunch distribution λ(z), where the average energy change per

unit length 〈WCSR〉 and the standard deviation σW (WCSR) over the distribution are

〈WCSR〉 ≡

z+∫
z−

WCSR(z) λ(z) dz, (5.60)

σW ≡


z+∫

z−

W2
CSR(z) λ(z) dz − 〈WCSR〉

2


1/2

. (5.61)

The term σW is important because it contributes to the energy spread in a bunch.

These quantities for a Gaussian bunch and the CSR-wake in Eq. (5.58) are cal-

culated versus bs in Fig. 5.8, indicating that shielding becomes relevant when

bs . 3.
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5.2.3 Retarded Bunch Visualization

For a given particle at time t within the bunch, it is evident that the retarded

bunch density can be very distorted relative to the actual bunch density. From

Eq. (5.16), the retarded bunch density at position s′ as seen by a particle at posi-

tion s is

λret(s′; s) = λ(s′ − sb − β ct + β r)
(
1 − β

r · u(s′)
r

)
. (5.62)

In the steady-state, the geometry of a bend can be used in Eq. (5.62). Moving

to coordinates relative to the bunch center, the steady-state density seen by a

test particle at zt within the bunch as a function of z′ is

λ ret
s.s.

(z′; zt) =

[
1 − β

sin (κ(zt − z′))
√

2 − 2 cos (κ(zt − z′))

]
λ
(
z′ + β κ−1

√
2 − 2 cos (κ(zt − z′))

)
. (5.63)

This retarded density is illustrated in Fig. 5.9 for a Gaussian bunch distribution

for various test particles. There one sees that the density in front of the test

particle is compressed to roughly σ/(1 + β) ≈ σ/2, concentrated in an apparent

spike at the right of the plot. The density behind the test particle occupies the

majority of the plot. While it may seem that the curves shown are Gaussian

in form, this is only true for the left sides of the curves; the right sides have

been extended and diluted due to the Jacobian factor in Eq. (5.62). Similarly, the

retarded density of an image bunch at height h is

λret(s′, h; s) =

[
1 − β

r · u(s′)
√

r2 + h2

]
λ
(
s′ − sb − β ct + β

√
r2 + h2

)
. (5.64)

Figure 5.10 shows the retarded densities for a Gaussian bunch and several

image bunches within a bend. In this example, the first and second image

bunches as seen by particles in the rear of the bunch are actually closer than

the real retarded bunch.
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Figure 5.9: The steady-state retarded distribution λret,s.s.(z′; zt) for various test particles zt in Eq. (5.63) using a Gaussian
bunch with standard deviation σ = 0.3 mm and energy 1 GeV, in a magnet of bending radius κ−1 = 10.0 m.
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Figure 5.10: The same as Fig. 5.9, along with image charges at heights nH = n×2 cm (not to scale), which are approximately
at heights n × 67σ, and calculated using Eq. (5.64).
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Figure 5.11: Geometry for bends and drifts. The variable s parameterizes the
path X(s), with s = 0 at the beginning of element B1. The names B1, D1, etc., also
serve to indicate the element length. The dashed line is for a prior bend with
negative curvature.

5.3 Multiple Bends and Drifts

In this section the general formula Eq. (5.3), regularized by Eq. (5.10), is applied

to the geometry of multiply connected bends and drifts. Shielding by conduct-

ing parallel plates is added as in Eq. (5.45). It has been seen in Eq. (5.39) that the

primary contribution to the CSR-wake in a bend is due to particles behind the

test particle, so for brevity the path is given behind the test particle only.

Let the bunch center be at length s0 inside bend 1 of length B1 and positive

curvature κ1, preceded by drift 1 of length D1, preceded by bend 2 of length B2

and curvature κ2 , 0, as shown in Fig. 5.11. A drift follows bend 1, referred to

as D0. A negative curvature κ2 signifies a bend in the opposite direction of bend
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1. With s = 0 located at the beginning of bend 1, the path coordinates are

X(s) =



XD0(s) for s > B1

XB1(s) for 0 < s ≤ B1

s êa for −D1 < s ≤ 0

XB2(s) for s ≤ −D1

(5.65)

where the paths in the individual elements are

XD0(s) ≡
[
sin (κ1B1)

κ1
+ (s − B1) cos (κ1B1)

]
êa

+

[
1
κ1

(cos (κ1B1) − 1) − (s − B1) sin (κ1B1)
]

êb,

(5.66)

XB1(s) ≡
sin (κ1 s)

κ1
êa −

[1 − cos (κ1 s)]
κ1

êb, (5.67)

XB2(s) ≡
[
sin (κ2 D1 + κ2 s)

κ2
− D1

]
êa

−
1 − cos (κ2 D1 + κ2 s)

κ2
êb.

(5.68)

The tangent vector is then

u(s) =



cos (κ1B1) êa − sin (κ1B1) êb for s > B1

cos (κ1 s) êa − sin (κ1 s) êb for 0 < s ≤ B1

1êa for −D1 < s ≤ 0

cos (κ2D1 + κ2s) êa − sin (κ2D1 + κ2s) êb for s ≤ −D1

(5.69)

Straightforward calculation gives the total CSR-wake at position s in the bend

(0 < s < B1) due to these different sections of the path

dECSR

ds

∣∣∣∣∣
tot

(0 < s < B1) =
dECSR

ds

∣∣∣∣∣
B1

+
dECSR

ds

∣∣∣∣∣
D1

+
dECSR

ds

∣∣∣∣∣
B2

+ . . . (5.70)

with B1, D1, and B2 signifying the contributions from bend 1, drift 1, and bend

2, respectively. Due to their length, these terms are written out in Appendix C.
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Figure 5.12: The average energy loss and energy spread induced, per unit
length, of the CSR-wake for a Gaussian bunch through the length of a bend
in free space as well as between parallel plates with H = 2cm. Solid lines
have D1 = 1m, while dashed lines have D1 → ∞. Parameters used are
κ−1

1 = κ−1
2 = 10 m, σz = 0.3 mm, with an energy of 1 GeV.

A visualization of the retarded bunch and images of this geometry, similar

to Fig. 5.10, is shown in Fig. 5.13. Even though the bunch has progressed 50 cm

into bend 1, it sees much of the retarded bunch inside bend 2, especially for test

particles zt in the front of the bunch.
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Figure 5.13: Similar to Fig. 5.10, but with a 1m drift (shaded in gray) between two magnets of curvature κ1 = κ2 = 1/10m.
The center of the bunch is 50cm into the bend. A Gaussian bunch distribution is used with σz = 0.3 mm, an energy of
1GeV, and a shielding height H = 2 cm.
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To show how the average energy loss (Eq. (5.60)) and energy spread (Eq. (5.61))

change as a bunch progresses through a bend, Fig. 5.12 plots 〈WCSR〉 and σW , nor-

malized by W0, versus different bunch center coordinates s0 in bend 1 using

Eq. (5.70) with D1 = 1m and κ1 = κ2 = 1/10m. In the literature, the wake near

the beginning of bend 1 is often calculated as if the prior drift length D1 → ∞

(Saldin et al., 1997; Agoh & Yokoya, 2004), so such calculations are plotted in

dotted lines for comparison. From the difference between the two approaches,

one sees the effect of bend 2, where the CSR-wake at s0 = 0 is non-zero. In

this example, they coincide after about 1.4 m and 1.8 m for the free space and

shielded cases, respectively.

In order for it to be plausible to ignore the vacuum chamber sidewalls, such

a chamber must be wide enough to allow a straight path between the retarded

bunch and the test particle. In this example, the vector from a source particle at

z = −8000σ to the center of the bunch (z = 0) requires that the vacuum chamber

half-width must be greater than approximately 3 cm.
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5.4 CSR in a Drift Between Bends

The non-zero CSR-wake at the beginning of bend 1 in Fig. 5.12 is evidence

that the wake in a drift region after a bend also needs to be considered. This

exit-wake in the region D0 following bend 1 is calculated using Eq. (5.3) with

Eq. (5.65) and Eq. (5.69) around the center of a bunch at s0 > B1. Because the

bunch is moving in a straight line, the regularization procedure simply removes

the need to integrate any s′ > B1 for the real bunch. Therefore we can use

Eq. (5.3) for bend 1, drift 1, and earlier elements, and subtract the space charge

terms for s′ < B1. Image charges, however, still require terms for s′ > B1. The

total exit wake is then

dECSR

ds

∣∣∣∣∣
tot

(s > B1) =
dEimages

ds

∣∣∣∣∣∣
D0

+
dECSR

ds

∣∣∣∣∣
B1

+
dECSR

ds

∣∣∣∣∣
D1

+ · · · , (5.71)

where the individual terms due to element elements D0, B1, D1, are written out

in Appendix C.

For a magnet of length B1 = 3m, the exit wakes in the following drift D0 are

shown in Fig. 5.14 for bunch centers in the following 3 meters between paral-

lel plates and in free space. The average and standard deviation of the wakes

through this region are shown in Fig. 5.15. In the shielded situation, one sees

that the bunch actually gains some energy in a short length following the bend,

and that the total energy loss between parallel plates is negligible compared to

the free space losses. Energy spread, however, is qualitatively the same in both

cases.
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Figure 5.14: CSR-wakes for various bunch centers s0 > B1 calculated using Eq. (5.71). The left graph uses parallel plates
separated by a distance H = 2cm, while the right graph is for free space (n = 0 terms only in Eqs. (C.6)-(C.7), and without
Eq. (C.5)). The bending radius κ−1

1 = 10m, and the bunch has a Gaussian profile with σ = 0.3mm and an energy of 1GeV.
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Figure 5.15: The average energy loss and energy spread per unit length of the exit wakes in Fig. 5.14. In this example,
shielding by parallel plates drastically reduces the energy loss, but only marginally reduces the energy spread, when
compared to free space calculations.

206



5.5 Bunch Compression

Bunch compression or decompression can be achieved in a bending magnet if

there is a correlation between energy and longitudinal position of particles in

the bunch. To exactly calculate CSR for this, however, requires at least a 2-

dimensional model, because particles of different energies travel on different

orbits. In the framework of the 1-dimensional model described by Eq. (5.3), this

effect can be approximately modeled by allowing the bunch length to be time

dependent, and neglecting variations in the velocity β c. The density and current

are then

ρ(s, t) = Q
1
σ(t)

λ̃

(
s − sb − β ct

σ(t)

)
,

J(s, t) = Q β c
1
σ(t)

λ̃

(
s − sb − β ct

σ(t)

)
,

(5.72)

where λ̃ has unit norm and variance with respect to s, as in Eq (5.37). The time

derivative of ρ(s, t) is

∂

∂t
ρ(s, t) = −β c

Q λ̃′
( st

σ

)
σ2 − σ̇


Q λ̃

( st

σ

)
σ2 +

st

σ

Q λ̃′
( st

σ

)
σ2

 . (5.73)

with st ≡ s−sb−β ct. Note that σ̇/(β c) is on the order ofσ/B in a magnet of length

B, and (s − sb − β ct) is on the order of σ for all relevant (s, t), and therefore the

term in brackets is on the order of σ/B� 1 relative to the first term, and will be

neglected. With such an approximation, the CSR-wake in a bunch compression

system can be modeled by simply making the substitutions

λ(sr)→
1

σ(tret)
λ̃

(
sr

σ(tret)

)
(5.74)

λ′(sr)→
1

[σ(tret)]2 λ̃
′

(
sr

σ(tret)

)
(5.75)

tret = t −
√

r2 + (n H)2/c (5.76)
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in all of the previous formulas, with r = ‖X(s) − X(s′)‖, as in Eq. (5.3). This

accounts for the real charges (n = 0) and image charges (n , 0) at the appropriate

retarded times.

Calculations for the average and standard deviation of the CSR-wake with a

linearly compressing bunch through the length of bend 1 in free space are shown

in Fig. 5.16(a). The above approximation is referred to as Method 1. Method 2

calculates the instantaneous CSR-wake of a compressing bunch at each point in

the bend as if it always had its instantaneous length. Such a scheme is essentially

what particle tracking codes use for CSR simulation, e.g. elegant (Borland,

2000) and Bmad (Sagan, 2006). For reference, Method 3 calculates the CSR-

wake for a non-compressing bunch that maintains the same length as the final

compressed length in Methods 1 and 2. In this example, Method 2 overestimates

the CSR effect compared to the more realistic Method 1, and both exhibit a much

smaller effect than Method 3. At the end of the magnet (s0 = 3 m), the CSR-wake,

according to Method 1, has yet to reach its corresponding steady-state strength.

Figure 5.16(b) shows these same calculations but between parallel plates

with H = 2 cm. One sees that the energy loss in method 2 is similar to that

in method 1, but the energy spread induced is overestimated. Free space and

shielded calculations are repeated with D1 → ∞ in Figs. 5.16(c)–5.16(d), which

when compared with Figs. 5.16(a)–5.16(b) one can see the effect of the previous

bend B2.
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(c) Free Space Bunch Compression, D1 → ∞
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Figure 5.16: The average and standard deviation of the CSR-wake in free space (Fig. 5.16(a)) and between parallel plates
with H = 2cm (Fig. 5.16(b)) over a Gaussian bunch, compressing from σ = 0.9mm to σ = 0.6mm linearly through bend 2,
and from σ = 0.6mm to σ = 0.3mm linearly through bend 1, using methods described in the text. Figures 5.16(a)–5.16(b)
have D1 = 1m, while Figs. 5.16(c)–5.16(d) have D1 → ∞. The lengths B1 = B2 = 3m, the bending radii are κ−1

1 = κ−1
2 = 10m,

and the energy is 1GeV.
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5.6 Coherent Power Spectrum

Some of the first CSR calculations are found in an originally unpublished re-

port by Schwinger (1945). Here we use one of his methods to derive an exact

expression for the coherent energy loss by a Gaussian beam, which is then used

to verify our earlier calculations. Consider the power spectrum due to a single

particle moving on a circle with velocity β c, which is proportional to the abso-

lute square of the Fourier transform electric field E(1)(Ω, t), integrated over solid

angle Ω, as in

dP(1)

dω
∝

∫
dΩ

∣∣∣∣∣∣∣∣
∞∫

−∞

dt eiωtE(1)(Ω, t)

∣∣∣∣∣∣∣∣
2

. (5.77)

For N particles moving on this circle with positions s = sn + β ct, the total electric

field can be written in terms of the single particle’s electric field (sn = 0), as in

E(N)(Ω, t) =

N∑
n=1

E(1)(Ω, t − tn), (5.78)

where the time deviations tn = sn/(β c). By changing variables, this means that

the N particle power spectrum is simply

dP(N)

dω
=

∣∣∣∣∣∣∣
N∑

n=1

eiωtn

∣∣∣∣∣∣∣
2

dP(1)

dω
. (5.79)

These phase factors can be separated into terms with m = n and m , n,

dP(N)

dω
=

 N∑
m=1

eiωtm
N∑

n=1

e−iωtn

 dP(1)

dω

= N
dP(1)

dω
+

dP(1)

dω

N∑
m=1

exp
(
iω

sm

βc

) N∑
n=1
n,m

exp
(
−iω

sn

βc

)
,

(5.80)

so that the second term can be written as a correlation between different parti-

cles∑
m,n

exp
(
iω

sm − sn

β c

)
' N(N − 1)

∫
dsλ(s) exp

(
iω

s
βc

) ∫
ds′ λ(s′) exp

(
−iω

s′

βc

)
(5.81)
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Figure 5.17: The power spectrum in Eq. (5.82), per particle, using a Gaussian
form factor with various values of the coherence parameter ac = 2p, defined
in Eq. (5.87). The lower frequencies are enhanced by a factor of N, and in this
example N = 109.

using the normalized particle distribution λ(s) along the circle. The N particle

power spectrum is then

dP(N)

dω
(ω) ' N

dP(1)

dω︸  ︷︷  ︸
incoherent

+ N(N − 1)

∣∣∣∣∣∣
∫

ds λ(s) exp
(
i
ωs
βc

)∣∣∣∣∣∣2 dP(1)

dω︸                                            ︷︷                                            ︸
coherent

. (5.82)

The first term in Eq. (5.82) is the incoherent power spectrum, while the second

is the coherent power spectrum. The squared integral is called the form-factor.

In free space, the well-known single particle power spectrum is

dP(1)

dω
(ω) =

P(1)

ωc
S

(
ω

ωc

)
, (5.83)

where ωc ≡
3
2γ

3 c κ is the critical frequency (Jackson, 1999; Chao & Tigner, 2006).

The function S is defined as

S (ξ) ≡
9
√

3
8π

ξ

∞∫
ξ

dx K5/3(x), (5.84)
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in which K is a modified Bessel function. The integral
∫ ∞

0
S (x) dx = 1, and the

total power lost by a single particle is

P(1) ≡
2
3

rc m c3 β4 γ4 κ2. (5.85)

For a Gaussian distribution with variance σ2 and κ σ � 1, the form-factor is,

extending the integration limits to infinity,∣∣∣∣∣∣∣∣∣∣∣∣
∞∫

−∞

ds
exp

(
i
ωs
βc
−

s2

2σ2

)
√

2πσ

∣∣∣∣∣∣∣∣∣∣∣∣
2

= exp
(
−
σ2 ω2

β2 c2

)

= exp

−
(
ac
ω

ωc

)2
 ,

(5.86)

defining the coherence factor

ac ≡
3

2β
γ3 κ σ

=
σ

β c
ωc.

(5.87)

The total power spectrum per particle for an N-particle Gaussian distribution

with various values of ac is shown in Fig. 5.17. One sees from the exponential

that the lower frequencies, up to a cutoff frequency around ω = β c/σ, are en-

hanced by a factor of N by the coherent part of Eq. (5.82). The spectrum at higher

frequencies agrees with the familiar single particle spectrum in Eq. (5.83).

It turns out that Eq. (5.82) can be integrated exactly for a Gaussian distribu-

tion. Explicitly, the total power radiated by N particles is

P(N) = NP(1)

∞∫
0

S (x) dx + N(N − 1)P(1) 9
√

3
8π

∞∫
0

x e−a2
c x2


∞∫

x

K5/3(y) dy

dx

= NP(1) + N(N − 1)P(1) 9
√

3
8π

∞∫
0

K5/3(y)


y∫

0

x e−a2
c x2

dx

dy

= NP(1) + N(N − 1) P(1) Tc

(
3

2β
γ3 κ σ

)
,

(5.88)
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Figure 5.18: The coherence function Tc(ac) of Eq. (5.89) is plotted in red. The
green curve is the first term in the asymptotic expansion in Eq. (5.90) (Nodvick
& Saxon, 1954), and the blue curve uses all three terms in Eq. (5.90).

in which the final integral yields the coherence function defined as

Tc(ac) ≡
9

32
√
π a3

c

exp
(

1
8a2

c

)
K5/6

(
1

8a2
c

)
−

9
16a2

c
. (5.89)

The limit lima→0+ Tc(a) = 1, which is to say that an infinitely narrow bunch ra-

diates as one charge. In practical situations ac � 1, so an asymptotic expansion

of Tc gives the useful approximation

Tc(ac) ∼
9 Γ

(
5
6

)
162/3

√
π

(
1
ac

)4/3

−
9
16

(
1
ac

)2

+
9 Γ

(
5
6

)
32 · 22/3

√
π

(
1
ac

)10/3

+ . . . . (5.90)

The first term in Eq. (5.90) is given in Nodvick & Saxon (1954). Figure 5.18

compares this first term to the exact expression in Eq. (5.89) and to all three

terms in Eq. (5.90). One sees an excellent approximation for ac & 50 using the

first term and for ac & 1 using all three terms in Eq. (5.90). Also, the average
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Figure 5.19: The relative difference |(b − a)|/b for a the average energy lost using
Eq. (5.32), and b being the result in Eq. (5.91).

coherent energy lost per particle per unit length is〈
P(N)

N βc

〉
coh.

=−
2
3

(N − 1)rcmc2γ4β3κ2Tc

(
2
3
γ3κσ

)
(5.91)

∼ −
Γ
(

5
6

)
61/3
√
π

W0 + . . . , (5.92)

using W0 defined in Eq. (5.40). The numerical coefficient Γ(5/6) 6−1/3 π−1/2 '

0.350. The same procedure in Eq. (5.88) and Eq. (5.90) can be carried out for

a uniform distribution of length ∆L with the same variance σ2, implying that

∆L = 2
√

3σ. The result yields the same form as Eq. (5.92), except with the nu-

merical coefficient 2−4/3 ' 0.397. This term was originally derived in Schwinger

(1945).

To verify that the CSR-wake does indeed represent the coherent energy lost,
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Figure 5.20: The dividing line where the coherent power equals the incoherent
power, i.e. the total power is twice the incoherent power. Below this line, the
coherent power dominates the total power.

the relative difference of the average energy loss using the steady-state wake of

a Gaussian bunch in Eq. (5.32) to the result in Eq. (5.91) is plotted in Fig. 5.19.

One sees that the relative difference is at most 1% in this practical parameter

range, and that occurs with relatively long bunches. We speculate that this error

is caused by the regularization procedure that subtracts the space charge term

from the longitudinal electric field.

The relevance of the coherence function depends on the number of particles

N − 1 ' N. The coherent power radiated equals the incoherent power radiated

when N · Tc (ac) = 1, illustrated in Fig. 5.20. Using Eq. (5.90), the coherent power

dominates the total power when

κ σ .
N3/4

γ3 . (5.93)
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Figure 5.21: The shielding parameter bs described in Section 5.2.2 for all of the
bending magnets in the MERL, including the second TA pass.

5.7 CSR in the MERL

As we have seen, the exact 1D CSR calculations can be quite involved even for

simple series elements. In order to simulate CSR in a realistic accelerator lattice,

we use the Bmad libraries to track particles through elements and apply the

CSR-wake calculated from the longitudinal bunch density. The Bmad method

is described in Sagan et al. (2008), and is thoroughly tested against other CSR

codes, including the exact 1D method described in this chapter.

These simulations can be relatively time consuming, as the details of the

bunch distribution constantly change as the bunch evolves. Nevertheless, we

can give estimates of the importance of CSR in the MERL using lattice infor-

mation such as chamber height, dipole bending radius, etc., along with bunch

lengths through particle tracking without CSR. For example, to see if shield-

ing is a factor, we plot the parameter bs described in Section 5.2.2 for each of

the bending magnets, including the second TA pass, in Fig. 5.21. According to

Fig. 5.8, shielding will be effective when bs . 3, and we see in Fig. 5.21(a) that

this is the case for Mode A. However, in Mode C the bunch becomes sufficiently

216



0 20 40 60 80 100 120
1.0

1.1

1.2

1.3

1.4

1.5

Bend Number

1+
P

co
h

�P
in

co
h

(a) MERL Mode A

0 20 40 60 80 100 120

20

40

60

80

100

Bend Number

1+
P

co
h

�P
in

co
h

(b) MERL Mode C

Figure 5.22: The ratio of the steady-state incoherent radiation power Pincoh to the
coherent power Pcoh, plus one, for all of the bends in the MERL, including the
second TA pass.

short in the middle of the RA that shielding is no longer effective, as shown in

Fig. 5.21(b).

Even in free space, CSR is only important relative to incoherent radiation

when Eq. (5.93) is satisfied. To estimate this, the ratio of the incoherent radia-

tion power to the coherent radiation power, plus one, is shown in Fig. 5.22 for

free space and with shielding for each bend in the MERL. These quantities are

calculated for the steady-state, which typically gives the worst case effect. This

number is therefore the multiplicative factor of the incoherent power to give the

total radiation power. In Fig. 5.22(a) we see that the shielding practically elim-

inates the coherent radiation power in Mode A, whereas the short bunches in

Mode C produce coherent radiation which dominate the total radiation power,

as shown in Fig. 5.22(b).
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These estimates imply that CSR is not very important for Mode A, and this

is confirmed through particle tracking with Bmad (not shown). However, we

can expect that CSR in Mode C, due to the large number of particles and short

bunches, will play a dominant role. This is illustrated in Fig. 5.23, which shows

the bunch length through the MERL RA with and without shielding, and com-

pared with the the bunch length when the CSR effect is turned off in the code.

As expected, the shielding plays a negligible role. Also shown in the figure are

results from tracking a bunch with a lower charge of 77 pC, the same charge as

Mode A, and there we see that CSR becomes unimportant.

In all cases we see that the bunches can be compressed to 100 fs, but the

lengths of the 1 nC bunches degrade through the following cells. To explain this,

the longitudinal phase space slices at the first and last short pulse undulators in

the RA, for non-shielded, shielded, and lower charge bunches, are shown in

Fig. 5.24. There we can see, for the 1 nC bunches, that particles in the center and

the tail of the bunch lose energy due to CSR and are sheared to the left in the

plot due to high order time of flight terms.
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Figure 5.23: The bunch length σz for Mode C through the MERL RA using Bmad for particle tracking with CSR. The black
curve is for 1 nC of charge without shielding, and the red curve is for 1 nC of charge with shielding. The dashed purple
curve is for 77 pC of charge with shielding, and the green curve is with the CSR effects turned off.
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(a) 1 nC free space (b) 1 nC shielded (c) 77 pC shielded (d) No CSR

(e) 1 nC free space (f) 1 nC shielded (g) 77 pC shielded (h) No CSR

Figure 5.24: Longitudinal phase space slices in the first short pulse undulator (top row) and the last short pulse undulator
(bottom row) in the MERL RA. Particles are tracked with CSR effects using Bmad .
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Figure 5.25: The shielding parameter bs described in Section 5.2.2 for all of the
bending magnets in the CERL. Note that Mode C uses the upgraded CE section.

5.8 CSR in the CERL

The same analysis in Section 5.7 can be done for the CERL lattice. For Mode C,

we will use the upgraded CE section. The shielding parameter bs for all of the

bends in the CERL is shown in Fig. 5.25. There we see that shielding plays a role

in both Mode A and Mode C for all sections other than the compressed bunch

section in the NA. The ratio of the incoherent power to the coherent power, plus

one, is shown in Fig. 5.26.

The bunch lengths from particle tracking with CSR effects using Bmad for

Mode C through the SA-CE-NA sections are shown in Fig. 5.27. Unlike the

MERL results, the compressed bunch lengths using shielded and non-shielded

tracking for 1 nC of charge are very different.
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Figure 5.26: The ratio of the steady-state incoherent radiation power Pincoh to the
coherent power Pcoh, plus one, for all of the bends in the CERL, including the
second TA pass. Note that Mode C uses the upgraded CE section.

The longitudinal phase space slices in the first and last short pulse undula-

tors for these cases are shown in Fig. 5.28. There we can see that the CSR-wake

in the free space CSR case changes the energy distribution so much through the

partially compressed section from approximately s = 800 m to s = 1100 m, that

the time of flight terms for the final section before the first NA undulator shear

the bulk of the lower energy particles to the right of the plot, resulting in a rela-

tively long bunch length. When the shielding is taken into account, these energy

changes are less drastic, resulting in a moderately well compressed bunch. Like

the MERL, when 77 pC bunches are used the CSR effect is less apparent.
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Figure 5.27: The bunch length σz for Mode C through the CERL SA-CE-NA sections (with upgraded CE) using Bmad
for particle tracking with CSR. The black curve is for 1 nC of charge without shielding, and the red curve is for 1 nC of
charge with shielding. The dashed purple curve is for 77 pC of charge with shielding, and the green curve is with the
CSR effects turned off.
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(a) 1 nC free space (b) 1 nC shielded (c) 77 pC shielded (d) No CSR

(e) 1 nC free space (f) 1 nC shielded (g) 77 pC shielded (h) No CSR

Figure 5.28: Longitudinal phase space slices in the first short pulse undulator (top row) and the last short pulse undulator
(bottom row) in the CERL NA. Particles are tracked with CSR effects using Bmad .
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5.9 Conclusion

The wake-field due to CSR of a 1-dimensional bunch traveling on a curve with-

out small angle or high energy approximations has been derived using Jefi-

menko’s forms of Maxwell’s equations. This exact solution allowed us to quan-

tify the accuracy of the approximations of the steady-state CSR-wake in a bend

given in Saldin et al. (1997) and Sagan et al. (2008) showing that the former is

inaccurate at low energies and long bunch lengths, and that the latter is much

more accurate down to low energies. All approximations tend to overestimate

the CSR-wake. For planar orbits the equations are extended to include shielding

by perfectly conducting parallel plates using the image charge method.

The formulas have been applied to the geometry of a bend preceded by a

drift, preceded by another bend, and show that the CSR-wake well inside the

downstream bend is influenced by the upstream bend for the parameters used.

In fact, a bunch near the entrance of a bend is influenced by the CSR-wake due to

the previous bend much more than by that due to the previous drift. Shielding

by parallel plates reduces the energy loss rate significantly, but the effect on

reducing energy spread increase is far less dramatic, in both the drift and bend

regions.
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Bunch compression has been added to this model by allowing the bunch

length to be time dependent, so that the retarded charge density seen by a test

particle is appropriately taken into account. This method has been compared to

simple methods used by particle simulation codes Bmad and elegant, and it

is shown that these tend to overestimate the effect.

Additionally, an exact expression for the coherent power lost by a 1-

dimensional Gaussian bunch moving in a circle has been derived by integrating

the power spectrum, following the method of Schwinger (1945). When com-

pared to the energy loss rate by the CSR-wake, the two show slight deviations.

This could be due to the regularization procedure for the 1-dimensional CSR-

wake that subtracts off the space charge term.

Finally, the effect of shielded CSR in the MERL and the CERL has been cal-

culated by tracking particles through the respective lattices using Bmad . There

we see that CSR in Mode A is well shielded, whereas the high charge in Mode

C can disturb the bunch compression process.
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APPENDIX A

EQUATIONS OF MOTION

Here an alternative derivation of the equations of motion in curvilinear coor-

dinates is given by directly using the geodesic equations. Background material

can be found in books by Carroll (2004) and Misner, Thorne, and Wheeler (1973).

For this section only, the speed of light c = 1.

In curvilinear coordinates (t, x, y, s), the infinitesimal line element is

− dτ2 = − dt2 + dx2 + dy2 + h2 ds2, (A.1)

where h = h(x, y, s) is a function of the space coordinates only. The time is t, and

τ is the proper time. The spacetime metric and its inverse are then

gµν = diag
(
−1, 1, 1, h2

)
, (A.2)

gµν = diag
(
−1, 1, 1, h−2

)
. (A.3)

Now let a particle with mass m and charge q travel on a curve parameterized

by τ with coordinates Xµ(τ). Written in the natural coordinate system eµ = ∂µ,

the components of the four-velocity V = Vµ eµ are

Vµ =
dXµ

dτ
, (A.4)

or explicitly (
V t,V x,Vy,V s) =

(
dt
dτ
,

dx
dτ
,

dy
dτ
,

ds
dτ

)
. (A.5)

The middle two terms can be written in terms of derivatives with respect to s,

since
dx
dτ

=
ds
dτ

dx
ds

= V s dx
ds
.

(A.6)

227



Also defining the relativistic factor γ ≡ dt/ dτ, the four-velocity components are

(
V t,V x,Vy,V s) =

(
γ, γ ṡ x′, γ ṡ y′, γ ṡ

)
, (A.7)

with primes denoting s derivatives and dots denoting t derivatives.

In general, the motion of this particle in the presence of external electromag-

netic fields is governed by the equations of motion

dVµ

dτ
+ Γ

µ
αβV

αVβ =
q
m

FµνVν. (A.8)

The Christoffel symbols are given in terms of the metric as

Γ
µ
αβ =

1
2

gµν
(
∂α gβν + ∂β gαν − ∂ν gαβ

)
, (A.9)

and the Faraday tensor components are

Fαβ =



0 −Ex −Ey −E s

Ex 0 −Bs By

Ey Bs 0 −Bx

E s −By Bx 0


. (A.10)

Individual components are to be read from this with α being the column and β

being the row. For example, F tx = Ex.

Using the metric in Eq. (A.2), the only nonzero Christoffel symbols are

Γx
ss = −h ∂xh, (A.11)

Γy
ss = −h ∂yh, (A.12)

Γs
sx = Γs

xs = h−1 ∂xh, (A.13)

Γs
sy = Γs

ys = h−1 ∂yh, (A.14)

Γs
ss = h−1 ∂sh. (A.15)
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The equations of motion for this system are then

dV t

dτ
=

q
m

(
V xEx + VyEy + h2V sE s

)
, (A.16)

dV x

dτ
− (V s)2 h ∂xh =

q
m

(
V tEx + VyBs − h2V sBy

)
, (A.17)

dVy

dτ
− (V s)2 h ∂yh =

q
m

(
V tEy − V xBs + h2V sBx

)
, (A.18)

dV s

dτ
+

V s

h

(
2V x ∂xh + 2Vy ∂yh + V s ∂sh

)
=

q
m

(
V tE s + V xBy − VyBx) . (A.19)

To bring these in line with Eqs. (2.20-2.23), we have to address a subtlety

regarding vectors in the moving frame. The basis vectors used here are in the

natural frame eµ, and are related to basis vectors in the moving frame eµ̂ by

et̂ = et, (A.20)

ex̂ = ex, (A.21)

eŷ = ey, (A.22)

eŝ =
1
h

es. (A.23)

This means that the usual three-velocity v can be written as

v =
V x

V t ex +
Vy

V t ey +
V s

V t es (A.24)

=
V x

V t ex̂ +
Vy

V t eŷ + h
V s

V t eŝ (A.25)

= ṡ x′ex̂ + ṡ y′eŷ + ṡ h eŝ, (A.26)

which is exactly Eq. (2.9). Slightly more complicated is the Faraday tensor F

written in the two bases,

F = Fαβ eα ⊗ eβ (A.27)

= Fα̂β̂ eα̂ ⊗ eβ̂, (A.28)

(A.29)
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with the components of Fα̂β̂ labeled similarly to Eq. (A.10), e.g. F t̂ x̂ = E x̂ and

F x̂ŷ = Bŝ. The bases are related by et̂ ⊗ ex̂ = et ⊗ ex, et̂ ⊗ eŝ = h−1et ⊗ es, etc., so

equating components gives the following identifications

Ex = E x̂, (A.30)

Ey = E ŷ, (A.31)

E s = E ŝ/h, (A.32)

Bx = Bx̂/h, (A.33)

By = Bŷ/h, (A.34)

Bs = Bŝ. (A.35)

Putting all this together, and converting τ derivatives to s derivatives,

Eqs. (A.16-A.19) give

γ̇ =
q
m

ṡ
(
x′E x̂ + y′E ŷ + hE ŝ

)
, (A.36)

x′′ + x′
1

(γ ṡ)2

dV s

dτ
− h ∂xh =

q
mγ ṡ2 E x̂ +

q
mγ ṡ

(
y′Bŝ − h Bŷ

)
, (A.37)

y′′ + y′
1

(γ ṡ)2

dV s

dτ
− h ∂yh =

q
mγ ṡ2 E ŷ +

q
mγ ṡ

(
h Bx̂ − x′Bŝ

)
, (A.38)

h
1

(γ ṡ)2

dV s

dτ
+ 2x′∂xh + 2y′∂yh + ∂sh =

q
mγ ṡ2 E ŝ +

q
mγ ṡ

(
x′Bŷ − y′Bx̂

)
. (A.39)

Noting that
1

(γ ṡ)2

dV s

dτ
=

s̈
ṡ2 +

γ̇

γ ṡ
, (A.40)

and with h = 1 + κ0(s) x, the results in Eqs. (2.20-2.23) are recovered. Also note

that ∂sx , x′.
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APPENDIX B

LINEAR TRANSFER MATRICES

The six-dimensional transfer matrix for a drift with length L is

1 L 0 0 0 0

0 1 0 0 0 0

0 0 1 L 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1



, (B.1)

and for a dipole magnet with length L and radius 1/κ0 is

cos (κ0 L)
1
κ0

sin (κ0 L) 0 0 0
1
κ0

[1 − cos (κ0 L)]

−κ0 sin (κ0 L) cos (κ0 L) 0 0 0 sin (κ0 L)

0 0 1 L 0 0

0 0 0 1 0 0

− sin (κ0 L)
1
κ0

[cos (κ0 L) − 1] 0 0 1
1
κ0

sin (κ0 L) − L

0 0 0 0 0 1



. (B.2)
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The transfer matrix for a quadrupole magnet focusing in the horizontal plane

with length L and quadrupole strength k1 is

cos
(√

k1 L
) 1

√
k1

sin
(√

k1 L
)

0 0 0 0

−
√

k1 sin
(√

k1 L
)

cos
(√

k1 L
)

0 0 0 0

0 0 cosh
(√

k1 L
) 1

√
k1

sinh
(√

k1 L
)

0 0

0 0
√

k1 sinh
(√

k1 L
)

cosh
(√

k1 L
)

0 0

0 0 0 0 1 0

0 0 0 0 0 1



,

(B.3)

and for a quadrupole magnet focusing in the vertical plane with length L and

quadrupole strength k1 is

cosh
(√

k1 L
) 1

√
k1

sinh
(√

k1 L
)

0 0 0 0

√
k1 sinh

(√
k1 L

)
cosh

(√
k1 L

)
0 0 0 0

0 0 cos
(√

k1 L
) 1

√
k1

sin
(√

k1 L
)

0 0

0 0 −
√

k1 sin
(√

k1 L
)

cos
(√

k1 L
)

0 0

0 0 0 0 1 0

0 0 0 0 0 1



.

(B.4)
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APPENDIX C

CSR FORMULAS FOR MULTIPLE BENDS AND DRIFTS

For ease of reading, the individual terms terms in Eq. (5.70) and Eq. (5.71)

have been deferred to here. They are calculated by applying Eq. (5.3), regular-

ized by Eq. (5.10), including image charges as in Eq. (5.45), to the geometry in

Eq. (5.65).

In Eq. (5.70), the first term dEcsr/ds|B1 is the sum of Eq. (5.29) and Eq. (5.47)

with κ → κ1 and θ → κ1 s, explicitly

dECSR

ds
(s)

∣∣∣∣∣
B1

=Nrcmc2


αb∫

αa

dα
(
β2 cos (α) − 1
2| sin (α/2) |

+
1
γ2

sgn(α) − β cos (α/2)
α − 2β| sin (α/2) |

)
λ′(sα)

−
κ1 λ(sα)

2| sin (α/2) |

∣∣∣∣∣αb

αa

+

∞∫
∆a

d∆
1
γ2

λ′(z − ∆)
∆

+

∞∫
∆b

d∆
1
γ2

λ′(z + ∆)
∆

+

∞∑
n=1

2(−1)n

 −κ1 λ(sα,n)
rα,n

∣∣∣∣∣∣αb

αa

+

αb∫
αa

dα
β2 cos (α) − 1

rα,n
λ′(sα,n)




(C.1)
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with the definitions

αa ≡ κ1(s − B1),

αb ≡ κ1 s,

∆a ≡ s − 2β
1
κ1

sin
(
κ1 s
2

)
,

∆b ≡ B1 − s + 2β
1
κ1

sin
(
κ1(B1 − s)

2

)
,

rα,n ≡
√

2 − 2 cosα + (n κ1H)2,

sα ≡ s − s0 −
1
κ1

(
α − β

√
2 − 2 cosα

)
,

sα,n ≡ s − s0 −
1
κ1

(
α − β rα,n

)
.

(C.2)

Some trigonometric functions have been simplified, and the space charge inte-

grals have changed variables to ∆ = (α − β
√

2 − 2 cosα)/κ1. These terms account

for the regularized CSR-wake and image charges in bend 1. The next terms are

dECSR

ds

∣∣∣∣∣
D1

= Nrcmc2

D1∫
0

dL
∞∑

n=0

(2 − δn,0)(−1)n

×

 TL

R3
L,n

λ(sL,n) +

β2 cos (κ1 s)
RL,n

− β
TL

R2
L,n

 λ′(sL,n)


RL,n ≡

1
κ1

√
2 − 2 cos (κ1 s) + 2κ1L sin (κ1 s) + (κ1L)2 + (κ1nH)2

TL ≡ L cos (κ1 s) +
1
κ1

sin (κ1 s)

sL,n ≡ −L − s0 + βRL,n

(C.3)
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dECSR

ds

∣∣∣∣∣
B2

= Nrcmc2

B2∫
0

dL
∞∑

n=0

(2 − δn,0)(−1)n

×

 TL

R3
L,n

λ(sL,n) +

β2 cos (κ1 s + κ2 L)
RL,n

− β
TL

R2
L,n

 λ′(sL,n)


RL,n ≡

√(
cos (κ1s) − 1

κ1
+

1 − cos (κ2L)
κ2

)2

+

(
D1 +

sin (κ1s)
κ1

+
sin (κ2L)

κ2

)2

+ (nH)2

TL ≡ D1 cos (κ1 s) +
κ2 − κ1

κ1κ2
sin (κ1 s) +

1
κ2

sin (κ1 s + κ2 L)

sL,n ≡ −L − D1 − s0 + βRL,n.

(C.4)

Note that the lower limit of the sums have been set to n = 0 to account for

the real charges as well as image charges, necessitating the use of Kronecker’s

delta. Alternatively, if only free space terms are desired, the above formulas can

be used with the n = 0 term only. The dummy variable s′ has been rescaled to

L which integrates backwards over the length of the appropriate element. The

terms RL,n, TL, and sL,n are redefined after each equation in order to keep the

naming sane.

Similarly, the wake at s > B1 after bend, as in Eq. (5.71), contains the terms

dECSR

ds

∣∣∣∣∣
D0

= −Nrcmc2


B1∫
−∞

ds′
[

1
(s − s′)2λ(s′ − s0 + β(s − s′))

+β
β − 1
s − s′

λ′(s′ − s0 + β(s − s′))
]

+

∞∑
n=1

2(−1)nλ(B1 − s0 + β
√

(s − B1)2 + (nH)2)√
(s − B1)2 + (nH)2

+

∞∑
n=1

2(−1)n

∞∫
0

dL
λ′(L + B1 − s0 + β

√
(s − B1 − L)2 + (nH)2)

γ2
√

(s − B1 − L)2 + (nH)2

 ,
(C.5)
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dECSR

ds

∣∣∣∣∣
B1

= Nrcmc2
∞∑

n=0

(2 − δn,0)(−1)n

B1∫
0

dL

 TL

R3
L,n

λ(sL,n)

+

β2 cos (κ1L)
RL,n

− β
TL

R2
L,n

 λ′(sL,n)


RL,n ≡

√
2 − 2 cos (κ1L)

κ2
1

+ 2
(s − B1) sin (κ1L)

κ1
+ (s − B1)2 + (n H)2

TL ≡ s − B1 +
1
κ1

sin (κ1L)

sL,n ≡ −L + B1 − s0 + βRL,n,

(C.6)

dECSR

ds

∣∣∣∣∣
D1

= Nrcmc2
∞∑

n=0

(2 − δn,0)(−1)n

D1∫
0

dL

 TL

R3
L,n

λ(sL,n)+

β2 cos (κ1B1)
RL,n

− β
TL

R2
L,n

 λ′(sL,n)


(
RL,n

)2
≡

(
L + (s − B1) cos (κ1B1) +

sin (κ1B1)
κ1

)2

+

(
cos (κ1B1) − 1

κ1
− (s − B1) sin (κ1B1)

)2

+ (n H)2

TL ≡ s − B1 + L cos (κ1B1) +
1
κ1

sin (κ1B1)

sL,n ≡ −L − s0 + β
√

R2
L + (nH)2.

(C.7)
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