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We discuss some of the ways that local cosmological inhomogeneity has been

found to affect our interpretation of the measurements of the redshifts and luminos-

ity distances of Type Ia supernovae, so that we may ask: Can a matter dominated

universe, with gravity governed by general relativity, appear to be accelerating?

This discussion focuses on the systematic corrections to measured cosmological

parameters that one would find as a result of the “fitting problem”, wherein the

fitting of data to what we would see in a homogeneous universe introduces er-

rors due to the nonlinearity of general relativity. It has been suggested that this

fitting effect could explain the supernova data without introducing dark energy

or modifications of general relativity. We explore this claim within the context

of several cosmological scenarios, all of which use standard general relativity and

are dust dominated, with no dark energy. First, we use the spherically-symmetric

Lemâıtre-Tolman-Bondi cosmological models, then we look at a simple model for

cosmological voids and sheets, and finally we treat the problem in full three dimen-

sional generality. In each of these contexts, we analyze the systematic corrections

to the luminosity distances and redshifts of Type Ia supernovae that result from

local large scale structure. We then find how such corrections affect the properties

of the Universe that we infer from this measured luminosity distance-redshift re-



lation. We show how, in principle, a very large degree of inhomogeneity can trick

us into thinking that the expansion of the Universe is accelerating when it is not.

However, within the confines of more realistic models, such effects are shown to be

small. In the full three dimensional case, we find that the error in the best-fit cos-

mological constant is approximately ∆ΩΛ ≈ 0.004 for a large sample of supernovae

at small redshifts, between zmin = 0.02 and zmax = 0.15. Although this error is

not large enough to explain the measured cosmological constant value ΩΛ ≈ 0.7,

it is still a potentially significant systematic error that has not been accounted for

previously.



BIOGRAPHICAL SKETCH

Riva Ashley Vanderveld, being the first child of Rheanna and Ronald Van-

derveld, was born on a crisp autumn evening in 1980 at the Loyola University

Medical Center in Chicago, Illinois, after her mother selflessly endured ten months

of pregnancy and 36 hours of labor. Hereafter, the new child would be referenced

simply by the nickname “Ali”, so as to profoundly confuse anyone who would

ever try to look her up in a phone book. Five years later, Rheanna and Ronald

produced young Ali’s eventual best friend, a brother named John, and the family

moved to Cincinnati, Ohio.

At the age of seven, Ali discovered music, a passion that would sustain and

center her throughout her life, when she first studied the violin and then the

piano. She would later go on to study several other musical instruments, including

most notably the French horn, which she continues to attempt to play to this very

day.

Around 1993, the Vanderveld family moved back to the Chicago suburbs, and

their lives became much more difficult. Times were very tough, both financially

and emotionally, and this is when the bond between John and Ali first emerged.

This is also when the teenage Ali developed a deep appreciation of hip-hop and

rap music.

Ali graduated from Adlai Stevenson High School in Lincolnshire, Illinois, in

the fall of 1998, torn between her love of music and her apparent aptitude in the

areas of math and science. Shunning an invitation to audition at Juilliard music

school, she brashly chose to study physics instead. She went on to an atypical

and chaotic three years of undergraduate education at the University of Illinois

at Urbana-Champaign. She was legally emancipated from her parents and spent

iii



this time coming to terms with her difficult adolescence; this was a draining, but

defining, period in Ali’s life. Even though she was forced to work four jobs to

pay her way through school, the tenacious young woman still managed to attend

several house parties, and it was at one such gathering wherein she met the love

of her life: a man named John Dailey, Jr.

After graduation from the University of Illinois, John and Ali had their first

child: a blue-gray domestic shorthair cat that they named Isaac. Ali then continued

her studies at Cornell University in Ithaca, New York, in the field of Mechanical

Engineering. After a few short months, the keen student realized her horrible

mistake and transferred back into physics, eventually settling into the beginning

of a glamorous career as a theoretical cosmologist. In August of 2005, Ali married

John Dailey and the couple lived happily ever after. In August of 2007, she receives

her Ph.D. in physics.

iv



To my best friend at my most difficult time, to Max.

v



ACKNOWLEDGEMENTS

First of all, I have to thank Ira Wasserman, who has taught me practically

everything that I know about how to be a scientist. Why he foolishly chose to

take me on as a student, despite how poorly prepared I was for graduate school,

will forever remain a mystery to me. I have always been grateful, though, for his

unending patience and his amazing pedagogical style (that, despite what he says,

is not at all like that torture where they shove bamboo under your fingernails).
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Chapter 1

Introduction

1.1 The Luminosity Distance-Redshift Relation

In the past decade, the measurement of the luminosity distances and redshifts

of Type Ia supernovae has led to a complete overhaul of our perception of the

Universe [1, 2]. These observations have fostered the belief that the expansion of

the Universe is accelerating, a phenomenon that would require the introduction of

radically new physics.

The luminosity distance of a light source,

DL =

√
L

4πF
, (1.1)

is related to the source’s emitted luminosity L and the received flux F . This gives

a very natural measure of distance, given that we know the emitted luminosity.

Type Ia supernovae have been found to be a good source for this purpose, because

of our apparent ability to measure L. The progenitor of this type of supernova

is thought to be a carbon-oxygen white dwarf that is accreting material from a

companion. This process continues until a thermonuclear explosion is triggered

before the white dwarf approaches a critical mass, the Chandrasekhar limit, of

approximately 1.44 solar masses. As a result of this common mass scale, these

explosions are relatively homogeneous and predictable. Accordingly, it appears

as though there is a correlation between the peak brightnesses and the overall

timescales of their light curves [3].
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Type Ia supernovae are very bright, with peak bolometric luminosities of 1043

ergs per second, an energy output rate that is 5 billion times larger than that of

the Sun. The rise times and decay times of their light curves are ∼ 15 − 20 days

and ∼ 2 months, respectively [4]. They also have a very distinct spectrum, with a

pronounced Si-II absorption line and no hydrogen lines.

Another natural measure of cosmological distance to a source is the redshift of

the light received,

z =
λobs − λem

λem

, (1.2)

where λem is the emitted wavelength and λobs is the observed wavelength. This

is measured by looking at either key spectral lines or the apparent color of the

observed object. For every source in a given catalog of Type Ia supernovae, we

can measure DL and z, so that we find the function DL(z). We then fit DL(z) to

cosmological models. The models used are typically homogeneous and expanding,

employing the Friedmann-Robertson-Walker (FRW) metric with the line element

ds2 = −dt2 + a2(t)δijdxidxj , (1.3)

where a(t) is the scale factor, and where we have set c = G = 1. The scale factor

is typically normalized such that a(t0) = 1 today, where t0 is the present time.

1.1.1 Measuring Acceleration and Dark Energy with Type

Ia Supernovae

In a given FRW cosmological model, the expansion history a(t) is related to DL(z).

However, knowledge of DL(z) is not sufficient to tell us the correct underlying
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physical model, as there is a large degree of degeneracy [5]. In other words, it is

possible that very different cosmological models can yield similar results for DL(z).

For FRW models that are governed by general relativity, the Einstein equation

gives us the behavior of a(t); for a review, see [6]. For example, for a flat universe,

a(t) =

(
t

t0

)2/3(1+w)

, (1.4)

where w is the equation of state parameter that relates the pressure of the fluid

in the Universe to its density: p = wρ. The scale factor a(t) is then related to

the Hubble rate and the deceleration parameter. For a general model, these are

defined to be

H ≡ ȧ

a
(1.5)

and

q ≡ −aä

ȧ2
, (1.6)

respectively. Because of the proportionality to ä, the sign of the deceleration

parameter tells us whether the expansion of the Universe is accelerating or decel-

erating, positive q denoting deceleration and negative q denoting acceleration.

Fitting FRW models to the observed DL(z) can tell us about the contents of

the Universe, if we make certain assumptions about the underlying model. As-

suming general relativity, it turns out that the data are well fit by a flat model

containing pressureless matter with a density ρM such that ΩM = ρM/ρc ≈ 0.3,

and a cosmological constant with the density ρΛ such that ΩΛ = ρΛ/ρc ≈ 0.7,

where ρc = 3H2
0/8πG is the critical density for flatness and H0 ≈ 70 (km/s)/Mpc

is the Hubble rate today. There is further evidence for this “concordance” model

from other cosmological observations, including the Cosmic Microwave Background
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(CMB) data [7]. The luminosity distance redshift relation of this model is that of

a flat universe,

DL(z) = (1 + z)

∫ z

0

dz′

H (z′)
, (1.7)

where the Hubble rate is that of a ΛCDM model, i.e. a model containing only

pressureless matter and a cosmological constant,

H2(z) = H2
0

[
ΩM(1 + z)3 + ΩΛ

]
. (1.8)

This model is presently undergoing accelerated expansion.

This result, that the data are best fit by a presently accelerating model, is

the crux of the “dark energy problem”, as there is still a lack of a satisfactory

explanation for the physics behind this acceleration. There are fundamental issues

with having a cosmological constant of the measured size, and so many alternate

explanations for the seemingly anomalous supernova data have been put forward.

Most of these alternatives entail a modification of general relativity on cosmological

scales or the addition of a new field with exotic properties, called dark energy; for

reviews, see [8, 9]. After a decade of work in this area, it has proven to be quite

difficult to find well motivated models that can match all of the presently available

cosmological data.

1.1.2 The Fitting Problem

Due to these difficulties, there have also been recent attempts to explain this seem-

ingly anomalous cosmic acceleration as a consequence of inhomogeneity, introduc-

ing no new physics. It has been suggested that small-scale density perturbations
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could cause the appearance of accelerated expansion without the need to intro-

duce any form of dark energy, which is an appealing prospect [10, 11, 12, 13, 14].

It is already well known that inhomogeneity in the matter distribution along the

line of sight affects distance measurements in many ways, through Doppler shifts,

gravitational redshifts, gravitational lensing, and a variety of other effects. How-

ever, could such effects lead to a systematic error that could actually trick us into

thinking that the expansion of the Universe is accelerating?

The concept that inhomogeneity can systematically modify our interpretation

of cosmological measurements was first realized by Ellis with the introduction of

the “fitting problem” [15, 16]. The basic idea is this: Due to the nonlinearity of the

Einstein equation, the operators for taking spatial averages and for time evolution

do not commute. This means that, although our universe is homogeneous in the

mean, it will likely not have the same time evolution as that of the corresponding

homogeneous universe. Nevertheless, we routinely fit distance data to FRW mod-

els, a procedure that introduces errors into the inferred properties of our Universe,

and these errors will be present even for very large samples of Type Ia supernovae.

In other words, fitting supernova data from our inhomogeneous universe to FRW

models can lead to systematic errors in our appraisal of its behavior.

Our preconceived notions with regard to how we should model and interpret

supernova data can significantly affect our understanding of the nature of the

expansion history, and therefore the contents of, the Universe. As we will show in

the next section, fitting cosmological data is a very model-dependent procedure.

By making false assumptions with regard to things like the spatial curvature or to

the spatial distribution of matter, we could conceivably be tricked into thinking



6

that the expansion of the Universe is accelerating, when in fact it is not.

1.2 Acceleration from Errors in Fit Assumptions: Two Il-

lustrative Examples

We will now look at two very simple examples that will illustrate how faulty as-

sumptions made in the course of interpreting supernova data can lead us to believe

that the expansion of the Universe is accelerating, when it is actually matter dom-

inated, with no dark energy and with gravitation governed by general relativity.

1.2.1 Spatial Curvature

There are many reasons to believe that our Universe is flat, the most notable

evidence for flatness being the first peak of the anisotropy spectrum of the CMB

radiation. However, for the sake of example, let us assume for a moment that

the Universe has a significant amount of spatial curvature. Then we can ask:

What would happen if we interpreted the supernova data of such a universe while

erroneously assuming that it is flat [17]?

The luminosity distance of an open, but still homogeneous, universe which

contains only pressureless matter is

DL(z) =
1 + z

H0

√
Ωk

sinh

[√
Ωk

∫ z

0

dz′√
ΩM(1 + z′)3 + Ωk(1 + z′)2

]
, (1.9)

where ΩM and Ωk = 1− ΩM are the densities of matter and of curvature, respec-

tively, and H0 is the Hubble parameter today. On the other hand, the luminosity
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distance of a flat universe is given by Eq. (1.7). If the supernova data for DL(z)

are interpreted within the framework of a flat universe, one can find the effective

Hubble rate by inverting Eq. (1.7). This yields

H(z) =

[
d

dz

(
DL(z)

1 + z

)]−1

, (1.10)

which then leads to the associated deceleration parameter

q(z) = −1 +

[
1 + z

H(z)

]
dH(z)

dz
, (1.11)

where q < 0 would imply that the expansion of the Universe is accelerating.

By using the luminosity distance-redshift relation, i.e. Eq. (1.9), in Eqs. (1.10)

and (1.11), we find that a large enough Ωk can lead to a negative apparent decel-

eration parameter. As an expansion in the redshift, we find

q(z) =
1

2
(1− Ωk)−

1

2
Ωk (1 + Ωk) z +

1

4
Ωk

(
3 + Ωk − 2Ω2

k

)
z2

−1

8
Ωk

(
7− 4Ωk − 7Ω2

k + 4Ω3
k

)
z3 + O

(
z4
)

. (1.12)

We display this result, to order z4, for several values of Ωk in Figure 1.1. One

can clearly see that erroneously assuming flatness can lead to the appearance of

accelerated expansion for nonzero redshifts, when in fact the Universe is matter

dominated and the expansion is decelerating.

1.2.2 The Empty Beam Approximation

Now we will assume that the Universe really is flat, but has structure on large

scales. The “empty beam approximation” was developed several decades ago in an

attempt to analytically model the effect that large scale structure has on distance
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Figure 1.1: The inferred deceleration parameter q versus redshift z for several
values of Ωk, when the supernova data are interpreted within the
framework of a flat cosmological model. Shown here are results
for the models where Ωk = 0.2, 0.4, 0.6, and 0.8.
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measurements [18, 19]. The idea is to assume that matter is so tightly clumped

that the light that we receive from distant sources has passed only through empty

space. This will mean that there will be less focusing from gravitational lensing,

and hence objects will appear to be farther away than they really are. If we

assume an FRW model for all of our data analysis, we would then perceive that

the Universe is expanding faster than it really is.

In a flat and matter dominated universe, the luminosity distance in this ap-

proximation is [18]

DL(z) =
2

5H0

[
(1 + z)2 − 1√

1 + z

]
. (1.13)

Plugging this into Eq. (1.10), and then plugging the resulting Hubble parameter

into Eq. (1.11), we find the apparent deceleration parameter to be

q(z) = 1−

[
8 (1 + z)5/2 − 3

4 (1 + z)5/2 + 6

]
, (1.14)

which is plotted in Figure 1.2. Although q0 ≡ q(z = 0) = 1/2, as expected in a flat

and matter dominated universe, the deceleration parameter becomes negative for

nonzero redshifts. It turns out that this approximation is a gross oversimplification,

but it nonetheless displays an important point, namely that inhomogeneity can

affect luminosity distances in a way that could potentially mimic dark energy.

In reality, we expect the deviations from flatness and the effects of inhomo-

geneity to be small. However, in the following chapters we will see that significant

systematic errors can still arise as a result of fitting the luminosity distance-redshift

relation of an inhomogeneous universe to that of an FRW model.
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Figure 1.2: The effective deceleration parameter q versus redshift z in the
empty beam approximation.
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1.3 Overview of Thesis

The purpose of this thesis is to explore how local large scale structure can affect

our efforts to measure the luminosity distance-redshift relation and subsequently

deduce the contents and behavior of the Universe. To this end, we will use a series

of models of structure formation that are all in the context of matter dominated

cosmologies, with gravity via general relativity. For these models, we will compute

the systematic effect that local inhomogeneity has on the luminosity distances and

redshifts of Type Ia supernovae. We will then relate the resulting perturbed DL(z)

to FRW models, so that we may find how these corrections affect our assessment

of the acceleration of the Universe.

In Chapter 2, we use the spherically-symmetric, yet inhomogeneous, Lemâıtre-

Tolman-Bondi (LTB) [20] cosmological models to ask if apparent accelerated ex-

pansion is possible in a matter dominated universe, in principle. We find that

fitting the luminosity distance-redshift relation of LTB models to those of FRW

models can indeed lead to the appearance of acceleration for nonzero redshifts.

As LTB models are only toy models, we then explore a more physically rea-

sonable model for structure formation in Chapter 3. In this chapter, we construct

cosmological voids and sheets by cutting spherical regions out of an FRW universe,

and then spreading the excised matter into thin shells along the boundaries of the

voids. In the Newtonian limit, we find that the effects of this type of inhomogeneity

are negligible.

We explore the full three dimensional problem in Chapter 4. We again consider

a flat and matter dominated universe, wherein we compute the luminosity distance
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and redshift to second order in the density perturbation δ = δρ/ρ and to third

order in the fluid velocity v/c. We find that, in this more realistic framework, such

errors are not large enough to explain the measurements that ΩΛ ∼ 0.7. However,

for nearby supernovae, these errors are still an important source of systematic

uncertainty in the best-fit cosmological parameters.

Finally, we provide a summary of results in Chapter 5.



Chapter 2

Effects of Inhomogeneity in Spherical

Symmetry∗

2.1 Introduction

Since it has proven to be quite complicated to analyze the full three dimensional

fitting problem analyzed by Kolb et al. [10, 11], a useful class of models to explore

are the spherically-symmetric, yet inhomogeneous, LTB [20] cosmological models,

containing only cold dark matter, or “dust”, and wherein it is often, but not

always, assumed that we live at the symmetry center. In this way, we can confront

the simpler and more general question: Are there any models based on general

relativity and cold dark matter which can match the observations? We cannot

completely address this question with LTB models, which are unrealistic since they

place us near the center of the Universe, but these models are nevertheless useful

toy models to address this general question. More specifically, in the LTB models

we can ask if a centrally located observer can mistakenly interpret astronomical

observations of redshifts and luminosity distances as requiring acceleration of the

expansion of the Universe. We find that the answer is “yes”, and this implies that

the mechanism studied by Kolb et al. is somewhat more plausible and requires

more study.

Other papers have used LTB models in analyzing whether or not subhorizon

∗This chapter is published in Vanderveld, Flanagan, and Wasserman (2006).

13
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perturbations could “backreact” and drive accelerated expansion. Nambu et al.

take averages to find effective expansion parameters of specific illustrative exam-

ple models [21], Moffat looks at examples [22], Mansouri constructs a model that

consists of a local LTB patch which is embedded into a background FRW space-

time [23], and Chuang et al. numerically produce examples of LTB models with

apparent acceleration [24]. Alnes et al. [25] argue against acceleration, but only

by looking at a class of example models.

It has been claimed that it is possible to find LTB cosmological models that

have q0 < 0, where q0 ≡ q(z = 0) is the deceleration parameter measured by the

central observer. However, there are general theorems that prohibit such behavior

[26, 27]. In Section 2.2, we will first give a general review of LTB models and then

we will discuss this contradiction and its resolution: there is a local singularity

at the symmetry center of models with q0 < 0, corresponding to a non-vanishing

radial central density gradient and divergent second derivatives of the density. We

will prove that excluding this singularity will necessarily lead to a positive value

for q0. This singularity is not taken into account in any of the above papers, and

most of them look at models which are singular at the center [21, 22, 23, 24].

We will also show that it is possible to construct models without a central

singularity in which one would measure negative deceleration parameters q(z),

and therefore would measure regions of acceleration, at nonzero redshifts z. We

will do this by choosing the LTB model and computing the resulting luminosity

distance and ultimately q(z); we call this the “forward problem”. As we discuss in

Section 2.2 below, LTB models are characterized by two free functions of radius r,

a bang time function t0(r) and an energy function E(r). We focus on LTB models
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with zero energy functions but non-zero bang time functions, because we do not

expect the former to produce acceleration. This is because, as we will show, the

energy function is associated with the growing mode of linear theory, whereas the

bang time function is associated with the shrinking mode.

In Section 2.3, we will explore the “inverse problem”, where one chooses the

luminosity distance as a function of redshift and then attempts to find a corre-

sponding LTB model, which may or may not exist. Here, too, we only consider

E(r) = 0. We show that there are numerous pitfalls to this method, as other

singular behaviors arise which generally limit the range of redshifts for which this

class of models could reproduce the observed supernova data. For a given lumi-

nosity distance DL(z) ≡ rFRW (z)(1 + z), there is a critical redshift zcrit where

d ln rFRW (z)/d ln(1 + z) = 1. For almost all choices of DL(z), any attempt to find

a corresponding zero energy LTB model will fail at some redshift smaller than

zcrit when a singularity is encountered. There are exceptions which pass through

a “critical point” at z = zcrit, the simple FRW model being one obvious exam-

ple of such a “transcritical” solution. We show how others may be constructed.

These models show redshift domains with enhanced apparent deceleration as well

as acceleration, but do not appear to be consistent with observational data on

DL(z).

Several papers have already computed how the dependence of the luminos-

ity distance on redshift is distorted in LTB models due to purely radial inhomo-

geneities, and have claimed that we could be tricked into thinking that we are

in a homogeneous accelerating universe when we are really in a dust-dominated

inhomogeneous universe [28, 29, 30, 31]. However, this claim has not until now
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been correctly justified, since all previous papers neglected the central singularity

and the critical point.

2.2 The Forward Problem

2.2.1 Lemâıtre-Tolman-Bondi Models

Using the notation of Célérier [30], the LTB spacetime [20] has the line element

ds2 = −dt2 +
R′2(r, t)

1 + 2E(r)
dr2 + R2(r, t)

(
dθ2 + sin2 θdφ2

)
(2.1)

where primes denote derivatives with respect to the radial coordinate r, and E(r)

is a free function, called the “energy function”. We define the function k(r) by

k(r) ≡ −2E(r)/r2. If k(r) = 0, the Einstein equations admit the solution

R(r, t) = (6πGρ̃)1/3 r [t− t0(r)]
2/3 , (2.2)

where t0(r) is another free function, often referred to as the “bang time” function,

and ρ̃ is a fixed parameter. If k(r) < 0 for all r, we have the parametric solution

R =
4πGρ̃r

−3k(r)
(cosh u− 1)

t− t0(r) =
4πGρ̃

3 [−k(r)]3/2
(sinh u− u) , (2.3)

and if k(r) > 0 for all r, we have the solution

R =
4πGρ̃r

3k(r)
(1− cos u)

t− t0(r) =
4πGρ̃

3 [k(r)]3/2
(u− sin u) . (2.4)

These are Eqs. (18), (19), and (20) of Célérier [30], but specialized to the choice

M(r) = 4πr3ρ̃/3 by choosing the radius coordinate appropriately, where M(r) is
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the mass function used by Célérier, and where ρ̃ is a constant. 1 The energy

density of the matter in these models is given by

ρ(r, t) =
ρ̃r2

R′R2
. (2.5)

We define ρ0(t) = ρ(0, t) to be the central density, and from Eqs. (2.2) - (2.4) we

find

ρ0(t) =
1

6πG [t− t0(0)]
2 . (2.6)

Throughout this chapter we will restrict attention to an observer located at r = 0

and at t = to, where to is the observation time, not to be confused with the bang

time t0(r). We also choose units such that ρ̃ = ρ0(to), and we choose the origin

of time such that t0(0) = 0. A light ray directed radially inward follows the null

geodesic

dt = − R′(r, t)√
1− k(r)r2

dr (2.7)

and has a redshift given by

dz

dr
= (1 + z)

Ṙ′ [r, t(r)]√
1− k(r)r2

(2.8)

where overdots denote partial derivatives with respect to time and where t(r) is

evaluated along light rays that are moving radially inward according to Eq. (2.7).

Equations (2.5) and (2.8) give us two important restrictions on the derivatives of

R(r, t): (i) in order for the density to remain finite, we require R′ > 0, which

excludes shell-crossing, and (ii) in order to have a monotonically increasing z(r),

we require Ṙ′ > 0.

1Note that the mass function M(r) which appears in Bondi [20], which we de-
note by MB(r), is related to Célérier’s M(r) by M ′

B(r) = M ′(r)/
√

1 + 2E(r),
and so our radial coordinate specialization in Bondi’s notation is M ′

B(r) =
4πr2ρ̃/

√
1− 2k(r)r2.
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The luminosity distance measured by the observer at r = 0 and at t = to is

given by [30]

DL(z) = (1 + z)2 R , (2.9)

where z and R are evaluated along the radially-inward moving light ray. It is not

obvious how to define the deceleration parameter in an inhomogeneous cosmol-

ogy, and Hirata and Seljak [27] explore several definitions. In this chapter, we

restrict our attention to the deceleration parameter that would be obtained from

measurements of luminosity distances and redshifts assuming a spatially flat FRW

cosmology. 2 We can deduce the effective Hubble expansion rate H(z) of the

flat FRW model which would yield the same luminosity distances by inverting the

FRW relation

DL(z) = (1 + z)

∫ z

0

dz′

H (z′)
(2.10)

to find

H(z) =

[
d

dz

(
DL(z)

1 + z

)]−1

. (2.11)

We can then calculate the associated deceleration parameter

q(z) = −1 +

[
1 + z

H(z)

]
dH(z)

dz
(2.12)

and the effective equation of state parameter

weff(z) ≡ 2

3

[
q(z)− 1

2

]
=

2(1 + z)

3

d

dz
ln

[
H(z)

(1 + z)3/2

]
. (2.13)

If we know t0(r) and E(r), then we can find R(r, t) very simply by using the

appropriate solution above, chosen from Eqs. (2.2), (2.3), and (2.4). We then solve

the differential equations (2.7) and (2.8) to find t(z) and r(z), starting from the

2More generally, an observer might fit data on DL(z) to FRW models with
arbitrary spatial curvature, including flat ones.
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initial conditions r = 0 and t = to. We insert these t(z) and r(z) into the right

hand side of Eq. (2.9) to obtain DL(z), and then use Eqs. (2.11) and (2.12) to

find H(z) and q(z). We will use this procedure later in this section with a class of

models as an illustrative example.

2.2.2 The Weak Singularity at r = 0

There have been many claims that there exist LTB cosmological models in which

q0 ≡ q(z = 0) < 0 [21, 22, 23, 24, 28, 29, 30, 31]. For example, Iguchi et al.

[31] look at two different classes of LTB models: (i) models with k(r) = 0 and a

pure “BigBang time inhomogeneity” and (ii) models with t0(r) = 0 and a pure

“curvature inhomogeneity”. In either case, they try to reproduce the luminosity

distance function of a flat FRW universe with a matter density ΩM = 0.3 and a

cosmological constant density ΩΛ = 0.7, namely

DL(z) =
1 + z

H0

∫ z

0

dz′√
ΩM (1 + z′)3 + ΩΛ

. (2.14)

They appear to be successful up until they find R′ < 0 or Ṙ′ < 0 at a redshift

z ∼ 1 (we will discuss these pathologies in the next section). Thus, they appear

to successfully find models where q0 < 0.

On the other hand, the local expansions of Flanagan [26] and of Hirata and

Seljak [27] show that q0 is constrained to be positive for arbitrary inhomogeneous

dust-dominated cosmologies that are not necessarily spherically-symmetric. In

particular, Flanagan expands the luminosity distance as

DL = A(θ, φ)z + B(θ, φ)z2 +O(z3) , (2.15)
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where θ and φ are spherical polar coordinates as measured in the local Lorentz

frame of the observer. He then defines the central deceleration parameter as

q0 ≡ 1− 2H−2
0 〈A−3B〉 , (2.16)

where angle brackets denote averages over θ and φ, and H0 = 〈A−1〉. Using local

Taylor series expansions and assuming that the pressure is zero, he finds

q0 =
4π

3H2
0

ρ +
1

3H2
0

[
7

5
σαβσαβ − ωαβωαβ

]
(2.17)

where σαβ and ωαβ are the shear and vorticity tensors. The first term of this

expression is obviously positive, and the terms in the brackets vanish in LTB

models by spherical symmetry. Thus there is a contradiction: general theorems

prove that q0 is positive in these inhomogeneous models, whereas the analysis of

specific examples appears to show that it is possible to construct models in which

q0 can be negative. Here we present the resolution of this contradiction, that there

exists a weak local singularity which is excluded at the start from the computations

of Flanagan and Hirata and Seljak, but which is present in models giving q0 < 0.

We will show that the exclusion of this singularity inevitably leads to models with

a positive q0.

We expand the density (2.5) to second order in r as

ρ(r, t) = ρ0(t) + ρ1(t)r + ρ2(t)r
2 +O

(
r3
)

. (2.18)

The weak singularity occurs when ρ1(t) is nonzero, in which case the gravitational

field is singular since �R → ∞ as r → 0, where R is the Ricci scalar. In other

words, second derivatives of the density diverge at the origin, independent of where

observers may be located. This is true both in flat spacetime and in the curved
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LTB metric when we have a density profile of the form (2.18). The singularity is

weak according to the classification scheme of the literature on general relativity

[32]. This singularity is excluded from the start in the analyses of Flanagan [26]

and Hirata and Seljak [27] which assume that the metric is smooth.

We now determine the conditions for a weak singularity to occur. We define

the variable

a(r, t) =
R(r, t)

r
; (2.19)

this is analogous to the FRW scale factor a(t), in the sense the metric takes the

form

ds2 = −dt2 + a2(r, t)

{
[1 + ra′(r, t)/a(r, t)]2

1− k(r)r2
dr2 + r2

(
dθ2 + sin2 θdφ2

)}
. (2.20)

We expand this function as

a(r, t) = a0(t) + a1(t)r + a2(t)r
2 +O

(
r3
)

. (2.21)

Comparing this to the formula (2.2) for R(r, t), we find for the zeroth order ex-

pansion coefficient

a0(t) = [6πGρ0 (to)]
1/3 t2/3 . (2.22)

We define H0 = ȧ0(to)/a0(to), and our choice of units above imply a0(to) = 1.

Using Eqs. (2.19) and (2.21) in the expression (2.5) for the density gives

ρ(r, t) =
ρ0 (to)

a2
0(t)

− 4
ρ0 (to) a1(t)

a3
0(t)

r +O
(
r2
)

. (2.23)

Since a0(t) 6= 0 by Eq. (2.22), we see that having a non-singular model requires

a1(t) = 0, or equivalently R′′(r = 0, t) = 0.

It is straightforward to see that if a1 = 0, then q0 ≥ 0, and that if a1(t) 6= 0, then

q0 may be positive or negative. Note that the observer’s measurement of q0 from the
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data does not depend on the observer’s prior assumptions about spatial curvature,

and so the following analysis of q0 is sufficiently general and applies for arbitrary

k(r). If a1(t) = 0, then the angular size distance is R(r, t) = ra0(t)+r3a2(t)+O(r4),

where r and t are evaluated along the path followed by a radially directed light ray.

Evaluating the redshift for such a ray gives to lowest order z = H0r+O(r2). Thus,

the angular size distance is unaffected by density gradients up to terms of order

z3. In other words, the standard expansion of the angular size distance R ≡ DA

to order z2,

H0DA(z) = z − 1

2
z2(3 + q0) +O(z3) , (2.24)

is completely determined by the evolution of the uniformly dense core region of the

expanding spherically-symmetric model, where the density is ρ0(t) = ρ0(to)/a
3
0(t)

from Eqs. (2.6) and (2.22), which is the density of dust expanding with scale factor

a0(t). Therefore, the effective values of q0 for such a model must lie in the same

range as are found for exactly uniform, dust dominated FRW models: q0 ≥ 0.

We can gain further physical insight into the behavior of LTB models near

r = 0 by expanding the field equations in r, assuming (see Eq. (2.21))

a(r, t) = a0(t) + an(t)rn + . . . , (2.25)

and correspondingly

k(r) = k0 + knr
n + . . . ; (2.26)

we show in the next subsection that a1(t) = 0 corresponds to having k1 = 0 via a

direct analysis of the LTB solutions. Thus, for non-singular models, n = 2 is the

leading order correction to strict homogeneity near the center. The field equations

are given in Bondi [20], and in our notation his Eq. (24) is

1

2

(
∂R(r, t)

∂t

)2

− 4πGρ0 (to) r3

3R(r, t)
= −1

2
k(r)r2 . (2.27)
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Substituting R(r, t) = ra(r, t) we find(
∂a(r, t)

∂t

)2

=
8πGρ0 (to)

3a(r, t)
− k(r) . (2.28)

Using the expansions (2.25) and (2.26) and equating like powers of r, we find

ȧ2
0 =

8πGρ0 (to)

3a0

− k0 ≡
H2

0Ω0

a0

+ H2
0 (1− Ω0)

2ȧ0ȧn = −8πGρ0 (to) an

3a2
0

− kn = −H2
0Ω0an

a2
0

− kn . (2.29)

The first of Eqs. (2.29) is exactly the same as the Friedmann equation for the

scale factor a0(t) in a universe with arbitrary spatial curvature, subject to the

single physical requirement Ω0 ≥ 0. To solve the second equation, notice that

ä0 = −H2
0Ω0/2a

2
0, so rewrite it as

ȧ0ȧn − ä0an = ȧ2
0

d

dt

(
an

ȧ0

)
= −kn

2
, (2.30)

which has the solution

an(t) = Cȧ0 −
knȧ0

2

∫ t

0

dt′

ȧ2
0(t

′)
, (2.31)

where C is a constant. Let us define δn(t) = an(t)/a0(t); then Eq. (2.31) becomes

δn(t) = CH(t)− knH(t)

2

∫ t

0

dt′

H2(t′)a2
0(t

′)
= CH(t)− knH(t)

2

∫ a0(t)

a0(0)

da0

H3(a0)a3
0

,

(2.32)

where

H ≡ ȧ0

a0

= H0

√
Ω0

a3
0

+
1− Ω0

a2
0

. (2.33)

Comparing with results in Peebles [33], we see that the first term of Eq. (2.32)

is just the shrinking mode of linear theory, and the second is the growing mode.

The amplitude C of the shrinking mode is related to the bang time function by

t0(r) = −Crn + . . ., and the growing mode amplitude kn is related to the lowest
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order energy perturbation knr
n. Note that this approximate solution holds for

anr
n � a0(t), i.e. for 0 < rn � 1/δn.

We have shown that for n ≥ 2, the central value of q0 is greater than or equal

to zero. We now compare with the mildly singular case with n = 1. The evolutions

of a0(t) and a1(t) are governed by Eqs. (2.29) and (2.31). For this case, the low

z expansion of DA(z) depends on a1(to) and k1, and the effective value of q0 near

the origin becomes, from Eqs. (2.19), (2.24), and (2.25),

q0 =
1

2
Ω0 −

2a1(t0)

H0

+
ȧ1(t0)

H2
0

=
1

2
Ω0 −

a1(t0)

H0

(
2 +

Ω0

2

)
− k1

2H2
0

. (2.34)

This is no longer constrained to be positive.

2.2.3 Proof of q0 ≥ 0 Directly from LTB Solutions

We will now show directly from the solutions (2.2), (2.3), and (2.4) of the Einstein

equations that LTB models without central singularities must have positive q0.

The zero energy solution k(r) = 0 has

a1(t) ∝ R′′(r = 0, t) = −4

3
[6πGρ0 (to)]

1/3 t′0(0)t
−1/3 . (2.35)

Thus, we see that the zero energy solution requires t′0(0) = 0 in order to have no

central singularity. More generally, for the k(r) > 0 solutions, we find

R′′(0, t) = k′(0)

[
3F ′ (x0)√

k0

t− 8πGρ0 (to) F (x0)

3k2
0

]
− t′0(0)

[
2
√

k0F
′ (x0)

]
(2.36)

where k0 ≡ k(r = 0) and we have defined the function F (x) by

1− cos u ≡ F (u− sin u) . (2.37)
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Here x0(t) = u0 − sin u0 is the value of x at the center r = 0 at time t:

x0(t) =
3k

3/2
0

4πGρ0 (to)
t . (2.38)

Similarly, for the k(r) < 0 solutions we find

R′′(0, t) = −k′(0)

[
3G′ (x0)√
−k0

t− 8πGρ0 (to) G (x0)

3k2
0

]
− t′0(0)

[
2
√
−k0G

′ (x0)
]

(2.39)

where we define the function G(x) by

cosh u− 1 ≡ G(sinh u− u) . (2.40)

Since the bracketed expressions in Eqs. (2.36) and (2.39) are functions of time,

R′′(r = 0, t) will vanish at arbitrary t only if t′0(0) = 0 and k′(0) = 0, and only

then can one avoid having a singularity at the symmetry center.

These conditions, t′0(0) = 0 and k′(0) = 0, lead to the restriction that q0 must

be positive. Célérier [30] expands the luminosity distance for small redshift and

finds the second order coefficient to be

D
(2)
L ≡ 1

2

[
d2DL

dz2

]
r=0

=
1

2

[
R′

Ṙ′

(
1 +

R′R̈′

Ṙ′2
+

R′′

R′Ṙ′
− Ṙ′′

Ṙ′2

)]
r=0

, (2.41)

where overdots again denote partial derivatives with respect to time. The deceler-

ation parameter at r = 0 is therefore

q0 = 1− 2H0D
(2)
L =

[
−R′R̈′

Ṙ′2
− R′′

R′Ṙ′
+

Ṙ′′

Ṙ′2

]
r=0

. (2.42)

If R′′(0, t) = 0 to avoid a singularity, we find that the last two terms in the above

expression are also zero, and we obtain

q0 =

[
−R′R̈′

Ṙ′2

]
r=0

. (2.43)
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Since R′(r, t) > 0 to prevent shell crossing, and Ṙ2 is obviously positive, we would

need to have

R̈′(0, t) = ä0(t) > 0 (2.44)

in order to have a negative q0. For the k(r) = 0 solution,

R̈′(0, t) = −2

3

[
2πGρ0 (to)

9

]1/3

t−4/3 < 0 ; (2.45)

moreover, the k(r) > 0 solution has

R̈′(0, t) = −4πGρ0 (to)

3k0

(
du0

dt

)2

< 0 , (2.46)

and the k(r) < 0 solution has

R̈′(0, t) =
4πGρ0 (to)

3k0

(
du0

dt

)2

< 0 . (2.47)

Therefore we can conclude that, in the absence of weak central singularities, all

LTB solutions have positive q0 since R̈′(0, t) is always negative.

2.2.4 Models of Iguchi, Nakamura and Nakao

Here we verify explicitly that the models with q0 < 0 studied by Iguchi et al. [31]

contain weak singularities. For the first case in Iguchi et al., the pure bang time

inhomogeneity, there will be no singularity if t′0(0) = 0, as shown from Eq. (2.35).

If we expand DL(z) for this FRW model in a power series around z = 0, we can

compare this term by term to the expansion of the luminosity distance for a zero

energy LTB model to find [30]

ΩM = 1 + 5
t′0(0)

αβ2
+

29

4

t′20 (0)

α2β4
+

5

2

t′′0(0)

α2β
(2.48)
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and

ΩΛ = −1

2

t′0(0)

αβ2
+

29

8

t′20 (0)

α2β4
+

5

4

t′′0(0)

α2β
, (2.49)

where α ≡ [6πGρ0(to)]
1/3 and β ≡ t1/3. Using the fact that ΩM + ΩΛ = 1, we

combine Eqs. (2.48) and (2.49) to find

t′0(0) = −1

2
αβ2ΩΛ . (2.50)

A nonzero ΩΛ requires that t′0(0) is also nonzero, and hence there will be a singu-

larity in such models.

Iguchi et al. also look at models with t0(r) = 0 and positive E(r). By combining

and rearranging Eqs. (6) and (39) from [30], we find that

3ΩΛ − 1

2
=

R′R̈′

Ṙ′2
+

R′′

R′Ṙ′
− Ṙ′′

Ṙ′2
. (2.51)

Plugging into this the negative k solution for R(r, t) and then setting r = 0, we can

find an equation for k′(0). Iguchi et al. make some simplifying definitions, wherein

they set H0 = G = 1 and then write everything else as a function of a parameter

Ω0, which they vary between 0.1 and 1. They set k0 = Ω0 − 1, ρ0(to) = 3Ω0/8π,

u0 = ln

2− Ω0

Ω0

+

√(
2− Ω0

Ω0

)2

− 1

 , (2.52)

and

t(r = 0) =
Ω0

2

(sinh u0 − u0)

(1− Ω0)
3/2

, (2.53)

where t(r) is evaluated along radially inward-moving light rays. Plugging these in

and then solving for k′(0) yields

k′(0) =
(1− Ω0)

3/2

6

[
(3ΩΛ − 1) sinh2 u0 (cosh u0 − 1) + 2 (cosh u0 − 1)2

3 sinh u0 − u0 (cosh u0 + 2)

]
, (2.54)
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where it is assumed that ΩΛ = 0.7. This shows that k′(0) is only zero if Ω0 = 1; we

can see from their Fig. (4) that this corresponds to the uninteresting FRW dust

solution k(r) = 0 for all r. All of the other choices for Ω0 will correspond to models

with k′(0) 6= 0 and a central singularity. Therefore, all of the non-trivial models

computed in Ref. [31] have weak singularities at r = 0.

2.2.5 Achieving a Negative Apparent Deceleration Param-

eter at Nonzero Redshifts

Although models that have been previously analyzed contain central singularities,

it is still possible to construct LTB models without such a singularity for which

the effective deceleration parameter q(z), as defined in Eq. (2.12), is negative for

some nonzero redshifts. Here we explore a class of zero energy LTB models with a

bang time function t0(r) that is quadratic near r = 0, and therefore non-singular

there.

In a zero energy LTB model, we have

dt = −R′(r, t)dr (2.55)

and therefore we can get the equation for t(r) along light rays that we observe

from supernovae. Also, z is a function of r via Eq. (2.8), specialized to k(r) = 0,

and we get z as a function of r only by using our solution for t(r) along the rays.

The bang time function is chosen such that it will (i) approach a constant for large

r, so as to have a uniform density for large redshifts, and (ii) have no terms linear

in r, so as to avoid a singularity at the center. Thus we integrate Eqs. (2.8) and
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(2.55) with the bang time function choice

t0(r) = − λrcr
2

r2 + r2
cD

2
(2.56)

where λ and D are dimensionless parameters, rc = [6πGρ0(to)]
−1/2, and we choose

units where rc = 1. We choose the initial conditions at the center, t(r = 0) = 1

and z(r = 0) = 0, and we integrate from the center outward.

Figure 2.1 displays results for the effective q(z) that we calculate from the above

model using Eqs. (2.9), (2.11), and (2.12) for various values of λ and D, namely

(λ, D) = (0.094, 0.14), (0.20, 0.29), (0.46, 0.62), (0.75, 0.91), and (1.0, 1.2). We

choose values of λ and D for which the minimum value of q(z) that is attained

is approximately −1. As we can see, although all the models are forced to have

q(z = 0) = 1/2, it is nevertheless possible for the deceleration parameter to become

negative at nonzero redshifts, as we find a region of q(z) < 0 for z . 1.

In order to reproduce the current luminosity distance data, we want q(z) to

quickly fall to from q(0) = 1/2 to q(z) ≈ −1 and then stay at that value until a

redshift z ∼ 1. In Fig. 2.2 we plot several quantities that encapsulate some of the

characteristics of the functions q(z), which are useful for assessing the feasibility of

reproducing luminosity distance data. We define ∆zneg to be the width, in redshift,

of the region where q is negative, and ∆zq<−1 to be the width of the region where

q is below negative one. We also found that the large redshift behavior is unstable

in these models: q blows up as we eventually approach the initial singularity. As

an approximate measure of the location of this divergence, we define zmax to be

the redshift at which q(z) exceeds 3. Ideally, we want ∆zneg ∼ 1, ∆zq<−1 = 0, and

zmax →∞. From Fig. 2.2, it does not appear as though this model can reproduce

the data well, although it is conceivable that one could construct a model which
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Figure 2.1: The effective deceleration parameter q versus redshift
z for several quadratic bang time models which have
a minimum q of approximately negative one. Plot-
ted here are the data for models with (λ, D) =
(0.094, 0.14), (0.20, 0.29), (0.46, 0.62), (0.75, 0.91), and
(1.0, 1.2).
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gives more realistic results. We see that by increasing D, we also increase the size

of the region with negative q(z), which makes the model more phenomenologically

viable; however, by increasing D, we also decrease zmax and thus make the model

less physically reasonable.

2.3 The Inverse Problem

Unfortunately, it is highly unlikely that one could guess a bang time function t0(r)

that would yield the experimentally measured luminosity distance DL(z). A better

approach would be to solve the inverse problem: given the appropriate DL(z), work

backwards to try to find the corresponding t0(r), which may or may not exist. This

approach has been taken before, but without avoiding the central singularity [31].

Models based on selected DL(z) generally break down at z ∼ 1 upon encountering

some pathology. We explore and clarify the possible pathologies below.

2.3.1 General Properties

In the LTB metric, the angular size distance is given by

DA(r, t) = R(r, t) = rT 2(r, t) , (2.57)

where T ≡ [t − t0(r)]
1/3. Here we have specialized to units where 6πGρ0(to) = 1.

We also define the equivalent FRW radial coordinate to be

rFRW(z) ≡ (1 + z) DA(z) , (2.58)
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Figure 2.2: Several measures of the feasibility of quadratic bang time models,
plotted versus D for λ = 1, 0.751, 0.589, and 0.455. From top
to bottom, we have plotted ∆zneg, ∆zq<−1, and zmax, all versus
D.
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in terms of which we have

rT 2(1 + z) = rFRW(z) =
DL(z)

1 + z
. (2.59)

Suppose we are given rFRW(z), and therefore DL(z) and DA(z), and from this we

wish to find the corresponding zero energy LTB model.

The equations defining our flat LTB model with bang time function may be

written in the form

dT

dr
= −1

3
+

dt0
dr

(
2r

9T 3
− 1

3T 2

)
(2.60)

and

1

(1 + z)

dz

dr
=

(
2

3T
+

2r

9T 4

dt0
dr

)
. (2.61)

Multiply Eq. (2.60) by 2/T and then add to Eq. (2.61) to find

dt0
dz

=
3T

2 (1 + z) (r/T − 1)

d

dz

[
T 2 (1 + z)

]
; (2.62)

we can also combine Eqs. (2.60) and (2.61) such that we eliminate dt0/dr altogether

to find

r

T

dT

dz
+
( r

T
− 1
) dr

dz
=

1

1 + z

(
r − 3T

2

)
. (2.63)

Defining X ≡ T 2(1 + z), these equations can recast into

1

X

dX

dz
=

(rFRW

√
1 + z/X3/2 − 1)

rFRW(3/2− rFRW

√
1 + z/X3/2)

[
3X3/2

2(1 + z)3/2
− drFRW

dz

]
(2.64)

and

dt0
dz

=
3X3/2

2rFRW(1 + z)3/2(3/2− rFRW

√
1 + z/X3/2)

[
3X3/2

2(1 + z)3/2
− drFRW

dz

]
. (2.65)

In the spatially flat, dust-dominated FRW model, X = 1 and rFRW(z) = 3[1 −

1/
√

1 + z].
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Given rFRW(z), Eq. (2.64) is a first order ordinary differential equation for X(z).

It becomes singular when

rFRW(z)
√

1 + z

X3/2
=

3

2
; (2.66)

for a flat, dust-dominated FRW model, this occurs when z = 5/4. Solutions

z = zcrit of Eq. (2.66), if these exist, are critical points of differential equation

(2.64). Near the critical point,

1

X

dX

dz
≈ 1

2(3/2− rFRW

√
1 + z/X3/2)

[
1

1 + z
− d ln rFRW

dz

]
(2.67)

and

dt0
dz

≈ rFRW(z)

(1 + z)(3/2− rFRW

√
1 + z/X3/2)

[
1

1 + z
− d ln rFRW

dz

]
. (2.68)

Transcritical solutions, which are non-singular at the critical point, are possible

provided that (1 + z)d ln rFRW/dz = 1 at the critical point. We discuss these

solutions in more detail below. Clearly, the spatially-flat, dust-dominated FRW

model is one special transcritical solution. For a general choice of rFRW(z), however,

the conditions for passing smoothly through the critical point will not be generically

satisfied, and both d ln X/dz and dt0/dz will diverge there. This suggests that a

flat LTB model with a bang time function can only mimic a generic rFRW(z) up to

some limiting redshift below zcrit, where

KFRW(zcrit) ≡
1

1 + zcrit

− d ln rFRW

dz

∣∣∣∣
z=zcrit

= 0 . (2.69)

We shall argue below that only the special class of transcritical solutions can extend

to infinite redshift.

For exploring characteristics of the solutions, it proves useful to define the new

variable

V ≡ 1− 2rFRW

√
1 + z

3X3/2
. (2.70)
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Substituting Eq. (2.70) into Eq. (2.64) gives, after some algebra,

dV

dz
=

(1− 4V + V 2)

2V (1 + z)
− (1− V )2

2V

d ln rFRW

dz

=
(1 + V 2)

2V

[
1

1 + z
− d ln rFRW

dz

]
− 2

1 + z
+

d ln rFRW

dz
. (2.71)

For a flat, dust-dominated FRW model, VFRW = 3 − 2
√

1 + z, and substituting

this V (z) into the right hand side of Eq. (2.71) yields dVFRW /dz = −1/
√

1 + z.

Near z = 0, we have seen that flat LTB models resemble flat, dust-dominated FRW

models, so

d ln rFRW/dz = z−1[1− 1

2
(1 + q(0))z + . . .] = z−1(1− 3z/4 + . . .) , (2.72)

and therefore

V (z) ≈ 1− z +
z2

4
− z3

8
+ . . . (2.73)

for z � 1. The first term in the small-z expansion of V (z) that can deviate from

Eq. (2.73) is of order z4.

At sufficiently small z, we expect V (z) to decrease. There are three possible

classes of solutions to Eq. (2.71): (i) solutions that decrease from V (0) = 1 to

some constant V∞ < 1 as z →∞, without crossing the critical point at V = 0; (ii)

solutions that decrease until a redshift z = z0 < zcrit, where they terminate; and

(iii) transcritical solutions that pass through the critical point smoothly. We ex-

amine these three classes in turn. In our considerations, we keep rFRW(z) general,

with the provisos that the model tends to q = 1/2 at both z → 0 and z → ∞.

The former is dictated by the character of LTB models free of central singularities,

whereas the latter must be true of any phenomenologically viable model. In par-

ticular, then, we assume that H ≈ 2
3
Ω

1/2
FRW(1 + z)3/2 at large z, where ΩFRW < 1.

Therefore rFRW(z) → rFRW,∞ as z →∞, where rFRW,∞ is a constant.
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Consider first solutions that decrease toward V∞ asymptotically. At large values

of z, Eq. (2.71) becomes

dV

dz
≈ 1− 4V∞ + V 2

∞
2V∞(1 + z)

− (1− V∞)2

2V∞

d ln rFRW

dz

≈ 1− 4V∞ + V 2
∞

2V∞(1 + z)
− 3(1− V∞)2

4V∞Ω
1/2
FRWrFRW,∞(1 + z)3/2

. (2.74)

The first term on the right hand side of Eq. (2.74) is negative as long as V∞ >

V0 ≡ 2 −
√

3 ≈ 0.27, and it dominates the second term. But V (z) ∼ − ln(1 + z)

in that case, and this diverges. Thus, we can only have V∞ = V0. In that case, we

let V (z) = V0 + u(z) at large z, and find

du

dz
≈ − u

√
3

(2−
√

3)(1 + z)
− 3(

√
3− 1)2

4(2−
√

3)Ω
1/2
FRWrFRW,∞(1 + z)3/2

, (2.75)

which has the general solution

u(z) =
C

(1 + z)
√

3/(2−
√

3)
− 3(

√
3− 1)2

2(3
√

3− 2)Ω
1/2
FRWrFRW,∞

√
1 + z

, (2.76)

where C is a constant. Although u(z) → 0 as z →∞, it approaches zero from be-

low, not from above, which contradicts our basic assumption. Thus, solutions that

simply decrease toward constant V (z) > 0 asymptotically do not exist. Conceiv-

ably, there can be solutions that decrease to a minimum and then increase toward

V0 asymptotically. For these, however, V (z) will be double valued. It then follows

that X = T 2(1 + z) must be double valued, since rFRW

√
1 + z is monotonically

increasing, and such behavior could be pathological. More generally, we shall see

below that solutions that avoid V = 0 must terminate at z = zcrit in order to

avoid other physical pathologies. Thus, a solution “on track” to a minimum value

Vmin > 0, and on to V0 asymptotically, might end at finite redshift.

Next, consider solutions that reach V = 0 at z = z0 < zcrit and end there. Near
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V = 0, Eq. (2.71) is approximately

dV

dz
≈ KFRW(z0)

2V
, (2.77)

where KFRW(z) = (1 + z)−1 − d ln rFRW/dz, as in Eq. (2.69). Note that since z0 <

zcrit, KFRW(z0) < 0 as well. The solution to Eq. (2.77) is V (z) ≈
√
−KFRW(z0)(z0 − z),

which terminates at z = z0.

In order to reach the critical point, we must have

KFRW(z) ≤ 0 (2.78)

all the way up to the critical point, with equality holding at z = zcrit for the

transcritical solution. For a transcritical solution to exist, we must be able to

expand

KFRW(z) = Q∆z +O
(
∆z2

)
(2.79)

near the critical redshift, zcrit, where ∆z = z−zcrit and Q > 0. For a flat, dust-filled

FRW model, we have zcrit = 5/4 and Q = 8/27. Using this linear approximation,

we find from Eq. (2.71) that V = k∆z + O(∆z2), where the slope k < 0 is the

solution to

k2 +
k

1 + zcrit

− Q

2
= 0 . (2.80)

That is, we need the negative root

k = − 1

2(1 + zcrit)
− 1

2

√(
1

1 + zcrit

)2

+ 2Q . (2.81)

For a flat, dust-filled FRW model, we find k = −2/3. This is clearly a transcritical

solution.

We can turn the above analysis into a test of whether a candidate for rFRW(z)

that agrees with observations can be represented by a transcritical, zero energy
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LTB model. First, for the candidate model, it is possible to find zcrit and Q

algebraically; we can find zcrit using Eq. (2.69), by requiring that KFRW(zcrit) = 0,

and we can find Q = dKFRW /dz|z=zcrit
, cf. Eq. (2.79). Next, find k given Q and zcrit

from Eq. (2.81) and use this value of k to integrate Eq. (2.71) back toward z = 0.

If the solution satisfies Eq. (2.73) as z → 0, then it is an acceptable transcritical

solution.

There are other disasters that may befall the solution for general rFRW(z), and

some of these may even afflict transcritical solutions. Eq. (2.65) may be rewritten

as

dt0
dz

=
2rFRW

3(1 + z)(1− V )

[
1

V

(
1

1 + z
− d ln rFRW

dz

)
+

1

(1 + z)(1− V )

]
. (2.82)

As we have noted before, dt0/dz diverges at V = 0 for generic rFRW(z), but for

transcritical solutions,

dt0
dz

=
2rFRW(zcrit)

3(1 + zcrit)

(
Q

k
+

1

1 + zcrit

)
+O (∆z) (2.83)

near the critical point, which is finite, so this potential disaster is avoided. In

particular, for a flat, dust-filled FRW model with Q = 8/27 and k = −2/3 at

zcrit = 5/4, we see that Q/k + 1/(1 + zcrit) = 0, which is consistent with t0(z) = 0

for all redshifts.

We must check for two other possible disasters, for solutions that are transcrit-

ical or not. As mentioned in the previous section, physical regions in any solution

must have a positive, finite R′ = ∂R/∂r and dr/dz. We find

∂R

∂r
= [3(1− V )]1/3

(
2rFRW

1 + z

)2/3 [
(1 + z)d ln rFRW/dz − 1

(1− V )[(1 + z)d ln rFRW/dz − 1] + 2V

]
dr

dz
=

[
2rFRW

3(1− V )(1 + z)4

]1/3{(
1− V

2V

)[
(1 + z)

d ln rFRW

dz
− 1

]
+ 1

}
.(2.84)
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Note that we have Ṙ′ ∝ (dr/dz)−1, and thus a finite, positive dr/dz implies that

Ṙ′ > 0. These equations are evaluated along the path of a light ray directed

radially inward. The requirement ∂R/∂r > 0 along the light ray is a necessary but

not sufficient condition for an acceptable model. The more general requirement is

that ∂R/∂r > 0 at all (r, t), a global condition that is much harder to satisfy; but

in general, from Eq. (2.2), this will be satisfied for models with t0(r) decreasing

monotonically. From the first of Eqs. (2.84), we note that ∂R/∂r → 0 at z = zcrit

for solutions that are not transcritical. Solutions that terminate at z0 < zcrit would

not encounter this pathology. Solutions of the first type described above, which

decrease from V (0) = 1 but do not cross V = 0, would end at z = zcrit. For a

transcritical solution,

∂R

∂r
= 31/3

(
2rFRW(zcrit)

1 + zcrit

)2/3 [
Q(1 + zcrit)

Q(1 + zcrit)− 2k

]
> 0 (2.85)

at the critical point. Transcritical solutions therefore propagate right through the

critical point with a positive, finite ∂R/∂r. From the second of Eqs. (2.84), we

see that dr/dz diverges for solutions that terminate at V = 0 and z = z0. For

transcritical solutions

dr

dz
=

[
rFRW(zcrit)

3(1 + zcrit)

]1/3(
−Q

k
+

2

1 + zcrit

)
> 0 (2.86)

at the critical point. Beyond the critical point, transcritical solutions have V < 0,

and for reasonable rFRW(z) with decreasing (1+z)d ln rFRW/dz, it seems likely that

dr/dz remains positive.

From these general considerations, we conclude that zero energy LTB models

can only mimic a given, generic rFRW(z) – arranged, for example, to fit observations

of Type Ia supernovae – for 0 ≤ z ≤ z0 < zcrit, where zcrit is the solution to Eq.



40

(2.69). There can be exceptional, transcritical models that extend to infinite z

without any mathematical or physical pathologies. However, transcritical models

are highly constrained mathematically, and may not exist for choices of rFRW(z)

that conform to phenomenological requirements. The flat, dust-dominated FRW

model is one transcritical solution, but it is ruled out by observations.

2.3.2 Manufacturing Transcritical Solutions

To manufacture transcritical solutions, we will specify V (r̃), where

r̃(z) ≡ rFRW(z)
√

1 + z, and find an equation for r̃(z). From Eq. (2.71) we find

dr̃

dz
=

3− 10V + 3V 2

2(1 + z)[2V V ′ + (1− V )2/r̃]
(2.87)

where V ′(r̃) ≡ dV (r̃)/dr̃. As long as V V ′ → 0 near V = 0, Eq. (2.87) satisfies

the transcriticality condition KFRW = 0 when V = 0. As an example, suppose we

assume that V = 1− kr̃. Then we find r̃ = (2/k)(
√

1 + z− 1) and we must choose

k = 2/3 in order to have the proper behavior at small z. This solution is simply

equivalent to the flat, dust-filled FRW solution.

Superficially, the prescription is simple: specify a V (r̃), make sure that V V ′ →

0 when V = 0, and then find the corresponding r̃(z) by integrating Eq. (2.87).

However, we know that acceptable solutions must have dr̃/dz ≥ 0 and finite; these

conditions are not so easy to guarantee.

Let us assume V (r̃) = 1− 2
3
r̃f(r̃); then Eq. (2.87) becomes

dr̃

dz
=

(r̃f − 1)(r̃f + 3)

2(1 + z)[f(r̃f − 1)− (1− 2r̃f/3)r̃f ′]
. (2.88)
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The numerator of Eq. (2.88) is zero when r̃f(r̃) = 1, or V = 1/3. If the denomina-

tor of Eq. (2.87) is nonzero at this point, then dr̃/dz goes to zero, and changes sign

upon crossing it. Thus, we also want the denominator to vanish for an acceptable

solution. In other words, V = 1/3 must be a critical point of Eq. (2.87): we have

only succeeded in hiding the critical nature of the problem, rather than eliminating

it. Eq. (2.88) shows that to pass through this critical point we must require that

r̃f ′ = 0 when r̃f = 1. Clearly, the spatially flat, dust-filled FRW model, for which

f(r̃) = 1, is one possibility.

It is also possible that the denominator of Eq. (2.88) vanishes, so dr̃/dz →∞

before r̃f → 1. This happens when

f ′ =
f(r̃f − 1)

r̃(1− 2r̃f/3)
. (2.89)

If f ′ < 0 at small values of r̃, it is possible that infinite dr̃/dz occurs before r̃f → 1.

Since we also want f(0) = 1 for nonsingular models, and f(∞) = constant for

models that approximate a flat FRW model with ΩM < 1 at sufficiently large

redshift, we have several requirements on f(r̃) that must be met simultaneously

for a model that is acceptable mathematically. Moreover, physically acceptable

models must also have ∂R/∂r > 0 and Ṙ′ > 0. Only a subset of such models – if

any – will also be acceptable phenomenologically.

To examine the phenomenological properties of a candidate transcritical solu-

tion, first define the effective Hubble parameter Heff(z) via

drFRW

dz
=

1

Heff(z)
. (2.90)
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It is straightforward to show that, normalizing so that Heff(0) = 1,

h(z) ≡ Heff(z)

(1 + z)3/2
=

3

2

[
(1 + z)

dr̃

dz
− r̃

2

]−1

=
3[f(r̃f − 1)− (1− 2r̃f/3)r̃f ′]

3(r̃f − 1) + (1− 2r̃f/3)r̃2f ′
.

(2.91)

We can also calculate the effective value of the equation of state parameter

weff =
2(1 + z)

3

d ln h

dz

=
(r̃f + 3)(r̃f − 1)

3[f(r̃f − 1)− (1− 2
3
r̃f)r̃f ′]2[3(r̃f − 1) + (1− 2

3
r̃f)r̃2f ′]

×

{
f ′
[
4(r̃f)3

3
+ 2(r̃f)2 − 8r̃f + 6

]
+ (r̃f ′)2

[
−2(r̃f)2

9
+

2r̃f

3
+ 1

]

−r̃f ′′(r̃f − 1)(r̃f + 3)

(
1− 2r̃f

3

)}
. (2.92)

Heff(z) is the Hubble parameter that would be measured by an observer who as-

sumes her observations are described by a spatially flat FRW model, and weff(z)

is the associated equation of state parameter. (A less dogmatic observer would

allow for the possibility of spatial curvature.) Note that Eq. (2.91) implies that for

f ′ = 0, Heff/(1 + z)3/2 = f = constant. If we are interested in using LTB models

to mimic a spatially flat FRW model with a mixture of dust plus cosmological

constant, we shall want f →
√

ΩM =
√

1− ΩV at large redshift, where ΩM and

ΩV are the present density parameters in nonrelativistic matter and cosmological

constant, respectively. Moreover, f → 1 as z → 0; thus f must decrease from 1

to
√

1− ΩV as redshift increases to mimic observations in an FRW model of this

sort.

For any choice of f(r̃) tailored to pass smoothly through both V = 0 and

r̃f(r̃) = 1, we can integrate Eq. (2.88) to find a transcritical solution. However,

such a solution still must pass the tests outlined in the previous section to extend
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to arbitrarily large redshifts. In terms of r̃ and f(r̃),

dt0
dz

=
3(h− f)

2(1 + z)5/2f 2hr̃(1− 2r̃f/3)

(1 + z)
∂R

∂r
=

f 1/3(3− 2hr̃)

f + 2h− 2fhr̃

3Ṙ′

2(1 + z)1/2
=

3f 1/3(1− 2r̃f/3)

2 + f/h− 2r̃f
. (2.93)

We reject any transcritical solution for which dt0/dz is ever positive, or ∂R/∂r or

Ṙ′ change sign. 3 Moreover, even if a transcritical solution is found that possesses

none of the pathologies discussed above, it may not conform to observational con-

straints. Thus, if there are any nonsingular, non-pathological LTB solutions that

can also mimic the observations, they must be very exceptional indeed.

Designing nonsingular, non-pathological transcritical solutions is a formidable

challenge. Suppose that at small values of r̃, we expand f(r̃) = 1 + fnr̃
n + . . ..

Then we find that h ≈ 1 + fn(1 + n)r̃n + . . . and weff = fnn(n + 1)r̃n−1 + . . . near

the origin, where r̃ ≈ 3
2
z. Also

dt0
dz

≈ 3 (h− f)

2r̃
≈ 3

2
fnnr̃n−1

(1 + z)
∂R

∂r
≈ 1− 2 (h− 1)

3
3Ṙ′

2(1 + z)1/2
≈ 1 +

1

3
(h− 1) . (2.94)

We wish to tailor f(r̃) to maintain positive values of both ∂R/∂r and Ṙ′, but

already near the origin ∂R/∂r and Ṙ′ deviate from their flat, dust-filled FRW

relationships in opposite senses. Notice that to avoid the weak singularity near

3For LTB with bang time perturbations only, (∂R/∂r)t = [t − t0(r)]
−1/3[t −

t0(r) − 2
3
rdt0/dr], which is only zero for a shell at coordinate radius r when

t − t0(r) = 2
3
rdt0(r)/dr. If dt0(r)/dr < 0, this occurs before t0(r) and is there-

fore irrelevant. As long as dt0(z)/dz < 0 and Ṙ′ > 0 along the light ray path,
dt0(r)/dr < 0 and (∂R/∂r)t is never zero.
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the origin, we need to have n ≥ 2. Moreover, we want to make sure that t0(z) is

monotonically decreasing to avoid shell crossing. Near the origin, decreasing t0(z)

implies fn < 0.

To illustrate how difficult it is to manufacture non-pathological transcritical

solutions from Eq. (2.88), we have considered

f(r̃) =
1

r̃1

[
1 + K

(
r̃n
1 − r̃n

r̃n
2 + r̃n

)p]
. (2.95)

The model has four parameters: K, r̃1, n, and p; the remaining parameter r̃2 will

be determined in terms of these four. To be sure that h and weff are finite near

r̃f = 1, we want either p ≡ 2 or p ≥ 3. Expanding near the origin, we find

f(r̃) =
1 + K(r̃1/r̃2)

n

r̃1

− Kp

r̃1

(
r̃1

r̃2

)np(
1

r̃n
2

+
1

r̃n
1

)
r̃n + . . . ; (2.96)

requiring f(0) = 1 implies

r̃n
2 = r̃n

1

(
K

r̃1 − 1

)1/p

, (2.97)

and so we can rewrite the expansion in the form f(r̃) = 1 + fnr̃
n + . . . with

fn = −Kp

r̃1

(
r̃1

r̃2

)np(
1

r̃n
2

+
1

r̃n
1

)
= −p(r̃1 − 1)

r̃n+1
1

[
1 +

(
r̃1 − 1

K

)1/p
]

. (2.98)

Thus, we want r̃1 − 1 > 0 and therefore K > 0 for fn < 0 and real r̃2. At large

values of r̃, f(r̃) → r̃−1
1 [1 + (−1)pK] . Thus, we expect models that can mimic

decelerating FRW models successfully to have r̃−1
1 [1 + (−1)pK] < 1, suggesting

either large r̃1 or odd p, or both. Empirically, we have been unable to find any

non-pathological models based on Eq. (2.95) with these properties.

Figure 2.3 shows an example of a transcritical solution with K = 1, r̃1 = 1.05,

n = 3, and p = 2. Although the figure only displays z < 1000, we have integrated
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this model out to z = 106 to verify that it asymptotes smoothly to a high redshift

FRW model, with constant t0. The left panel shows rFRW(z)/r
(0)
FRW(z) (dotted

line), where r
(0)
FRW(z) is computed for a flat ΛCDM FRW reference cosmology with

ΩM = 0.27 and ΩΛ = 0.73, h(z) (short dashed line), and weff(z) (solid line). Since

h → 2/1.05 = 1.905 at high z for this model, inevitably there must be regions

with weff > 0; this is in the range 0.75 . z . 3.9, with a peak value weff ≈ 2.13.

There are two regions of negative weff : (i) one at 0 < z . 0.75, with minimum

value weff ≈ −0.98; and (ii) an extensive region at z & 3.9, with a minimum value

weff ≈ −0.292. The right panel verifies the transcritical nature of the solution: it

shows V (short dashed line), 1 − d ln rFRW/d ln(1 + z) (dotted line), and t0 (solid

line), and the long dashed line is at 0. The first two cross zero simultaneously, as

they must for a transcritical solution, and at large redshifts, V is approximately

proportional to
√

1 + z while 1− d ln rFRW/d ln(1 + z) tends toward one. For this

model, t0(z) ≤ 0 at all z, and we have also verified that it decreases monotonically.

In addition, we can verify that the model behaves as predicted at small redshifts:

t0(z) ≈ −0.34z3 and weff ≈ −2.7z2.

Figure 2.4 compares the relative distance moduli

∆m = 5.0 log10[rFRW(z)/r
(0)
FRW(z)] (2.99)

for models with K = 1 and (n, p) = (3, 2) (solid line), (n, p) = (3, 4) (dotted line),

(n, p) = (2, 2) (dashed line), and (n, p) = (2, 4) (dash-dot line), with r̃1 = 1.05

in the lower set of curves and r̃1 = 1.5 in the upper set; there is no solid line in

the upper set for (n, p) = (3, 2) because the model is pathological. For the lower

set, luminous objects would appear systematically brighter than they would in the

standard ΛCDM model. As r̃1 is increased, a period of substantial acceleration is
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Figure 2.3: Results for our candidate transcritical model with K = 1, p = 2,
n = 3, and r̃1 = 1.05, out to z = 1000. The left panel shows
rFRW(z)/r

(0)
FRW(z) (dotted), h(z) ≡ H(z)/[H0(1 + z)3/2] (short

dashed), and weff(z) (solid). The reference model corresponding

to r
(0)
FRW(z) is the spatially flat ΛCDM model with ΩM = 0.27.

The right panel shows V (short dashed), 1−d ln rFRW/d ln(1+z)
(dotted), and t0 (solid).
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seen in the models below z ∼ 1, leading to the systematic brightening relative to

ΛCDM as seen in the upper set of curves. In either case, the luminosity differences

would be easy to discern observationally.

These few models illustrate several important qualitative points. First, it is

possible to construct non-pathological transcritical solutions that also avoid any

central weak singularities. Second, the model has a complicated “effective equation

of state”, including regions where weff < 0, but also regions where weff > 0. In this

case, we found a range of values −1 . weff . 2. Finally, although it is possible

to construct models that are well-behaved mathematically, these models do not

generally conform to observational constraints. We have not, however, excluded

the possibility that transcritical models in agreement with observations may exist.

2.4 Conclusions

Some have tried to use the spherically-symmetric LTB cosmological models to

explain the seemingly anomalous supernova data, as introducing a large degree of

inhomogeneity can significantly distort the dependence of luminosity distance on

redshift. We have shown that one must take care in using these models, as they will

contain a weak singularity at the symmetry center unless certain very restrictive

conditions are met. Realistic LTB solutions require that the first derivative of the

bang time function vanish at the center, t′0(0) = 0, and also that k′(0) = 0, where

2E(r) ≡ −k(r)r2. Otherwise there are physical parameters, such as the density

and Ricci scalar, which are not differentiable at the origin.

We have also shown that any LTB models without a central singularity will nec-
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Figure 2.4: Distance moduli relative to spatially flat ΛCDM with ΩM = 0.27
for models with K = 1 and (n, p) = (3, 2) (solid), (n, p) = (3, 4)
(dotted), (n, p) = (2, 2) (dashed), and (n, p) = (2, 4) (dash-dot),
with r̃1 = 1.05 for the lower set of curves, and r̃1 = 1.5 for the
upper set.
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essarily have a positive central deceleration parameter q0, and thus all previously

considered LTB models with q0 < 0 are singular at the origin. However, it is still

possible to obtain a negative effective deceleration parameter for nonzero redshifts,

which we have shown using as an example the model with zero energy and with

the bang time function (2.56), that is quadratic at small r. These models have

regions of apparent acceleration, where q(z) is negative. If our goal is to reproduce

luminosity distance data with a non-singular LTB model, we can try to smooth out

the center appropriately and tailor the model to fit the data at modest redshifts,

say z ≥ 0.01. This is not an easy task because there are other singular behaviors

that generally occur when trying to represent a given luminosity distance function

DL(z) with a zero energy LTB model.

Our detailed examination of the “inverse problem” elucidates how difficult it

is to match zero energy LTB models to observed luminosity distance data. We

have shown that the underlying differential equations generically become singular

at a critical point. We have also shown that some exceptional choices of rFRW =

DL(z)/(1 + z) admit transcritical solutions which are smooth at the critical point

z = zcrit, and may extend to arbitrarily high redshift, given that they do not

encounter other pathologies along the way. All other solutions terminate at some

redshift z0 < zcrit. We have shown how transcritical solutions can be constructed

via a simple procedure. Although these solutions show both enhanced deceleration,

seen as regions with weff(z) > 0, and acceleration, seen as regions with weff(z) < 0,

none that we have constructed explicitly conform to observations. Here we have

only studied the effects of a bang time function, and did not consider the case of a

non-zero energy function E(r). We expect generic solutions with E(r) 6= 0 to share

the basic characteristics of the models studied here, namely the critical points and
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other singularities that we have discussed. However, we cannot say for sure that

there are no transcritical and nonsingular solutions with non-zero t0(r) and E(r)

that agree with observational data on rFRW (z), although it does not appear to be

likely, as is evident from previous unsuccessful attempts to find such solutions [31].

Even if it were possible to reproduce determinations of DL(z) from supernova

data in a LTB model without dark energy, we would still be left with the task

of matching all of the other cosmological data with such a model. First, the

Wilkinson Microwave Anisotropy Probe is one of our most important sources of

information about the Universe, via CMB data; Alnes et al. [34] try to reproduce

the first peak of the angular power spectrum with LTB models, and Schneider

and Célérier [35] claim to be able to account for the apparent anisotropy in the

dipole and quadrupole moments with an off center observer. There are further

constraints on inhomogeneous models from the kinetic Sunyaev-Zel’dovich effect,

which constrains radial velocities relative to the CMB [36]. However, observations

of large scale structure formation may be the most difficult to reconcile. These data

strongly disfavor a currently dust dominated universe, as density perturbations

would have grown too much without dark energy present to speed up the cosmic

expansion rate and consequently retard the growth of fluctuations.



Chapter 3

Systematic Effects of Cosmological Voids

and Sheets

3.1 Introduction

Studies of the spherically-symmetric LTB models have shown that it is in principle

possible to construct a matter dominated cosmological model that will appear to

be accelerating, if the luminosity distance-redshift relation of Type Ia supernovae is

interpreted within the framework of a homogeneous FRW universe. However, it is

highly unlikely that we would live so close to the center of a spherically-symmetric

universe with such severe large scale inhomogeneities, and so we should study this

effect within the context of more realistic models of structure formation.

On very large scales, the matter in the Universe is arranged in a web of filaments

and sheets of matter, with large ∼ 50 Mpc voids in between [37]. The aim of this

chapter is to develop a simple analytic model for this scenario, so that we can

explore how such structures systematically affect supernova data. In the work that

follows, we will construct a model wherein we take the standard matter-dominated

FRW model and cut out spherical voids in a random arrangement. In Section 3.2,

we will find that such a scenario will only be a valid solution of general relativity

if each void is bounded by a thin shell of matter that contains all of the mass

that is missing from the void. Hence, this model incorporates the voids and sheets

of matter that we see in large scale structure surveys and simulations. This is a

51
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variant of the “Swiss cheese” cosmological models [38, 39, 40].

Light propagation through a single void has already been studied in detail Ref.

[41]. This in contrast to our goal in this chapter, which is to find the systematic

effects of voids on the luminosity distance-redshift relation, and this requires the

statistical study of light propagation through many voids. It was discovered during

the preparation of this manuscript that a similar study was done previously [42],

and subsequently another study appeared [43].

The organization of this chapter is as follows. In Section 3.2, we use the Israel

junction conditions [44] to find the dynamics of our model, and in Section 3.3 we

compute the motion of a single light ray through a void, to second order in the

ratio of the void size to the Hubble length. We find that there is no net redshift

change, but there is an impact parameter dependent deflection. Then, in Section

3.4, we compute the effect that this would have on the luminosity distances of

supernovae. We find that there is no mean amplification of supernova images, but

there is an induced error. This error is several orders of magnitude smaller than

the intrinsic error in measuring supernova luminosities, and therefore we find that

the effect is negligible.

3.2 Model Dynamics

Our model for cosmological voids consists of an FRW universe which contains

spherical empty regions. The construction of such a situation implies the joining

of two metrics: the external FRW metric and the internal vacuum metric. Joining

these involves satisfying the Israel junction conditions, and we will eventually find
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that these conditions will only be satisfied if each empty region is surrounded by

a thin mass compensating shell.

In order to find the proper junction conditions for shells surrounding the voids,

it is convenient to first consider just one such void, centered at the origin of a

spherically-symmetric coordinate system. Inside the shell, the boundary of which

we will call Σ, we will have vacuum with the coordinates xα and the line element

ds2 = −dτ 2 + dχ2 + χ2dΩ2 , (3.1)

where dΩ2 ≡ dθ2 + sin2 θdφ2. Outside Σ, we will have the standard FRW line

element

ds2 = −dt2 + a2(t)

[
dr2

1− kr2
+ r2dΩ2

]
. (3.2)

Let us also refer to the region outside Σ as V+ and the region inside Σ as V−. If

we choose the coordinates on the hypersurface describing Σ to be ya = (t, θ, φ),

and if we assume that this surface will be comoving with the FRW flow, then Σ is

described by

r = R = constant (3.3)

as seen from V+, and by χ = X(t) and τ = T (t) as seen from V−.

The first junction condition states that the induced metric hab on the hyper-

surface Σ has to be the same on both sides. From the outside, we have

ds2
Σ+ = −dt2 + a2(t)R2dΩ2 (3.4)

and from the inside, we have

ds2
Σ− =

(
−Ṫ 2 + Ẋ2

)
dt2 + X2dΩ2 . (3.5)



54

Since ds2
Σ+ = ds2

Σ−, this means that X(t) = a(t)R and

Ẋ2 + 1 = Ṫ 2 . (3.6)

Thus, X(t) is the physical size of a void with comoving size R at a time t. The

solution for a(t) can be obtained from the Einstein equations for the FRW exterior

with uniform dust density ρ, namely

ȧ2 + k =
8π

3
ρa2 . (3.7)

So we can easily find the solutions for X(t) and T (t) using the above relations.

The second junction condition says that the jump in extrinsic curvature tells

us the surface stress energy Sab of the shell, where the shell’s stress energy tensor

is given by

Tαβ
Σ = δ(l)Sabeα

aeβ
b . (3.8)

Here l = 0 at Σ, l measures proper length in the direction perpendicular to Σ, and

eα
a = ∂xα/∂ya . Given the extrinsic curvature K±

ab on each side (with a plus or a

minus to tell us which side) and the traces K± = habK±
ab, the surface stress energy

tensor on Σ is

Sab = − 1

8π

[(
K+

ab −K−
ab

)
− (K+ −K−) hab

]
. (3.9)

The extrinsic curvature is

Kab = nα;βeα
aeβ

b , (3.10)

where we define the unit normal vector nα such that nαnα = 1 and

nα =
Φ,α

|gµνΦ,µΦ,ν |1/2
, (3.11)

and where Σ is described above as being a condition on the coordinates: Φ(xα) = 0.
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As seen from V+, Φ+ = r −R = 0. This means that nt = nθ = nφ = 0 and

nr =
a√

1− kr2
. (3.12)

Using this, we find that

K+
tt = nt;t = nt,t − Γr

ttnr = 0 ; (3.13)

both terms of this are zero, since nt = 0 and Γr
tt = 0 for the FRW metric. Working

in a similar fashion, we also find that

Kθ
+θ = Kφ

+φ =

√
1− kR2

aR
(3.14)

at the surface.

As seen from V−, Φ− = χ − X(t) = 0 and τ = T (t). Therefore nθ = nφ = 0,

nχ = Ṫ , and nτ = −Ẋ. Also,

eτ
t ≡ uτ = Ṫ (3.15)

and

eχ
t ≡ uχ = Ẋ . (3.16)

Working as we did before, we now find that

Kθ
−θ = Kφ

−φ =
Ṫ

X
. (3.17)

As in Ref. [45], we can find the time-time term of K most easily by noting that

K−
tt = nα;βuαuβ = −nαuα

;βuβ = −aαnα , (3.18)

where aα is the acceleration of an observer comoving with the surface

aα = uβuα
;β . (3.19)
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This means that

K−
tt = −nαuβ∂βuα − Γα

µβnαuβuµ (3.20)

where the second term is zero for our vacuum, since all of the needed connection

coefficients vanish. The remaining term gives us

Kt
−t = nαuβ∂βuα = nα

∂

∂t
uα = Ṫ Ẍ − ẊT̈ . (3.21)

Therefore the two traces are

K+ =
2
√

1− kR2

aR

K− = Ṫ Ẍ − ẊT̈ +
2Ṫ

X
. (3.22)

Now we can calculate the surface stress-energy tensor of the shell at Σ. Given

the symmetries of the problem, Sab may be written in the form

Sab = (σ + µ) uaub + µhab (3.23)

where σ and µ are the 2-dimensional analogues of density and pressure, respec-

tively. This means that St
t = −σ and Sθ

θ = µ. Using these relations, along with

Eq. (3.9) and our computed extrinsic curvatures, we find

σ =
1

4π

(
Ṫ

X
−
√

1− kR2

aR

)

=

√
1 + R2ȧ2 −

√
1− kR2

4πaR
(3.24)

and

µ =
1

8π

(√
1− kR2

aR
− Ṫ

X
+ ẊT̈ − Ṫ Ẍ

)
= −σ

2
+

1

8π

(
ẊT̈ − Ṫ Ẍ

)
. (3.25)
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From this second relation, we can define an equation of state parameter

w ≡ µ

σ
= −1

2

(
1 +

XẌ

1 + Ẋ2 −
√

1 + Ẋ2
√

1− kR2

)
(3.26)

where we have used Eq. (3.6) to get everything in terms of X(t) and its derivatives.

Things simplify if we assume that the void is much smaller than the horizon scale,

Ẋ2 = R2ȧ2 = R2(Ha)2 � 1 , (3.27)

such that, to lowest order,

√
1 + R2ȧ2 ≈ 1 +

1

2
R2ȧ2 (3.28)

and
√

1− kR2 ≈ 1− 1

2
kR2 . (3.29)

Therefore, using this approximation in conjunction with the FRW relation, Eq.

(3.7), we find that

σ ≈ R

8πa

(
ȧ2 + k

)
=

m

4πa2R2
(3.30)

where we have defined the mass of the shell

m ≡ 4π

3
a3R3ρ = constant (3.31)

which is the mass of an equivalent volume of the FRW exterior. Using the above

“small void approximation” and Eq. (3.7), the equation of state parameter be-

comes

w ≈ −1

2

(
1 +

2XẌ

Ẋ2 + kR2

)
= −1

2

(
1 +

2aä

ȧ2 + k

)
= 0 , (3.32)

which means that the pressure µ is approximately zero. Therefore, if we take

uniform FRW dust and cut out a comoving sphere which is significantly smaller

than the horizon scale, then the resulting universe is a solution of general relativity
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if all of the mass that was removed is smeared out in a thin shell of pressureless

dust at the boundary of the sphere. This same property has been independently

discovered by [42] and [43].

3.3 Motion of a Single Light Ray

In order to solve the geodesic equations, we define a cartesian coordinate sys-

tem outside the shell, (t, x, y, z), and one inside the shell, (τ, x, y, z), such that

z = r cos θ, x = r sin θ, z = χ cos θ, and x = χ sin θ. The unit vectors in these

coordinate systems are related to the aforementioned spherical polar coordinate

systems’ unit vectors thusly (hats denote unit vectors, and by symmetry we can

restrict ourselves to the x− z plane):

ẑ = cos θr̂ − 1

r
sin θθ̂ , (3.33)

x̂ = sin θr̂ +
1

r
cos θθ̂ , (3.34)

ẑ = cos θχ̂− 1

χ
sin θθ̂ , (3.35)

and

x̂ = sin θχ̂ +
1

χ
cos θθ̂ , (3.36)

and we can reverse these relations to revert back to polar coordinates.

The metrics in the two regions match at the shell, and so we can relate the

coordinates (t, r, θ, φ) outside to the coordinates (τ, χ, θ, φ) inside by requiring that

the unit normals ~n and four-velocities ~u also match at the shell. Outside the shell,

~n = r̂/a and ~u = t̂, and inside, ~n = Ẋτ̂ + Ṫ χ̂ and ~u = Ṫ τ̂ + Ẋχ̂. Therefore

r̂ = aẊτ̂ + aṪ χ̂ (3.37)
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and

t̂ = Ṫ τ̂ + Ẋχ̂ . (3.38)

The procedure for this calculation is basically a series of coordinate changes.

We start with the incident ray, which we will choose to be traveling in the negative

z direction,

~ki = k0

(
t̂− 1

a1

ẑ

)
, (3.39)

where a subscript “1” denotes quantities that are evaluated at the initial time

of impact of the light ray with the shell, t1. We then transform to spherical

polar coordinates (t, r, θ, φ), calling the angle of initial encounter θ1. The void

is centered at r = 0 and φ is set to zero for the entire calculation. Then, we

propagate the ray through the shell by keeping ~k constant and transforming to

the inside polar coordinates (τ, χ, θ, φ), and then we transform to the cartesian

coordinates (τ, x, y, z) to make the null geodesic equation trivial: ~k = constant.

At the second shell encounter, we transform back to polar coordinates (τ, χ, θ, φ),

where now the time is t2, the scale factor is a2 and the angle of this second shell

impact is θ2, which will not in general equal π − θ1. A subscript “2” denotes

quantities that are evaluated at the time t2. The light ray then crosses the shell

again and we transform back (τ, χ, θ, φ) → (t, r, θ, φ). Finally, we convert back to

cartesian coordinates (t, x, y, z) and compare the result with the unperturbed ray,

what we would have if the ray had just gone through FRW instead of the shell and

void:

~kFRW =
a1k0

a2

(
t̂− 1

a2

ẑ

)
, (3.40)

and find the redshift and deflection angle.
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After the first half of the trip, we find the 4-momentum inside the void to be

~k = k0

(
A1τ̂ + B1x̂ + C1ẑ

)
(3.41)

where

A1 = Ṫ1 − cos θ1Ẋ1 , (3.42)

B1 = Ẋ1 sin θ1 − Ṫ1 sin θ1 cos θ1 + sin θ1 cos θ1 , (3.43)

and

C1 = Ẋ1 cos θ1 − Ṫ1 cos2 θ1 − sin2 θ1 . (3.44)

For the second half of the trip, if we start with ~k in the form of Eq. (3.41), we

find the final 4-momentum to be

~ke = k0

(
A2t̂ + B2x̂ + C2ẑ

)
(3.45)

where

A2 = A1Ṫ2 − Ẋ2 (B1 sin θ2 + C1 cos θ2) , (3.46)

B2 =
1

a2

[
−A1Ẋ2 sin θ2 + B1

(
Ṫ2 sin2 θ2 + cos2 θ2

)
+ C1 sin θ2 cos θ2

(
Ṫ2 − 1

)]
,

(3.47)

and

C2 =
1

a2

[
−A1Ẋ2 cos θ2 + B1 sin θ2 cos θ2

(
Ṫ2 − 1

)
+ C1

(
Ṫ2 cos2 θ2 + sin2 θ2

)]
.

(3.48)

This is the exact result, which we will approximate in the following subsections by

expanding in powers of aHR.



61

3.3.1 First Order Results

To first order in aHR, the equations above for A2, B2, and C2 simplify to give the

exiting ray 4-momentum

~ke = k0

[(
1− Ẋ1 cos θ1 + Ẋ2 cos θ2

)
t̂ +

1

a2

(
Ẋ1 sin θ1 − Ẋ2 sin θ2

)
x̂

− 1

a2

(
1− Ẋ1 cos θ1 + Ẋ2 cos θ2

)
ẑ

]
+O

(
Ẋ2
)

. (3.49)

We would like to get our answer in Eq. (3.45) in terms of only k0, θ1, and a1H1R.

First, we can Taylor expand X(t) around t1:

X(t) = X1 + Ẋ1δt +O
(
Ẋ1

2
)

, (3.50)

where δt ≡ t2− t1, and so Ẋ1 = Ẋ2 in Eq. (3.49) to the desired accuracy. Second,

in the “outside cartesian” coordinates (t, x, y, z), the distance traveled during the

journey described above in the x and z directions are

∆x = R sin θ2 −R sin θ1 (3.51)

and

∆z = R cos θ2 −R cos θ1 , (3.52)

respectively. Inside the void, the path is a straight line, and so we can say that

∆x

∆z
=

dx

dz
=

dx/dλ

dz/dλ
=

(dx/dx) kx

(dz/dz) kz
=

kx

kz
(3.53)

where λ is an affine parameter describing the ray in the void, and dx/dx = dz/dz

due to symmetry. Plugging in the results of Eqs. (3.41) through (3.44), we find

∆x

∆z
=

Ẋ1 sin θ1

Ẋ1 cos θ1 − 1
= −Ẋ1 sin θ1 +O

(
Ẋ1

2
)

(3.54)
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and so, to first order,

sin θ2 − sin θ1

cos θ1 − cos θ2

= Ẋ1 sin θ1 . (3.55)

Defining ε ≡ Ẋ1 ≈ Ẋ2 and ∆ ≡ cos θ1− cos θ2, and taking everything to first order

in ε, the exiting ray four-momentum is

~ke = k0

[
(1− ε∆) t̂ +O

(
ε2∆

)
x̂− 1

a2

(1− ε∆) ẑ

]
+O

(
ε2
)

(3.56)

and so, since ∆ is of order one (we will find ∆ in the next paragraph), a net

direction change of the ray does not happen at first order.

Equation (3.55) is most easily approximated if θ2 is expanded like so

θ2 = (π − θ1)− δθ (3.57)

where δθ = 0 if there is no Hubble expansion. Then,

cos θ2 = − cos θ1 cos δθ + sin θ1 sin δθ (3.58)

and

sin θ2 = sin θ1 cos δθ + cos θ1 sin δθ , (3.59)

so that

∆ = cos θ1 + cos θ1 cos δθ − sin θ1 sin δθ = 2 cos θ1 +O (δθ) . (3.60)

Plugging all of this information into Eq. (3.55), we find that

δθ = 2ε sin θ1 +O
(
ε2
)

, (3.61)

∆ = 2 cos θ1 +O (ε) , (3.62)

and therefore,

~ke = k0

[
(1− 2ε cos θ1) t̂− 1

a2

(1− 2ε cos θ1) ẑ

]
+O

(
ε2
)

. (3.63)
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This should be compared with the four-momentum of the unperturbed ray that

we find from Eq. (3.40), noting that

δt = 2X1 cos θ1 +O (X1ε) (3.64)

and so

a1

a2

=
X1

X2

≈ X1

X1 + Ẋ1δt
≈ 1− 2ε cos θ1 +O

(
ε2
)

. (3.65)

So at first order there is no effect on the frequency, with respect to what would

happen in an FRW model, and there is no net direction change, as ~ke = ~kFRW .

3.3.2 Second Order Results

To second order in Ẋ = aHR, we find the exiting ray to have the 4-momentum

~ke

k0

=

[
1− Ẋ1 cos θ1 + Ẋ2 cos θ2 +

1

2

(
Ẋ2

1 + Ẋ2
2

)
−Ẋ1Ẋ2 (cos θ1 cos θ2 + sin θ1 sin θ2)

]
t̂

+
1

a2

[
Ẋ1 sin θ1 − Ẋ2 sin θ2 −

1

2

(
Ẋ2

1 sin θ1 cos θ1 + Ẋ2
2 sin θ2 cos θ2

)
+Ẋ1Ẋ2 cos θ1 sin θ2

]
x̂

+
1

a2

[
− 1 + Ẋ1 cos θ1 − Ẋ2 cos θ2 −

1

2

(
Ẋ2

2 cos2 θ2 + Ẋ2
1 cos2 θ1

)
+Ẋ1Ẋ2 cos θ1 cos θ2

]
ẑ +O

(
ε3
)

. (3.66)

We can phase this in terms of ε = Ẋ1 = a1H1R and θ1 by first expanding Ẋ2

around t1, as before. Assuming a flat external cosmology (k = 0) and then noting

that ä1 = −ȧ2
1/2a, we find

Ẋ2 = Ẋ1 + Ẍ1δt +O
(
Ẋ3
)

= Ẋ1 − Ẋ2
1

δt

2X1

= Ẋ − Ẋ2
1 cos θ1 +O

(
ε3
)

. (3.67)
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We also need to find cos θ2 and sin θ2 in terms of θ1, using Eqs. (3.58), (3.59), and

(3.61):

cos θ2 = − cos θ1 + 2ε sin2 θ1 +O
(
ε2
)

(3.68)

and

sin θ2 = sin θ1 + 2ε sin θ1 cos θ1 +O
(
ε2
)

. (3.69)

Then we find that the x-component kx is still zero, and

~ke = k0

{[
1− 2ε cos θ1 + ε2

(
cos2 θ1 + 2

)]
t̂

− 1

a2

[
1− 2ε cos θ1 + ε2

(
cos2 θ1 + 2

)]
ẑ

}
+O

(
ε3
)

(3.70)

which is also equal to ~kFRW , since

a1

a2

≈ X1

X1 + Ẋ1δt + Ẍ1δt2/2
≈ 1− 2ε cos θ1 + ε2

(
cos2 θ1 + 2

)
, (3.71)

where we have used the expansion

δt = X1

[
2 cos θ1 + ε

(
sin2 θ1 − cos2 θ1

)
+O

(
ε2
)]

(3.72)

that came from integrating

∫ t2

t1

dt

a
=

∫ z2

z1

dz

√
1 +

(
∆x

∆z

)2

= ∆z

√
1 +

(
kx

kz

)2

. (3.73)

As such, we find that there is still no difference between the exiting ray four-

momentum and that of an unperturbed ray at second order, and thus the redshifts

will be the same.

The second order effects on ~k that we would expect are a possible gravitational

redshift, and the first and second order Doppler shift. Firstly, the Newtonian



65

potential at a time t outside a mass m shell, i.e. for r > R, is

φ(r, t) = −Gm(t)

a(t)r
= −4πGa3(t)R3ρ(t)/3

ar
= −R

2r
Ẋ2 . (3.74)

But since Ẋ2
1 = Ẋ2

2 at this order, this means that φ is not a function of time, i.e.

it is a static potential well. Therefore, when a photon falls into the well and then

climbs back out, it receives no net frequency shift from it. So the only effect is the

Doppler shift, which, to second order, accounts for the answer that we found in

Eq. (3.70).

At this order, we would expect to have an extra focusing, due to the x direction

shift of the photon trajectory:

x → x′ = x + ∆x = x [1 + 2ε cos θ1] = x

[
1 + 2ε

√
1− x2

R2

]
. (3.75)

More generally, if a photon travels to the void along the z direction, then the

impact parameter ~b will be in the x−y plane, and the resulting deflection (in units

of horizon size (aH)−1) will be

~α = 2ε2~u
√

1− u2 , (3.76)

where we have defined the rescaled impact parameter ~u ≡ ~b/R and u ≡ |~u|.

3.4 Effect on the Luminosity Distance

In this section we will only look at the effects of these voids and sheets up to second

order in ε, where ε ∼ 10−2. Since the exiting 4-momentum is the same as we would

have for an FRW model, the redshift of sources is unaltered and we only have to

worry about any extra focusing that might occur.
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Given the deflection from Eq. (3.76), we can use the procedure outlined in [46]

to find the magnification tensor µ to be

µij = δij +
∂αi

∂uj

. (3.77)

Then the magnification M is the absolute value of the determinant of this, namely

M(u) = 1 + 2ε2

(
2− 3u2

√
1− u2

)
. (3.78)

This means that the apparent luminosity is changed by a factor of M .

3.4.1 Mean Effect

The average of M over impact parameters is

〈M〉 =

∫ 1

0

M(u)udu = 1 (3.79)

and so there is no focusing on average. Indeed, it is already known that the average

amplification due to weak lensing is zero [47, 48, 49, 50]. We can understand this

result by way of a few simple arguments.

First, consider a spherically-symmetric matter distribution with a total radius

R, a total mass M , and a radius-dependent density ρ(r). Let us further say that

a small beam comes in from the z direction and then encounters this sphere with

an impact parameter b, which will then be in the x − y plane. The convergence

of the beam is proportional to the integrated column density along the beam’s

unperturbed path, which is defined to be

Σ ≡
∫

path

ρ [r(λ)] dλ (3.80)
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(not to be confused with our earlier use of Σ), where the path depends on b, and λ

is the affine parameter of a central ray. Since we are using the unperturbed path

for this, it is clear that we do the above integral along a straight line, parallel to the

z axis. Then the total mass of the spherical distribution comes from integrating Σ

over the remaining two spatial axes, the x and the y:

M =

∫
all space

ρ(r)dV =

∫
all space

ρ(r)dxdydz

=

∫
x−y plane

Σ [b(x, y)] dxdy =

∫ R

0

Σ(r)2πrdr (3.81)

The average focusing is proportional to the average of the integrated column den-

sity over impact parameters,

〈Σ〉 =
1

R2

∫ R

0

Σ(b)× bdb =
1

R2

∫ R

0

Σ(r)rdr

=
1

R2

(
M
2π

)
=

M
2πR2

(3.82)

which only depends on total mass and size, and not on how the mass is distributed.

For example, a delta-function shell of mass M and a radius R has

Σ ≡ ΣB = 〈ΣB〉 =

(
M

4πR2

)
× 2 =

M
2πR2

(3.83)

and a ball of the FRW exterior with the same mass and total size has

Σ ≡ ΣFRW =
M

4πR3/3
× 2R

√
1− b2

R2
(3.84)

where the average of
√

1− b2/R2 is 1/3, and therefore

〈ΣFRW 〉 =
M

2πR2
. (3.85)

Thus we see that removing a sphere of FRW and replacing it will a mass-compensating

shell, as we did above in our void model, will not affect focusing on average.
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This claim that there is no systematic magnification offset holds not just for

spherically-symmetric lenses, but in fact it is true whenever the lensing can be con-

sidered “weak”, i.e. in the Newtonian limit. Again, in the weak lensing formalism,

the convergence κ depends on the surface density Σ

κ ∝ Σ =

∫ ∞

−∞
ρdz (3.86)

and if we average this over viewing angles, we find

〈κ〉 ∝
〈∫ ∞

−∞
ρdz

〉
=

∫ ∞

−∞
〈ρ〉dz . (3.87)

This is the same as the FRW result.

3.4.2 Variance Estimate

Now we will find the variance in the magnification M . Assuming a very large

sample size, this is

σ2
M =

〈
(M − 〈M〉)2〉 = 4ε4

〈(
2− 3u2

√
1− u2

)2
〉

= 4ε4

∫ 1

0

(
2− 3u2

√
1− u2

)2

udu , (3.88)

which diverges logarithmically as u → 1. This will not be a problem in practice, as

an impact parameter of exactly u = 1 will never naturally occur. We can impose

a cutoff to our integral,

I(δ) =

∫ 1−δ

0

(
2− 3u2

√
1− u2

)2

udu =
1

4

[
ln

(
1

4δ2

)
− 3

]
, (3.89)

where δ corresponds to the ratio of the shell thickness to the void size, and δ � 1.

If δ = 0.01, then I ≈ 1.3, and if δ = 10−4, then I ≈ 3.5. Therefore, for ε ∼ 10−2,
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we can make the order of magnitude estimate

σ2
M = 4ε4 × (a few) ∼ 10−7 (3.90)

and the standard deviation is the square root of this:

σM ∼ 3× 10−4 . (3.91)

This corresponds to an error σm in the apparent magnitude:

σm ≈ (1.086 mag) σM ∼ 3× 10−4 mag , (3.92)

which is several orders of magnitude smaller than the intrinsic spread in the mag-

nitudes of Type Ia supernovae, σ ≈ 0.2 mag.

3.5 Conclusions

We have constructed a model for cosmological voids and sheets by removing spher-

ical regions of matter from a matter dominated FRW universe, and then spreading

this matter into a thin shell at the void-FRW interface. In Section 3.2, we demon-

strated that this model is a valid solution to general relativity.

In this model, we have found that a single light ray experiences no net redshift

change with respect to what it would experience in an FRW model. However, there

is a net deflection which leads to an impact parameter dependent amplification,

given by Eq. (3.78). Averaging this magnification over impact parameters, we

found that on average there is no effect on measured apparent luminosities. This

means that, in the limit of very large sample sizes, the luminosity distance-redshift

relation will be the same in this model as it would be in the corresponding homo-

geneous model. We have also computed the variance in the magnification due to



70

these inhomogeneities: σ2
M ∼ 10−7. This leads to an extra error in the apparent

magnitude, which we found to be σm ∼ 3× 10−4 mag. This is much smaller than

the intrinsic error in the observed magnitudes of Type Ia supernovae, σ ≈ 0.2 mag.

Therefore, within the confines of this model, the effect of inhomogeneity on super-

nova data is negligible.



Chapter 4

Systematic Effects in General Three

Dimensional Models†

4.1 Introduction

Our goal in this chapter is to calculate the lowest order fitting effect by calculating

the cosmological constant density ΩΛ that one would deduce from a perturbed

luminosity distance-redshift relation DL(z), in full three dimensional generality.

If we treat cosmological fluctuations perturbatively and as a random process as

suggested by the “fair sample hypothesis” [33], then this fitting effect should be

fundamentally nonlinear in the density contrast δ = (ρ − 〈ρ〉)/〈ρ〉, requiring that

we work to at least second order in δ. This is because the ensemble averages of

first order quantities vanish. We model observations out to some moderate redshift

zmax ∼ 0.1 � 1. Within the corresponding comoving spherical region, the Hubble

flow velocity vH is bounded above by

vH

c
. zmax ∼ 0.1 , (4.1)

allowing us to use post-Newtonian expansions. There are two different velocity

scales that occur, the Hubble flow velocity vH and the peculiar velocity vp. The

corresponding dimensionless small parameters are

εH =
vH

c
∼ H0r

c
. zmax ∼ 0.1 (4.2)

†This chapter is published in Vanderveld, Flanagan, and Wasserman (2007).

71
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and

εp =
vp

c
∼ δ

(
H0λc

c

)
, (4.3)

where λc ∼ 10 Mpc is the wavelength of the dominant perturbation mode. In our

computation, we will treat both of these parameters as being of formally the same

order, and we will denote both by “ε” for book keeping purposes. At the end of

our computation we can identify terms that scale as εn
Hεm

p for different values of

m and n. As mentioned above, we also expand separately in the fractional density

perturbation δ. We will compute redshifts z(λ) and luminosity distances H0DL(λ)

as functions of the affine parameter λ to third order in ε and to second order in δ.

Combining these results to eliminate λ will yield DL as a function of z.

Using this expansion method, we find that the lowest order inhomogeneity-

induced correction to the luminosity distance scales as |∆DL|/DL ∼ δ2(H0λc/c) ∼

10−5. We then fit this relation to what one would expect from a homogeneous

cosmological model which contains dust with a density ΩM and a cosmological

constant with a density ΩΛ,

DL(z) =
1 + z

H0

√
|1− ΩM − ΩΛ|

F
[
H0

√
|1− ΩM − ΩΛ|

∫ z

0

dz′

H(z)

]
, (4.4)

where

H(z) = H0

√
ΩM(1 + z′)3 + (1− ΩM − ΩΛ) (1 + z′)2 + ΩΛ , (4.5)

by maximizing a likelihood function. Here F(u) = u for a flat universe, F(u) =

sinh(u) for an open universe, and F(u) = sin(u) for a closed universe. We find

that the result for the cosmological constant density is dependent on the size of the

redshift range for which we have supernova data. These results are summarized in

Figure 4.1. For data from zmin = 0.02 out to a limiting redshift zmax = 0.15, we find

that the best-fit cosmological constant density is ΩΛ ≈ 0.004, and ΩΛ tends to get
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Figure 4.1: The best-fit cosmological constant density ΩΛ plotted as a func-
tion of the maximum redshift zmax, for the choices zmin =
0.01, 0.02, and 0.03. The horizontal dash-dot line shows the
actual model value ΩΛ = 0.
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larger as zmax gets smaller. The best-fit |ΩΛ| also becomes larger as zmin becomes

smaller, since |∆DL|/DL becomes large on small scales. Although this ensemble

averaged result is still quite small, we find that the variance can be σ2
Λ ∼ 1 for a

sample of 100 supernovae out to a redshift zmax ∼ 0.2. One implication of these

results is that precision measurements of the cosmological constant from nearby

supernova data require that we measure DL(z) over a large enough redshift range,

with a large enough sample. One could also try to correct for some of the effects of

inhomogeneity, using available information about large scale structure and about

our own peculiar velocity [51, 52].

The analysis presented here is more realistic than similar analyses within the

context of simplified models of structure formation, such as the spherically sym-

metric Lemâıtre-Tolman-Bondi (LTB) models [20, 30, 31, 53], Swiss cheese models

[40] and their variants [54, 55, 56, 57]. This is because we look at the full three

dimensional problem, and assume that there are no bulk flows on cosmological

length scales. There have also been analyses of the perturbations to the luminosity

distance-redshift relation that go to Newtonian order [49, 50, 58], that only con-

sider superhorizon perturbation modes [26, 27], and that use Taylor expansions

of the luminosity distance [59], which are most appropriate for long-wavelength

perturbations. In contrast, we go to post-Newtonian order, we only consider sub-

horizon modes, and we fit to FRW models, so that we may fully address the “fitting

problem”.

Our analysis is also fundamentally different from those in Refs. [10, 11, 13, 14,

60, 61], as we choose a different method for obtaining averaged expansion parame-

ters. These authors average the expansion rate over a constant time slice, whereas
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we choose to calculate only observable quantities, namely the luminosity distance

and the redshift, along the past light cone of the observer. We then combine these

expressions into DL(z, θ, φ), average over viewing angles and ensemble average,

and then fit the results to what one would expect in a homogeneous model con-

taining dust and a cosmological constant to find the best-fit value for ΩΛ. This

approach better simulates the process of gathering and analyzing supernova data,

and it leads to a different result with a stable perturbative expansion.

Refs. [10, 11, 13, 14] base their characterization of the expansion rate of the

Universe on quantities that are not related to how observers have deduced the

existence of dark energy. In these papers, perturbations are spatially averaged

over a constant time slice. Such a spatial average is somewhat arbitrary, as it

is dependent on the choice of spatial hypersurface. This is in contrast to the

observable significance of DL(z). Refs. [10, 11, 14] also use the synchronous

gauge for their calculations, wherein there are metric perturbations of order δ.

Since δ & 1 on small scales, this gauge is particularly ill suited to perturbation

theory. In contrast, in Newtonian-type gauges the metric perturbation is of order

δ(H0λc/c)
2 � δ. We explore this difference in Section 4.6.

The organization of this chapter is as follows: In Section 4.2 below, we intro-

duce our coordinate choice, wherein we recast the Friedmann-Robertson-Walker

(FRW) metric as an expansion around flat space, and in Section 4.3 we present

the fundamental post-Newtonian optics equations that we will need for this calcu-

lation. We then explain our method of computation and calculate the necessary

unperturbed quantities in Section 4.4. Here we also compute the luminosity dis-

tances and redshifts for a perturbed matter dominated universe, finding z and
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H0DL to second order in δ and to third order in ε, and we find that we may write

the lowest order correction to DL(z) in terms of the peculiar velocity field. We

then fit to a homogeneous model in Section 4.5 to find the best-fit ΩΛ and its

variance. The detailed redshift and luminosity distance equations are in Appendix

A.1, the necessary results of second order perturbation theory are reviewed in Ap-

pendix A.2, and the averaging is discussed in Appendix A.3. Then, in Section

4.6 we discuss the previous results in the synchronous gauge and show that one

can choose coordinates and a definition of “acceleration” such that it appears as

though there could be a larger fitting effect. We argue that such a result would

be unphysical. A detailed discussion of transforming to synchronous coordinates

is given in Appendix A.4. Finally, in Section 4.7 we make our concluding remarks.

As usual, Greek indices will be summed over all four spacetime dimensions while

Latin indices will be summed only over the three spatial dimensions. We will also

write 3-vectors in boldface and put arrows over 4-vectors.

4.2 Post-Newtonian Expansion of the Local FRW Metric

In general, certain coordinate choices allow us to conveniently recast the local

metric as an expansion around flat space, as was first emphasized for the FRW

metric by Peebles [62]. We will take advantage of such an expansion so that we

may use the standard post-Newtonian formalism for this calculation. Starting with

the usual FRW metric with c = G = 1,

ds2 = −dτ 2 + a2(τ)
(
dχ2 + χ2dΩ2

)
, (4.6)
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we can define the new radial coordinate

r̃ = a(τ)χ (4.7)

so that the line element becomes

ds2 = −
(
1−H2r̃2

)
dτ 2 − 2Hr̃dτdr̃ + dr̃2 + r̃2dΩ2 , (4.8)

where the Hubble parameter of a flat and dust-dominated FRW universe is H(τ) =

(1/a)(da/dτ) = 2/3τ ; we will specialize to this case for the remainder of this

chapter. Now we change coordinates to the standard post-Newtonian gauge. In

this gauge, the metric to first post-Newtonian order can be written as

ds2 = gµνdxµdxν = −
(
1 + 2Φ + 2Φ2

)
dt2 + 2ζidxidt + (1− 2Φ) γijdxidxj , (4.9)

where γij is a flat spatial metric, the potential Φ contains both Newtonian and

post-Newtonian pieces, ζi is the usual gravitomagnetic potential, and

3Φ̇ +∇ · ζ = 0 (4.10)

is the gauge condition. Achieving this form for the metric entails transforming

from τ and r̃ to t and r, defined by

τ = t

[
1− r2

3t2
− r4

30t4
+ O

(
r6

t6

)]
(4.11)

and

r̃ = r

[
1− r2

9t2
+ O

(
r4

t4

)]
. (4.12)

Then the line element becomes

ds2 = −
[
1 +

2r2

9t2
+

46r4

405t4
+ O

(
r6

t6

)]
dt2 +

[
4r3

15t3
+ O

(
r5

t5

)]
drdt

+

[
1− 2r2

9t2
+ O

(
r4

t4

)] (
dr2 + r2dΩ2

)
(4.13)
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to the necessary order in r. This metric is of the post-Newtonian form (4.9) if we

define

Φ(0) =
r2

9t2
+

2r4

45t4
(4.14)

and

ζr(0) =
2r3

15t3
. (4.15)

Here subscripts “(0)” denote unperturbed, background quantities; we will add

cosmological perturbations in subsequent sections. The unperturbed density in

the new coordinates is

ρ(0) =
1

6πt2

[
1 +

2r2

3t2
+ O

(
r4

t4

)]
, (4.16)

and the continuity equation tells us that the unperturbed 3-velocity must be of

the form v(0) = v(0)∂/∂r, where

v(0) =
2r

3t

[
1 +

r2

9t2
+ O

(
r4

t4

)]
, (4.17)

and where v(0) = dr/dt. Thus, we see that counting orders of ε ∼ v/c is equivalent

to counting orders of r/t in these coordinates. Our coordinate choice and expansion

method also have the consequence that the analysis of this chapter is only valid

for small redshifts.

In general in the standard post-Newtonian gauge, the connection coefficients

are

Γt
tt = Φ̇ , (4.18)

Γt
ti = Φ,i , (4.19)

Γt
ij = −Φ̇γij − ζ(i|j) , (4.20)

Γi
tt = γijΦ,j , (4.21)
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Γi
tj = −Φ̇δi

j + γikζ[k|j] , (4.22)

and

Γi
jk = Γ̃i

jk − Φ,kδ
i
j − Φ,jδ

i
k + Φ,lγ

ilγjk , (4.23)

to the necessary order in ε, where Γ̃i
jk is the connection associated with the flat

spatial metric γij, which we will choose to be that of standard spherical coordinates

(r, θ, φ), as in Ref. [63]. Vertical bars represent covariant derivatives with respect

to γij. We will also need the Ricci tensor components

Rtt = ∇2Φ (4.24)

and

Rij = ∇2Φδij . (4.25)

Furthermore, the first post-Newtonian hydrodynamic and Einstein equations

are

∂

∂t

[
ρ

(
1 +

v2

2
− 3Φ

)]
+∇ ·

[
ρ

(
1 +

v2

2
− 3Φ

)
v

]
= 0 , (4.26)

∂~v

∂t
+
(
~v · ~∇

)
~v = −~∇

(
Φ + 2Φ2

)
− ~̇ζ −

(
~ζ × ~∇

)
× ~v + 3Φ̇~v

+4~v
(
~v · ~∇

)
Φ− v2~∇Φ , (4.27)

∇2Φ = 4πρ
(
1 + 2v2 − 2Φ

)
, (4.28)

and

∇2ζ = 16πρv +∇Φ̇ , (4.29)

in this gauge. The 3-velocity v is related to the 4-velocity ~u of the fluid by

~u =
(
ut, ui

)
≡ γ

(
1, vi

)
, (4.30)

where demanding that ~u · ~u = −1 yields

γ2 = 1 + v2 − 2Φ + 2Φ2 − 6Φv2 + v4 + 2ζ · v . (4.31)
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4.3 Computation of Luminosity Distance and Redshift

4.3.1 Computing DL(z) in a General Spacetime

In this section we will review how to compute luminosity distances and redshifts in

a general spacetime, as in Refs. [63, 64]. Our analysis is initially similar to that of

Ref. [59], although they eventually rely on Taylor expansions around the observer’s

location. Such expansions are sensible for long-wavelength perturbations, but not

for the short-wavelength perturbations that we consider here. We focus attention

on a particular observer at some event P . In our application to perturbed FRW

spacetimes, this observer will be at r = 0 and at t = t0 for some fixed t0. We

consider the congruence of geodesics forming this observer’s past light cone. Given

the connection, we then find ray trajectories xα(λ) by noting that the 4-momentum

is kα = dxα/dλ, and by using the geodesic equation

dkα

dλ
= kβ∂βkα = −Γα

µνk
µkν , (4.32)

where we have defined d/dλ = kα∂α. Here the affine parameter λ is chosen such

that λ = 0 at the observer and λ = λs < 0 at the source. We also note that the

4-momentum is null.

The expansion θ of the congruence of null rays is related to the area A(λ) of a

bundle of rays by

θ =
1

A
dA (λ)

dλ
. (4.33)

We can find θ by using the Raychadhuri equation

dθ

dλ
= −Rµνk

µkν − 1

2
θ2 − 2|σ|2 , (4.34)
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where we have defined the shear of the congruence

|σ|2 =
1

2

[
kα;βkα;β − 1

2
θ2

]
, (4.35)

and where we require θ ∼ 2/λ as λ → 0, so that the area of the beam goes to zero

at λ = 0. The shear σ ≡
√
|σ|2 is given by the differential equation

dσ

dλ
= −σθ + Cαβµνk

αkν t̄µt̄β , (4.36)

where Cαβµν is the Weyl tensor, and we have defined a null Newman-Penrose tetrad

composed of the real 4-vectors kµ and mµ, and the complex conjugate 4-vectors tµ

and t̄µ. These satisfy the orthogonality conditions

kµmµ = t̄µtµ = 1 (4.37)

and

kµkµ = mµmµ = tµtµ = kµtµ = mµtµ = 0 , (4.38)

as in [59]. They are chosen at the observer and then extended along each geodesic

in the congruence by parallel transport. We also choose the initial condition σ = 0

at λ = 0.

Once we find θ, we then find the luminosity distance as a function of the affine

parameter at the source,

DL(λs) = lim
∆λ→0

[
−∆λ (1 + z)2 exp

(
1

2

∫ λs

∆λ

θdλ

)]
= −λs (1 + z)2 exp

[
1

2

∫ λs

0

(
θ − 2

λ

)
dλ

]
(4.39)

where ∆λ corresponds to the size of the observer’s telescope, which we set to zero.

The right hand side of Eq. (4.39) has a well defined, finite, limit as ∆λ → 0 due

to the aforementioned initial condition placed on θ. Note also that the right hand
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side has an overall minus sign due to our convention that the affine parameter is

negative.

The redshift observed at λ = 0, of the light emitted from the source at λs, is

1 + z(λs) =
(uαkα)s

(uβkβ)o

, (4.40)

where

uαkα = γ
(
gttk

t + gtik
i + gitv

ikt + gijv
ikj
)

, (4.41)

and where the subscript “s” will in general denote quantities evaluated at the

source at the emission time and the subscript “o” will denote quantities evaluated

at the observer at the observation time. By combining Eqs. (4.39) and (4.40) we

can, in principle, compute DL as a function of z in a general spacetime.

4.3.2 Computing DL(z) to First Post-Newtonian Order

Now we specialize the results of the preceding subsection to a perturbed FRW

metric in the post-Newtonian gauge (4.9). Our goal is to find both H0DL and

z to order ε3. At the observer, we have chosen r = 0 and t = t0 and we have

normalized the 4-momentum such that kr = −1. This implies that λ ≈ −r and

r/t ∼ −λ/t ∼ ε to lowest order. We will thus need to find the right hand side of

Eq. (4.39) to order λε2 so that we may find H0DL to order ε3. Because of this, we

see that we will need the integral in the exponential to order ε2, and therefore we

will need to find λθ to order ε2. Similarly, inspection of Eq. (4.40) tells us to what

post-Newtonian order we will need to compute the components of kα. To lowest

order, gtt ∼ 1, gti = git ∼ ε3, gij ∼ 1, γ ∼ 1, and vi ∼ ε, and therefore we will need

kt to order ε3 and we will need the spatial components ki to order ε2.
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The post-Newtonian pieces of kα must be as small or smaller than order ε2, as

can be seen by noting that λΓα
µν ∼ ε2 in the null geodesic equation (4.32). Given

this assumption and the normalization of kα, Eq. (4.32) reduces to

dkα

dλ
=

∂kα

∂t
− ∂kα

∂r
+ O

(
ε4

λ

)
= −Γα

tt + 2Γα
tr − Γα

rr + O

(
ε4

λ

)
. (4.42)

Plugging in the connection coefficients from Eq. (4.18)-(4.23), we find

dkt

dλ
= 2Φ,r + ζr,r + O

(
ε4

λ

)
, (4.43)

dkr

dλ
= O

(
ε3

λ

)
, (4.44)

d

dλ

(
rkθ
)

= −2

r
Φ,θ + O

(
ε3

λ

)
, (4.45)

and

d

dλ

(
rkφ
)

= − 2

r sin2 θ
Φ,φ + O

(
ε3

λ

)
. (4.46)

Using the specified initial conditions, the solutions to these equations are

kt = 1− 2Φ− ζr − 2

∫ r

0

Φ̇dr′ + O
(
ε4
)

, (4.47)

kr = −1 + O
(
ε3
)

, (4.48)

kθ =
2

r

∫ r

0

dr′

r′
Φ,θ + O

(
ε3
)

, (4.49)

and

kφ =
2

r sin2 θ

∫ r

0

dr′

r′
Φ,φ + O

(
ε3
)

; (4.50)

the integrals above are performed along the unperturbed ray, where t(λ) = t0 + λ

and r(λ) = −λ. We can then find the perturbed ray trajectory by integrating Eqs.

(4.47)-(4.50) with respect to λ. Most notably, Eq. (4.48) leads to λ = −r+O(λε3).

This means that we can easily rewrite Eq. (4.39) in terms of the radial coordinate

r of the source:

DL = r (1 + z)2 exp

[
−1

2

∫ r

0

(
θ +

2

r′

)
dr′
]

+ O
(
rε3
)

. (4.51)
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In order to find the expansion θ, we first need to find the shear, given by Eq.

(4.36). The solution to this equation is

σ =
1

λ2

∫ λ

0

(λ′)
2
Cαβµνk

αkν t̄µt̄βdλ′ ; (4.52)

since |k| ∼ |t̄| ∼ 1, it turns out that the lowest order shear is σ ∼ ε2/λ. Inserting

|σ|2 ∼ ε4/λ2 into the Raychaudhuri equation (4.34) gives a contribution of order

ε4/λ to the expansion θ. However, we already know that we only need θ to order

ε2/λ, and so this contribution is negligible for our purposes here. Neglecting shear

and defining δθ = θ − 2/λ, we rewrite Eq. (4.34) as

d(δθ)

dλ
= −Rtt −Rrr −

2

λ
(δθ) + O

(
ε3

λ2

)
= −2∇2Φ− 2

λ
(δθ) + O

(
ε3

λ2

)
. (4.53)

The solution to this is

δθ =
2

r2

∫ r

0

(r′)
2∇2Φdr′ + O

(
ε3

λ

)
, (4.54)

where we are using λ = −r + O(λε3). Using this result in Eq. (4.51) yields our

final result for the post-Newtonian luminosity distance

DL = r (1 + z)2

[
1−

∫ r

0

dr′

r′2

∫ r′

0

(r′′)
2∇2Φdr′′

]
+ O

(
rε3
)

. (4.55)

We now turn to evaluating the redshift z as a function of the affine parameter

λ. Equation (4.40) is the general expression for the redshift, and it depends on

uαkα at the source and at the observer. To order ε3, using Eqs. (4.9), (4.31), and

our solutions for kα, we obtain

uαkα = gαβuαkβ

= −1− vr − 1

2
v2 + Φ + 3vrΦ− 1

2
vrv2 + 2

∫ r

0

Φ̇dr′

+vθk
θ + vφk

φ + O
(
ε4
)

(4.56)
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where kθ and kφ are given by Eqs. (4.49) and (4.50), respectively. Therefore, the

post-Newtonian redshift is

1 + z =
(uαkα)s

(uβkβ)o

= 1 + vr
s − vr

o + Φo − Φs +
1

2

(
v2

s − v2
o

)
+ (vr

o)
2 − vr

ov
r
s − 2

∫ r

0

Φ̇dr′

+(vθk
θ + vφk

φ)o − (vθk
θ + vφk

φ)s + Φov
r
o + Φsv

r
o + Φov

r
s − 3Φsv

r
s

−1

2
v2

o (vr
s − vr

o) + (vr
o)

2 (vr
s − vr

o) +
1

2
v2

s (vr
s − vr

o) + O
(
ε4
)

. (4.57)

In Eqs. (4.55) and (4.57), the right hand sides are evaluated at r = −λ and

t = t0 + λ. Recall that subscripts “o” denote quantities evaluated at the observer

where r = 0 and t = t0, while subscripts “s” denote quantities evaluated at the

source (t(λ), r(λ), θ, φ).

4.4 Adding Density Perturbations

4.4.1 Basic Method

In this section we apply the formalism of Section 4.3 to a spherical region in a

perturbed FRW spacetime. We will describe that region using the post-Newtonian

metric (4.9). We expand the metric functions Φ and ζ i and the fluid 3-velocity vi

in powers of the density contrast δ as

Φ = Φ(0) + Φ(1) + Φ(2) + O
(
δ3
)

, (4.58)

ζi = ζi(0) + ζi(1) + ζi(2) + O
(
δ3
)

, (4.59)

and

vi = vi
(0) + vi

(1) + vi
(2) + O

(
δ3
)

, (4.60)
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respectively. We also expand the null geodesic xα and 4-momentum kα = dxα/dλ

as

xα = xα
(0) + xα

(1) + xα
(2) + O

(
δ3
)

(4.61)

and

kα = kα
(0) + kα

(1) + kα
(2) + O

(
δ3
)

, (4.62)

respectively. For the remainder of the chapter, quantities that are zeroth order in

δ will be denoted by a subscript “(0)”, first order by a subscript “(1)”, and second

order by a subscript “(2)”. Also henceforth “first order” and “second order” will

always refer to orders in δ, not ε, unless otherwise specified.

In the perturbed spacetime, we will calculate the redshift z and luminosity

distance DL as functions of the observation time t0, of the affine parameter λ

along the past-directed null geodesic, and of the 4-momentum ~k of photons at

r = 0 and t = t0. We parameterize this future-directed null vector ~k in terms of

angles θ and φ, in such a way that kr = −1 and ~k is in the direction (θ, φ) at

r = 0. We can thus express DL and z as functions of λ, θ, and φ at fixed t0, and

by eliminating the affine parameter λ we can compute DL(z, θ, φ).

We can then take an average over angles to find DL(z), where we must take some

care since there are two sets of relevant angles. There are the angles (θ̃, φ̃) which

parameterize the direction of ~k in the observer’s rest frame, and then there are the

coordinate angles (θ, φ). We will need to average over (θ̃, φ̃). This means that we

will need to know the relationship between the related infinitesimal solid angles

dΩ2 and dΩ̃2. We define Cartesian coordinates (x1, x2, x3) in terms of the polar

coordinates (r, θ, φ) in the standard way. An orthonormal set of basis vectors for

the observer’s local Lorentz frame can be obtained by renormalizing the coordinate
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basis vectors ∂/∂t and ∂/∂xi and boosting. The result is

~et =

[
1 +

1

2
v2

o − Φo + O
(
ε3
)] ∂

∂t
+
[
vi

o + O
(
ε3
)] ∂

∂xi
(4.63)

and

~ei =
[
vi

o + O
(
ε3
)] ∂

∂t
+

[
δij (1 + Φo) +

1

2
vi

ov
j
o + +O

(
ε3
)] ∂

∂xj
. (4.64)

The angles (θ, φ) are defined by

~k = kt ∂

∂t
− ni ∂

∂xi
, (4.65)

with

n = (sin θ cos φ, sin θ sin φ, cos θ) , (4.66)

while the observer’s angles (θ̃, φ̃) are defined by

~k ∝ ~et − ñi~ei , (4.67)

with

ñ =
(
sin θ̃ cos φ̃, sin θ̃ sin φ̃, cos θ̃

)
. (4.68)

By inserting (4.63) and (4.64) into (4.67) and then comparing with (4.65), we find

n ∝ ñ + Φoñ− vo +
1

2
(vo · ñ)vo + O

(
ε3
)

. (4.69)

This gives

d2Ω̃ = d2Ω
[
1− 2 (vo · n) + O

(
ε2
)]

. (4.70)

After averaging over viewing angles, we find the expected value of DL(z) by

taking an ensemble average, wherein we treat the density perturbation δ at any

fixed time as a homogeneous random process. Once we have the averaged DL(z),

we can then analyze these data in terms of a homogeneous universe to see if we
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would find an apparent acceleration. Assuming Gaussian uncertainties, we perform

a chi-squared fit to an FRW model with a matter density ΩM and a cosmological

constant density ΩΛ.

4.4.2 Unperturbed Quantities

In the unperturbed background, everything is spherically symmetric, and the line

element in our coordinates is given by Eq. (4.13). The background four-momentum

kα
0 is purely in the t− r plane, and is given by Eqs. (4.47) and (4.48) to be

kt
(0)(r, t) = 1− 2r2

9t2
+

2r3

135t3
+ O

(
r4

t4

)
(4.71)

and

kr
(0)(r, t) = −1− 4r3

27t3
+ O

(
r4

t4

)
. (4.72)

Since kt
(0) = dt/dλ and kr

(0) = dr/dλ, we can integrate and invert these equations to

find the unperturbed ray trajectory; keeping in mind the conditions that r = λ = 0

and t = t0 at the observer, we find

t(λ) = t0 + λ

[
1− 2λ2

27t20
+ O

(
λ3

t30

)]
(4.73)

and

r(λ) = −λ

[
1 + O

(
λ3

t30

)]
(4.74)

in the unperturbed background.

Using this, we can use the solution (4.54) to the Raychaudhuri equation to find

the background expansion θ(0),

θ(0)(λ) =
2

λ
− 4

9t20
λ + O

(
λ2

t30

)
. (4.75)
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Then the zeroth-order luminosity distance is given by Eq. (4.55) to be

DL(0) = (1 + z)2 r

(
1− r2

9t2

)
+ O

(
r4

t3

)
=

2

3H0

(1 + z)2 r

t

[
1− r

t
+

8r2

9t2
+ O

(
r3

t3

)]
, (4.76)

where we have defined H0 = 2/3t0. The zeroth-order redshift is found from Eq.

(4.57) ,

z(0) =
2r

3t
+

r2

9t2
+

4r3

27t3
+ O

(
r4

t4

)
, (4.77)

and we eventually find the expected DL(0)(z) by inverting Eq. (4.77) and plugging

the result into Eq. (4.76):

DL(0)(z) =
z

H0

[
1 +

1

4
z − 1

8
z2 + O

(
z3
)]

. (4.78)

Thus, for the background, the best-fit cosmological constant density is ΩΛ = 0 and

the deceleration parameter is q0 = 1/2.

4.4.3 Second Order Perturbed Optics

The perturbed post-1-Newtonian line element is, from Eq. (4.9),

ds2 ≈ −
(
1 + 2Φ(0) + 2Φ2

(0) + 2Φ(1) + 4Φ(0)Φ(1) + 2Φ(2) + 2Φ2
(1) + 4Φ(0)Φ(2)

)
dt2

+2
(
ζi(0) + ζi(1) + ζi(2)

)
dxidt

+
(
1− 2Φ(0) − 2Φ(1) − 2Φ(2)

)
γijdxidxj (4.79)

and the perturbed luminosity distance (4.55) is defined to be

DL = (1 + z)2EL , (4.80)
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where

EL(r, θ, φ) = EL(0)(r, θ, φ) + EL(1)(r, θ, φ) + EL(2)(r, θ, φ) + O
(
δ3
)

= r

[
1−

∫ r

0

dr′

r′2

∫ r′

0

(r′′)
2∇2

(
Φ(0) + Φ(1) + Φ(2)

)
dr′′

]
+O

(
δ3
)

, (4.81)

and where we have pulled out the factor of (1 + z)2 for simplicity. We then find

that the order δ perturbation is

EL(1) = − 2

3H0

r

t0

∫ r

0

dr′

r′2

∫ r′

0

(r′′)
2∇2Φ(1)dr′′ , (4.82)

and the order δ2 perturbation is

EL(2) = − 2

3H0

r

t0

∫ r

0

dr′

r′2

∫ r′

0

(r′′)
2∇2Φ(2)dr′′ , (4.83)

where H0 = 2/3t0. In general, all of the terms involving potentials and velocities

in these equations, and in those that follow, are evaluated along the zeroth-order,

unperturbed, geodesic.

We can now calculate the perturbed redshift

z(r, θ, φ) = z(0)(r, θ, φ) + z(1)(r, θ, φ) + z(2)(r, θ, φ) + O(δ3) (4.84)

from Eq. (4.57), using our knowledge of the zeroth-order quantities, to find

z(1) = vr
s(1) − vr

o(1) + Φo(1) − Φs(1) +
2r

3t

(
vr

s(1) − vr
o(1)

)
− 2

∫ r

0

Φ̇(1)dr′

+
2r

3t
Φo(1) −

2r

t
Φs(1) −

r2

9t2
vr

o(1) +
r2

3t2
vr

s(1) + O
(
δε4
)

(4.85)
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and

z(2) = vr
s(2) − vr

o(2) + Φo(2) − Φs(2) +
2r

3t

(
vr

s(2) − vr
o(2)

)
+

1

2

(
v2

s(1) − v2
o(1)

)
+
(
vr

o(1)

)2 − vr
o(1)v

r
s(1) − 2

∫ r

0

Φ̇(2)dr′ +
(
vθ(1)k

θ
(1) + vφ(1)k

φ
(1)

)
o

−
(
vθ(1)k

θ
(1) + vφ(1)k

φ
(1)

)
s
+

2r

3t
Φo(2) −

2r

t
Φs(2) −

r2

9t2
vr

o(2) +
r2

3t2
vr

s(2)

+
r

3t

[
v2

s(1) − v2
o(1)

]
+

2r

3t

[(
vr

s(1)

)2
+
(
vr

o(1)

)2 − vr
s(1)v

r
o(1)

]
+Φo(1)v

r
o(1) + Φs(1)v

r
o(1) + Φo(1)v

r
s(1) − 3Φs(1)v

r
s(1) + xi

(1)v
r
s(1),i

+O
(
δ2ε4

)
, (4.86)

where the first order perturbation to the null geodesic is

xi
(1) = −

∫ r

0

ki
(1)dr′ . (4.87)

All of the quantities above are evaluated along the zeroth-order geodesic, and the

integrals are performed along an unperturbed central ray where r(λ) = −λ and

t(λ) = t0 + λ.

Now we have found the redshift z and luminosity distance H0DL as functions

of affine parameter λ and initial 4-momentum ~ko, to second order in δ and to

third order in ε. Adding the redshift equations (4.77), (4.85), and (4.86) yields

z(λ, θ, φ). Similarly, the luminosity distance DL(λ, θ, φ) is found from adding Eqs.

(4.78), (4.82), and (4.83), after replacing the factors of (1+z)2. Inverting z(λ, θ, φ)

perturbatively, in terms of either δ or ε, gives us λ as a function of z. Plugging this

into DL(λ, θ, φ) yields an expression for DL(z, θ, φ). We then angle average this

and then ensemble average, assuming that density fluctuations at a given cosmic

time are a homogeneous random process. Details of this full procedure are given

in Appendices A, B, and C, and the result is

DL(z) =
z

H0

(
1 +

1

4
z − 1

8
z2

)
+ ∆DL(z) , (4.88)
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where ∆DL(z) depends on the two point correlation function. We will only need

the lowest order piece of this, which is

∆DL(z) = − 1

3H2
0

f ′
(

z

H0

)
〈v2

o(1)〉+ O

(
fε2δ2

H0

)
, (4.89)

using z ≈ H0r to lowest order. The function f is related to the velocity two point

correlation function (see Appendix A.3):

f(r) =
3 〈n · v(r0, t)n · v(r0 + rn, t)〉

〈|v(r0, t)|2〉
− 1 , (4.90)

where n is a unit vector that defines the viewing direction and r0 is an arbitrary

location in space. Note that f(r) is independent of time, even though 〈v(r0, t)
2〉

does depend on time. This is because the time dependences of the numerator and

denominator cancel.

The perturbation to the luminosity distance is proportional to

〈v2
o(1)〉 =

4

9H2
0

〈
(
∇Φo(1)

)2〉 ; (4.91)

this qualitative scaling has been argued for in Refs. [65] and [66]. We can Fourier

transform Φ(1), in terms of a wavevector ki (not to be confused with the previously-

defined 4-momentum) [10],

Φ(1) =

∫
d3k

(2π)3
Φke

ik·r (4.92)

so that we may write the average of (∇Φ(1))
2 as a sum over modes:

〈
(
∇Φ(1)

)2〉 =
9

4
H4

0

∫ ∞

0

dk

k3
∆2(k) , (4.93)

where ∆(k) is the dimensionless power spectrum of matter density fluctuations at

the present time, defined by

〈δ2〉 =

∫ ∞

−∞
d(ln k)∆(k)2 . (4.94)
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We adopt the following power spectrum

∆2(k) = C2

(
k

H0

)4

T 2

(
k

keq

)
, (4.95)

where the factor of (k/H0)
4 reflects a Harrison-Zel’dovich flat spectrum, the am-

plitude C = 1.9 × 10−5 is set by observations, and T (y) is the transfer function.

The BBKS transfer function [67] is a good fit for T in the absence of dark energy,

T (y) =
ln (1 + 2.34y)

2.34y

[
1 + 3.89y + (16.1y)2 + (5.46y)3 + (6.71y)4]−1/4

, (4.96)

where

y =
k

keq

=
kθ1/2

ΩXh2Mpc−1 . (4.97)

Here we show the most general form of the transfer function, where θ = ρER/1.68ργ

(not to be confused with the expansion θ) is the density of relativistic particles

divided by the density of photons, ΩX is the density of cold dark matter, and

h = H0/(100 km s−1 Mpc−1). We choose ΩX = 1 for our analysis.

Using this spectrum,

〈
(
∇Φo(1)

)2〉 =
9C2k2

eq

4

∫ ∞

0

ydyT 2(y) , (4.98)

where keq = 1/λc = ΩXh2θ−1/2Mpc−1 ≈ 3000ΩXhθ−1/2H0 and the integral is

approximately 2.31× 10−2, using the transfer function in Eq. (4.96). So we finally

find

〈
(
∇Φo(1)

)2〉 ≈ 9× 10−6H2
0

[(
ΩX

0.27

)(
h

0.7

)]2

θ−1 (4.99)

and therefore

〈v2
o(1)〉 ≈ 3× 10−6

[(
ΩX

0.27

)(
h

0.7

)]2

θ−1 . (4.100)
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Using the power spectrum (4.95) we also find

〈n · v(r0, t)n · v(r0 + rn, t)〉 =

C2k2
eq

H2
0

∫ ∞

0

ydyT 2(y)

[
1

3
j0

(
keqzy

H0

)
− 2

3
j2

(
keqzy

H0

)]
, (4.101)

where j0 and j2 are spherical Bessel functions of the first kind, defined in Eqs.

(A.28) and (A.29) of Appendix A.3. We plot 1 + f(r), found by combining Eqs.

(4.90) and (4.101), in Figure 4.2. Note that this becomes negative for keqr & 10.

Note also that we have not used any truncation of the power on scales that are

nonlinear. If we instead were to impose a high-k cutoff, so as not to include the

effects of any modes that have ∆2(k) > 1, then this would lead to differences of

a factor of about two. A different approach would be to include the quasi-linear

regime, with the power spectrum given from N-body simulations [68].

We will specialize to keq/H0 = 1000 for the rest of this chapter, which yields

〈v2
o(1)〉 ≈ 8.34× 10−6 . (4.102)

In Figure 4.3, we show how the perturbation ∆DL(z) scales relative to the un-

perturbed luminosity distance DL(0)(z), for the choice keq/H0 = 103. Note that

we are plotting the logarithm of the absolute value, as the perturbation changes

sign from positive to negative as one looks at larger distances. By inspection, it

becomes clear that ∆DL(z) is not actually a perturbation for very small redshifts,

i.e. for where |∆DL|/DL(0) ∼ 1, and thus our computation of ∆DL is no longer

valid in that regime. Indeed, it is well known that the peculiar velocities of ob-

jects within the Local Supercluster are not small when compared to their redshifts.

However, this will not be a problem in practice, as Type Ia supernovae at such

small redshifts are typically not used for cosmological parameter fitting. We will
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Figure 4.2: The function 1 + f(r) plotted versus keqr, where keq is the
wavenumber of the dominant perturbation mode.
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Figure 4.3: The relative size of the perturbation log[|∆DL(z)|/DL(0)(z)] plot-
ted versus log(z), assuming that the dominant perturbation
wavelength is 103 times smaller than the Hubble scale: keq/H0 =
103.
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eventually take this breakdown of perturbation theory into account by imposing a

lower cutoff zmin when we fit our data to a theoretical model. By eye, we see that

it should be safe to choose zmin ∼ 0.01.

4.5 The Perturbation to the Inferred Cosmological Con-

stant

4.5.1 Finding the Best-Fit FRW Model

We may now find the inferred cosmological constant and deceleration parameter by

analyzing Eq. (4.88) within the context of what one would expect in a homogeneous

model. The lowest order perturbation to the luminosity distance depends on the

difference between the peculiar velocities at the source and at the observer, and so

the question that we now ask is: How do peculiar velocities and their correlations

affect inferences drawn from data about cosmological models? We cannot simply

Taylor expand Eq. (4.88) around the observer to find q0. This is because f varies

on short lengthscales of order k−1
eq ∼ 10 Mpc, so that a Taylor series expansion

would effectively mean computing q0 from DL(z) within this unrealistically short

lengthscale. A good alternative then is to fit the perturbed luminosity distance

over a finite range of redshifts to what one would expect in a homogeneous model

with matter and a cosmological constant.

Suppose that the observer can measure redshifts {zi} for a set of distant ob-

jects arbitrarily well. From the distance determinations {DLi}, the observer can

compute {ri = DLi/(1 + zi)}, and we can therefore take {zi, ri} to be the data
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gathered by the observer. Suppose also that in actuality the Universe is spatially

flat with Hubble parameter H0 and matter only. Let

ri = H−1
0 [F (zi) + ∆i(zi)] (4.103)

be the physical value of ri, where for a flat matter-only cosmology

F (zi) =

∫ zi

0

dz

(1 + z)3/2
= 2

[
1− 1√

1 + zi

]
(4.104)

and ∆i(zi) (not to be confused with the matter perturbation power spectrum) is

the non-FRW contribution to ri, from fluctuations via velocity differences. From

Eq. (4.89), we find the ensemble averaged perturbation

∆i(zi) ≈
C2k3

eq

H3
0

∫ ∞

0

dyT 2(y)

[
y cos(keqziy/H0)

keqzi/H0

− 3
sin(keqziy/H0)

(keqzi/H0)2
− 6

cos(keqziy/H0)

(keqzi/H0)3y

+ 6
sin(keqziy/H0)

(keqzi/H0)4y2

]
. (4.105)

The observer fits the data to an FRW model that is slightly curved and has a

small cosmological constant. The fitted model is then

rfit
i =

∫ zi

0

dz

H(z)
− k

6

(∫ zi

0

dz

H(z)

)3

, (4.106)

where k = (ΩM + ΩΛ − 1)H2
fit and

H2(z) = H2
fit

[
ΩM(1 + z)3 + (1− ΩM − ΩΛ)(1 + z)2 + ΩΛ

]
= H2

fit(1 + z)3

[
1− (1− ΩM)z

1 + z
− ΩΛz(2 + z)

(1 + z)3

]
; (4.107)

here Hfit is the fitted Hubble parameter, and ΩM and ΩΛ are the density parame-

ters for matter and for the cosmological constant, respectively. Let us work to first

order in 1−ΩM and ΩΛ, a simplification which ought to suffice as long as ∆i � 1.
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Thus, the fitted model is

rfit
i = H−1

fit [F (zi) + (1− ΩM)G(zi) + ΩΛI(zi)]

≡ H−1
fit [F (zi) + εMG(zi) + εΛI(zi)] , (4.108)

where F (zi) is the same as before, and we have defined

G(z) =
1

2

∫ z

0

dz z

(1 + z)5/2
+

1

6
[F (z)]3 (4.109)

and

I(z) =
1

2

∫ z

0

dz z(2 + z)

(1 + z)9/2
− 1

6
[F (z)]3 . (4.110)

There are three fitting parameters: Hfit, εM = 1− ΩM and εΛ = ΩΛ.

From the data and our model we can compute a likelihood function. Assuming

Gaussian uncertainties this will be the exponential of

χ̃2 = −1

2

∑
i

[
ri − rfit

i (zi)
]2

σ2
i

= −1

2

∑
i

[(
H−1

0 −H−1
fit

)
Fi + H−1

0 ∆i −H−1
fit(εMGi + εΛIi)

]2
σ2

i

, (4.111)

where σi is the estimated uncertainty in the value of ri inferred from observations

and Qi ≡ Q(zi) for Q = F, G, I.

The next step is to maximize χ̃2 with respect to the parameters of the fit, which

will lead to a set of coupled nonlinear equations. To simplify, let us linearize in the

small parameters εM , εΛ, {∆i} and h = Hfit/H0 − 1. The resulting equations are

〈∆iFi〉 = εM〈GiFi〉+ εΛ〈IiFi〉 − h〈F 2
i 〉 , (4.112)

〈∆iGi〉 = εM〈G2
i 〉+ εΛ〈IiGi〉 − h〈GiFi〉 , (4.113)
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and

〈∆iIi〉 = εM〈IiGi〉+ εΛ〈I2
i 〉 − h〈IiFi〉 , (4.114)

where we have defined the average 〈Qi〉 ≡
∑

i Qi/(Nσ2
i ). Solving for the parame-

ters of the fit, we get

εΛ = D−1

[
〈∆iFi〉(〈IiFi〉〈G2

i 〉 − 〈IiGi〉〈GiFi〉)

+〈∆iGi〉(〈IiGi〉〈F 2
i 〉 − 〈IiFi〉〈GiFi〉)

+〈∆iIi〉(〈GiFi〉2 − 〈G2
i 〉〈F 2

i 〉)
]

, (4.115)

εM = D−1

[
〈∆iFi〉(〈GiFi〉〈I2

i 〉 − 〈IiFi〉〈IiGi〉)

+〈∆iGi〉(〈IiFi〉2 − 〈I2
i 〉〈F 2

i 〉)

+〈∆iIi〉(〈IiGi〉〈F 2
i 〉 − 〈GiFi〉〈IiFi〉)

]
, (4.116)

and

h = −D−1

[
〈∆iFi〉(〈IiGi〉2 − 〈I2

i 〉〈G2
i 〉)

+〈∆iGi〉(〈GiFi〉〈I2
i 〉 − 〈IiGi〉〈IiFi〉)

+〈∆iIi〉(〈IiFi〉〈G2
i 〉 − 〈GiFi〉〈IiGi〉)

]
, (4.117)

where

D = 〈IiGi〉2〈F 2
i 〉 − 2〈IiFi〉〈IiGi〉〈GiFi〉 − 〈I2

i 〉〈F 2
i 〉〈G2

i 〉

+〈I2
i 〉〈GiFi〉2 + 〈IiFi〉2〈G2

i 〉 . (4.118)

These are fairly general for small ∆i, and show that there may be contributions to

εΛ, εM , and h from velocity fluctuations.

Next, we need to compute the averages. To do this, we recall that F corre-

sponds to comoving radial coordinate, modulo a factor of H−1
0 . To the order of
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approximation underlying our calculations, we can take the comoving source den-

sity to be uniform. Moreover, we do not need to worry about Malmquist bias, at

least for Type Ia supernovae, which are very bright. Let us also assume that all of

the {σ2
i } are the same, to keep the problem as simple as possible. Then σ2

i drops

out of our expressions for εM , εΛ, and h, although it remains in their uncertainties.

We suppose that our source catalog extends to some maximum value Fmax, with a

corresponding maximum redshift zmax. It is worth remembering that F < 2 is an

absolute upper bound, and that for z < 1, F < 2−
√

2 ≈ 0.6, so we will be dealing

with relatively small values of F typically. Moreover, as we have already noted

in Figure 4.3, our small ∆i assumption breaks down below a minimum redshift

zmin . 0.01, but this is not a problem as no supernovae below this redshift have

ever been used for cosmological model fitting [1, 2]. So we will assume a lower

cutoff for all of our sums of Fmin. Then, for example,

〈F 2
i 〉 =

3

F 3
max − F 3

min

∫ Fmax

Fmin

dF F 2 F 2 , (4.119)

and Eqs. (4.104), (4.109), (4.110), and (4.118) give the lowest order result, assum-

ing that F 3
max � F 3

min,

D ≈ − 1

5268480
F 12

max . (4.120)

Keeping only lowest order terms in Fmax in the numerators of Eqs. (4.115),

(4.116), and (4.117) as well, we get

εΛ ≈ −
5268480

16

[
3〈∆iFi〉
784F 4

max

− 3〈∆iF
2
i 〉

280F 5
max

+
〈∆iF

3
i 〉

140F 6
max

]
, (4.121)

εM ≈ −2εΛ , (4.122)

and

h ≈ −5268480

16

[
〈∆iFi〉

448F 2
max

− 〈∆iF
2
i 〉

168F 3
max

+
3〈∆iF

3
i 〉

784F 4
max

]
. (4.123)
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We see that if ∆i ∝ Fi, then εΛ is zero, because the three terms in Eq. (4.121)

cancel. This means that if ∆i arises from velocity correlations, it is only the

correlation function of velocities at two separated points that matters, not the

RMS velocity at a point. Also note that, for this fitting procedure, the deceleration

parameter is still q0 = 1/2, since

∆q0 = q0 −
1

2
= −1

2
− (äa/H2)0

=
1

2
(ΩM − 1− 2ΩΛ) =

1

2
(−εM − 2εΛ) =

1

2
(2εΛ − 2εΛ) = 0 (4.124)

from Eq. (4.122), in agreement with Refs. [26], [27], and [69].

The perturbation ∆i, given in Eq. (4.105), depends on the correlation function

f(r), and so it does contribute to εΛ. For zmin = 0.02 and zmax = 0.15, we

numerically integrate to find that the best-fit cosmological constant density is

ΩΛ ≈ 0.004. Table 4.1 gives a few more results for the best-fit values for εΛ, εM ,

and h as a function of the two limiting redshifts zmin and zmax in the continuum

limit, where we have made the assumption that the number of sources N is very

large: N →∞. In this limit, ∆i(zi) → ∆(z) and

εΛ =

∫ Fmax

Fmin

dFw(F )∆(F ) , (4.125)

where we have the weighting function

w (F ) ≡ −5268480

16

(
3F

784F 4
max

− 3F 2

280F 5
max

+
F 3

140F 6
max

)
. (4.126)

We also plot these results in Figure 4.1, in the Introduction. Note that ΩΛ may

be positive or negative, depending on the redshift range, since ∆DL changes sign

in the region of interest.

In order to test the robustness of these continuum limit calculations, we have
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Table 4.1: Best-fit parameters in the continuum limit for a few values of the
source catalog limiting redshifts zmin and zmax, also for the choice
that the dominant perturbation wavelength is 103 times smaller
than the Hubble scale: keq/H0 = 103.

zmin zmax ΩΛ 1− ΩM Hfit/H0 − 1

0.01 0.1 −0.018 0.036 −4.3× 10−5

0.2 0.0016 −0.0032 4.0× 10−5

0.03 0.1 0.0037 −0.0074 7.1× 10−5

0.2 0.0020 −0.0040 4.7× 10−5

also applied our fitting procedure to randomly-generated catalogs of synthetic red-

shift data. To generate a data point Fi for such a catalog, we assume that the

quantity (F 3
i − F 3

min)/(F 3
max − F 3

min) is distributed uniformly between 0 and 1. In

this way, we create catalogs of N = 100 data points, wherein each data point is

a value of Fi for a source with a random location. For each data point, we use

the ensemble averaged formula for ∆DL(z) to find ∆i. We then fit these data to a

homogeneous model as outlined above, using sums instead of integrals. Using 20

randomly-generated catalogs, the average best-fit values for ΩΛ are summarized

in Table 4.2, along with their standard deviations. We also found the best-fit

cosmological constant with 50 catalogs for zmin = 0.02 and zmax = 0.15, to find

ΩΛ = 0.005± 0.001.

4.5.2 Variance

Although the best-fit values for ΩΛ of the previous subsection are very small, we

must keep in mind that they are derived from the ensemble averaged perturbation
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Table 4.2: Best-fit parameters for 20 catalogs of N=100 samples each, for a
few values of the source catalog limiting redshifts zmin and zmax.
We have also made the choice that the dominant perturbation
wavelength is 103 times smaller than the Hubble scale: keq/H0 =
103.

zmin zmax ΩΛ

0.01 0.1 −0.020± 0.002

0.2 0.002± 0.001

0.03 0.1 0.014± 0.001

0.2 0.0025± 0.0004

to the luminosity distance. For a given source, this ensemble averaged perturba-

tion will be far smaller than the leading order perturbation, which depends linearly

on the peculiar velocity. This linear perturbation will be the main source of the

variance in the best-fit parameters, and this variance should overwhelm the sys-

tematic error for typical supernova sample sizes. This complication was pointed

out by Ref. [70] and it was shown to cause errors of ∆ΩΛ ≈ −0.04 for a sample of

actual nearby supernovae in Ref. [51].

Consider our expression for the best-fit ΩΛ, in terms of N discrete sources,

rewritten as a weighted sum,

ΩΛ =
1

N

∑
i

w (Fi) ∆i . (4.127)

What we have computed is the ensemble average of this,

〈ΩΛ〉 =
1

N

∑
i

w (Fi) 〈∆i〉 . (4.128)
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The variance is then

σ2
Λ =

〈
(ΩΛ − 〈ΩΛ〉)2〉 = 〈Ω2

Λ〉+ O
(
δ3
)

=
1

N2

∑
i,j

w(Fi)w(Fj)〈∆i∆j〉 , (4.129)

which has two types of terms contributing: those with i = j and those with i 6= j.

Separating these, we have σ2
Λ = σ2

1 + σ2
2, where

σ2
1 ≡

1

N2

∑
i

w2(Fi)〈∆2
i 〉 (4.130)

and

σ2
2 ≡

1

N2

∑
i6=j

w(Fi)w(Fj)〈∆i∆j〉 . (4.131)

In the continuum limit N →∞, the first piece of the variance becomes

σ2
1 ≈

1

N

3

F 3
max

∫ Fmax

0

F 2dFw2(F )〈∆2(F )〉 (4.132)

where, from Eq. (4.105),

〈∆2(F )〉 = 〈∆2(H0r)〉 = 〈n · [v(r)− v(0)]n · [v(r)− v(0)]〉 ∼ 〈v2
o〉 . (4.133)

The integrand in Eq. (4.132) is integrable as F → 0, and so the quantity σ1 is to a

good approximation independent of zmin for small zmin. Thus we can for simplicity

take zmin = 0. After integrating, we find

σ2
1 ∼

100

N

(
〈v2

o〉
8× 10−6

)(zmax

0.2

)−6

. (4.134)

For a source catalog of 100 sources out to a limiting redshift zmax = 0.2, we find

that this variance is significant: σ2
1 ∼ 1.

The second piece (4.131) of the variance does not depend on the sample size,

although it does depend on Fmax. In the continuum limit,

σ2
2 ≈

9

F 6
max

∫ Fmax

0

F 2dFw(F )

∫ Fmax

0

(F ′)
2
dF ′w(F ′)〈∆(F )∆(F ′)〉 (4.135)
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where

〈∆(F )∆(F ′)〉 =
1

3
〈v2

o(1)〉
[
f

(
F

H0

− F ′

H0

)
− f

(
F

H0

)
− f

(
F ′

H0

)]
. (4.136)

Plugging Eq. (4.136) into Eq. (4.135), then using Eqs. (4.90) and (4.101), and

then finally doing some rearranging, we find

σ2
2 ≈

(
246960CH0

F 5
maxkeq

)2 ∫ y

0

dy

y3
T 2(y)

[
I

(
2keqFmax

H0

y

)]2

(4.137)

where

I(q) ≡
∫ 1

0

dx

(
3

784
x− 3

280
x2 +

1

140
x3

)
(sin qx− qx cos qx) . (4.138)

This result for σ2
2 does not depend on the sample size, as it only depends on the size

of the redshift range Fmax, making it a measure of cosmic variance. By integrating

numerically, we find that it scales roughly as F−8
max and

σ2
2 ∼ 0.03

(zmax

0.2

)−8

. (4.139)

For comparison, Ref. [51] uses a sample of 115 supernovae up to a redshift zmax =

1.01, and they find an error from the data of ∆ΩΛ = −0.04. For this same scenario,

we estimate |∆ΩΛ| ≈ 0.01, from the sum of Eqs. (4.134) and (4.139).

4.6 Consistency with Prior Results

The method of analysis that we have presented in the previous sections differs from

that of Refs. [10, 11, 13, 14]. This is because of (i) a difference in gauge choice

and (ii) a fundamental difference in the definition of what constitutes “accelera-

tion”. We have chosen to use the standard post-Newtonian gauge, and to define

acceleration as being based on fitting the luminosity distance-redshift relation to
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that of a homogeneous model containing dust and a cosmological constant. As

this definition of acceleration is based only on observable quantities, performing

our calculation in other gauges gives us the same results.

In contrast, Refs. [10, 11, 13, 14] calculate the cosmological expansion rate,

averaged over a constant time slice. The motivation for doing this comes from the

spatially-averaged Friedmann equations, also called the Buchert equations [71]. In

particular, Ref. [10] defines the effective coarse-grained scale factor aD in terms

of the average matter density: 〈ρ〉D ∝ a−3
D , where the angle brackets 〈〉D, with

subscript D, denote an average over a spatial hypersurface D at a given time.

Then Ref. [11] defines the coarse-grained Hubble rate

HD =
ȧD

aD

=
1

3
〈θ〉D (4.140)

and the effective deceleration parameter

q = −ḢD

H2
D

− 1 . (4.141)

These measures of acceleration are somewhat arbitrary since the deceleration pa-

rameter (4.141) depends on the spatial hypersurface over which one averages. Refs.

[10, 11, 13, 14] use constant time slices in the comoving synchronous gauge. In

this gauge, the perturbation to the the expansion θ is related quite simply to the

perturbations to the trace of the connection; from Ref. [10],

〈θ(1)〉D =
1

a
〈Γi

ti(1)〉D , (4.142)

and similarly for θ(2). Ref. [14] claims that spatially averaged perturbations could

become quite large, which implies that our perception of the expansion rate of the

Universe is significantly affected by inhomogeneity. The culprit is the appearance
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of terms in Γi
ti(2) with large numbers of spatial gradients, which naturally appear

in the synchronous gauge. These higher derivative terms, which do not appear in

our method above, lead to a perturbative instability, wherein terms higher order

in perturbation theory do not get smaller as expected.

Although the results of the previous sections appear to differ from the claims of

Refs. [10, 11, 13, 14], in fact the large fitting effect claimed in those papers arises

at a higher post-Newtonian order than we have computed. In this section we show

that our results are consistent with theirs to the order we have computed. Our

method of computation could be extended to higher post-Newtonian order, which

would allow for a detailed confrontation with their claims.

However, we believe that our result of a small fitting effect is robust, in the

sense that it will not be altered by the inclusion of effects that are higher order in

ε and/or δ. This belief is based on the structure of the post-Newtonian expansion

of Einstein’s equations, and on the fact that we are computing a gauge-invariant

observable. If this is true, then our conclusion is in disagreement with Refs. [10,

11, 13, 14].

We believe the most likely reason for the disagreement is that we compute

a gauge-invariant observable that is directly and uniquely related to supernova

observations, whereas the quantities computed in Refs. [10, 11, 13, 14] have some

arbitrariness and are not directly related to observations. The proposal of Refs.

[10, 11, 13, 14] that there might be a large backreaction effect in terms of qD

does not necessarily imply that observers will measure large deviations from FRW

dynamics. As mentioned above, spatially averaged perturbations are dependent

on one’s coordinate choice, in the sense that a constant time hypersurface in one
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coordinate system is most likely not going to be a constant time hypersurface in a

different coordinate system. These averages are unlikely to be directly observable,

and are not uniquely related to the cosmic acceleration inferred from cosmological

observations. As Hirata and Seljak [27] remarked, we “cannot cover the entire

universe with astronomers so as to measure spatially averaged quantities” such as

HD. It is possible that the measure of acceleration (4.141) could be large while

the observed acceleration is small.

We now turn to showing consistency of our results with those of Refs. [10, 11,

13, 14] to the order we have computed. We take our metric (4.9) and transform it

from the post-Newtonian gauge to the synchronous gauge. We then compute from

the transformed metric the perturbation to the Hubble rate. The relative size of

the difference between HD and the expected FRW value H determines whether or

not there will be a large fitting effect. As an example, we will now compute the

ratio

HD −H

H
≡ ∆H

H
=
〈θ(1) + θ(2)〉D

3H
(4.143)

where the spatial average involves integrating with respect to the perturbed volume

element dV =
√

gspaced
3x, where gspace is the determinant of the spatial part of

the metric. Note that the quantity that we define as ∆H/H differs from what is

computed in Refs. [10, 11, 13, 14], although we do find the same qualitative result

at the end of the day. Below we show that this quantity is small to Newtonian

order, in correspondence with what was found in [10], even though it involves a sum

of terms that can be large individually. The reason these terms are large is that in

synchronous coordinates metric perturbations can be of order δ, which may be of

considerable size even though there are no large gravitational potentials anywhere
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in the Universe. By contrast, in our calculation based on standard post-Newtonian

coordinates, metric perturbations are at most of order ε2δ, which is always small.

In this sense, perturbation expansions are much better behaved in the standard

post-Newtonian coordinates than in synchronous coordinates.

We start by reviewing the transformation from standard post-Newtonian co-

ordinates (4.9) to synchronous coordinates; a detailed discussion is presented in

Appendix A.4. Begin with the second order perturbed FRW metric in the gauge

ds2 = a2(η)
[
−
(
1 + 2Φ(1) + 2Φ(2)

)
dη2 +

(
1− 2Φ(1) − 2Φ(2)

)
δijdX idXj

]
,

(4.144)

where we are now using conformal and Cartesian coordinates for simplicity, and we

will only need to work to Newtonian order. We can then define the new coordinates

τ and x̃i by

η = τ

[
1− 1

3
Φ(1) −

1

5
Φ(2) +

2τ 2

45

(
∇Φ(1)

)2]
+ O

(
τ0ε

4
)

+ O(τ0δ
3) (4.145)

and

X i = x̃i − τ 2

6
Φ(1),i −

τ 2

20
Φ(2),i +

τ 4

120
Φ(1),ijΦ(1),j + O

(
x̃iε2

)
+ O(x̃iδ3) , (4.146)

where these potentials are fixed physical quantities, evaluated at (τ, x̃i), and these

spatial derivatives are in terms of the new coordinates. We are also assuming that

we have the growing mode only, for which we have the power law scalings Φ(1) ∝ τ 0

and Φ(2) ∝ τ 2. Then the line element becomes, to lowest order in ε,

ds2 = a2(τ)
[
−dτ 2 + g̃ijdx̃idx̃j

]
= a2(τ)

{
− dτ 2 +

[
δij −

τ 2

3
Φ(1),ij −

τ 2

10
Φ(2),ij +

τ 4

60
Φ(1),ijkΦ(1),k

+
2τ 4

45
Φ(1),ikΦ(1),jk + O

(
ε2
) ]

dx̃idx̃j

}
, (4.147)
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which is now in a synchronous gauge. Note that the metric now has perturbations

of order ε0δ ∼ δ, and these are the terms that will lead to the appearance of a

large ∆H/H. Then we find

√
gspace = a3(τ)

[
1− τ 2

6
∇2Φ(1) + O

(
δ2
)]

. (4.148)

The spatial trace of the connection is

Γi
τi =

1

2a2
g̃ij
(
a2g̃ij

)
,τ

(4.149)

which receives the first and second order perturbations

Γi
τi(1) = a(τ)θ(1) =

1

2
δij g̃ij(1),τ = −τ

3
∇2Φ(1) + O

(
δε2
)

(4.150)

and

Γi
τi(2) = a(τ)θ(2) =

1

2
g̃ij(1)g̃ij(1),τ +

1

2
δij g̃ij(2),τ

= −τ 3

45
Φ(1),ijΦ(1),ij −

τ

10
∇2Φ(2) +

τ 3

30

(
∇2Φ(1)

)
,k

Φ(1),k

+O(δ2ε2) . (4.151)

Using the Fourier transformation (4.92), taking an ensemble average, and using

the result that 〈∇2Φ(2)〉 = 0 (see Appendix A.3), we find from Eqs. (4.143) and

(4.142)

∆H

H
≈ 1

3Ha

〈
τ 3

18

(
∇2Φ(1)

)2 − τ 3

45
Φ(1),ijΦ(1),ij +

τ 3

30

(
∇2Φ(1)

)
,k

Φ(1),k

〉
=

τ 3

135Ha

〈(
∇2Φ(1)

)2 − Φ(1),ijΦ(1),ij

〉
=

τ 3

135Ha

〈[
Φ(1),i∇2Φ(1) − Φ(1),jΦ(1),ij

]
,i

〉
, (4.152)

which is consistent with the lowest order result of Ref. [10]. This spatial average

is a boundary term, whose ensemble average vanishes.
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Although (4.152) vanishes, it contains terms with two more powers of k/H0

than what one would find in the post-Newtonian gauge. It is these terms that

Refs. [11, 14] argue will lead to a large effect at higher order in perturbation

theory. In other words, using the synchronous gauge and defining acceleration in

terms of spatially averaged expansion parameters can lead to a conceivably large

correction. This is in contrast to our earlier method, wherein we calculate the

observable effect, which is very small. Note that our expansion (A.5) for DL(z)

contains no four-derivative terms like those in (4.152).

4.7 Conclusions

We have computed the inhomogeneity-induced perturbations to the redshifts and

luminosity distances that a comoving observer would measure to first post-Newtonian

order, i.e. we have computed z and H0DL to order ε3 ∼ (v/c)3, and to second

order in the density perturbation δ = (ρ− 〈ρ〉)/〈ρ〉. Assuming a flat and matter-

dominated background cosmology, the perturbed luminosity distance-redshift re-

lation is given by Eq. (4.88). The perturbations to DL(z) depend on the corre-

lation between the peculiar velocities at the observer and at the source. Roughly

speaking, these perturbations are of order ∆DL/DL ∼ 10−5 when z ∼ 0.1. The

luminosity distance-redshift relation was averaged over viewing angles and over

an ensemble of realizations of the density perturbation. The result is gauge in-

variant, as it corresponds to a measurable quantity. We then fit this function to

what one would expect in a homogeneous FRW cosmology, containing dust and

a cosmological constant, to deduce the corresponding perturbation to the inferred

cosmological constant density.
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The inferred ΩΛ depends on the limiting redshifts zmin and zmax of the sample,

and we summarize the best-fit values of ΩΛ for different values of these limiting

redshifts in Figure 4.1 and Table 4.1. These ensemble averaged results indicate

that we are justified in fitting low-z supernova data to homogeneous models, as

long as we use supernova data that spans a large enough redshift range. For

instance, assuming that we have luminosities and redshifts from zmin = 0.02 out

to zmax = 0.15, the errors induced by the “fitting problem” are small: ΩΛ ∼ 0.004.

Such errors are not large enough to explain the measured value ΩΛ ≈ 0.7. This is

what we would expect, since we have other evidence to suggest that our universe

contains dark energy from large scale structure surveys, from the CMB power

spectrum, and from weak lensing.

In contrast to the small value of the best-fit ΩΛ for the ensemble averaged

luminosity distance-redshift relation, we find that relatively large errors are possible

due to fluctuations in DL(z), specifically from terms that are linear in peculiar

velocities. This effect was noted in Ref. [70] and then calculated in Ref. [51]

for an actual nearby supernova data set. We find that the associated variance

in ΩΛ has two components, one that depends on the number of sources N , σ2
1 ∼

(100/N)(zmax/0.2)−6, and one that does not, σ2
2 ∼ 0.03(zmax/0.2)−8.

It should be stressed that our goal in this chapter was only to find a rough

estimate of the fitting effect. One potential weakness of our analysis is that we

have assumed that δ < 1, and thus we do not address the effects of highly nonlinear

structures. Such nonlinear modes could be included by using the full nonlinear

power spectrum from N-body simulations [68], and we estimate that this would

change the result by approximately a factor of two. Furthermore, we have assumed
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that the observer is in a random location in the Universe, and has no knowledge

of his/her own peculiar velocity. One can redo the calculation for an observer who

knows and corrects for this velocity.

It has been claimed that there exists a perturbative instability, where successive

orders in an expansion in powers of δ do not get smaller [10, 11, 14]. We do not

see any indications of such an instability with our method. When one defines

“acceleration” in terms of only directly observable quantities, as we did in Sections

4.2 through 4.5, the fitting effect one obtains is small.



Chapter 5

Summary of Results

5.1 Models Used in this Study

The aim of this thesis was to calculate systematic inhomogeneity-induced correc-

tions to the measured luminosity distance-redshift relation DL(z), and then to find

the impact that such corrections have on our interpretation of supernova data and

the computation of best-fit cosmological parameters. We accomplished this task

by evaluating a series of models for cosmological structure formation. Each of

these models was matter dominated, flat on average, and with gravity dictated by

general relativity; we addressed these models in order of increasing sophistication

and realism.

In Chapter 2, we explored this problem in spherical symmetry, using LTB

models. These are useful since they let us attack this problem non-perturbatively.

However, these are only toy models as they require geocentricity so as to match

the observed isotropy of the CMB.

We used a more realistic model of structure formation in Chapter 3, wherein

we constructed a model for cosmological voids and sheets. In this model, we cut

spheres out of an FRW background and then placed this matter in mass compen-

sating shells at the boundaries.

In Chapter 4, we attacked this problem in full three dimensional generality,

with a perturbative calculation. We computed the perturbed luminosity distance

115
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and redshift to second order in the density contrast δ = δρ/ρ and to third order

in the fluid velocity v/c. We also assumed δ at a given time to be a homogeneous

random process.

5.2 Systematic Corrections to DL(z) and Their Impact on

the Assessment of Acceleration

Through this series of studies, we have found that local inhomogeneity does sys-

tematically affect the luminosity distance-redshift relation DL(z). Then we found

that these systematic corrections could mimic dark energy, in principle, although

such effects are expected to be very small in realistic models.

Our analysis of the spherically-symmetric LTB models showed that inhomo-

geneity could conceivably mimic dark energy. We found that inhomogeneity does

in fact alter DL(z), and significant corrections are possible if one does not constrain

the amplitudes or the wavelengths of density perturbations. If such supernova data

are then interpreted in the framework of a flat homogeneous model, the deceler-

ation parameter q and the effective equation of state parameter weff could both

become negative, signaling acceleration. We found that it is very difficult to match

the DL(z) of a ΛCDM model with an LTB model, although this has been accom-

plished recently [53].

In our void and sheet model, we find very different results. This is because this

is a much more realistic model of structure formation, and also because we included

only Newtonian effects. In this framework, we found that large voids and sheets
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of matter do not affect redshifts, although they have a small nonzero effect on the

magnification. However, taking the limit of an infinite number of sources, we found

that there is no systematic effect on the luminosity distance-redshift relation to

this order. This is in accordance with the results of Holz and Wald [50].

We then found the lowest order systematic effect with a perturbative post-

Newtonian calculation, in full three dimensional generality, in Chapter 4. Here we

found that redshifts and luminosity distances are affected by gravitational redshifts,

the Doppler effect, gravitational lensing, and the integrated Sachs-Wolfe effect. We

then found that the leading order correction to DL(z) depends on the two point

velocity correlation function. This leads to a large effect for very small z and an

order . 10−5 effect for modest redshifts above z ∼ 0.01. This perturbed relation

is then fit to a homogeneous FRW model that contains matter and a cosmological

constant with a density ΩΛ. We find that the correction to the best-fit ΩΛ is larger

than expected: ΩΛ ≈ 0.004, for a catalog that extends from a redshift zmin = 0.02

to a redshift zmax = 0.15. This is far too small to explain the current best-fit value

ΩΛ ∼ 0.7, although this is still a possibly important source of systematic error.

We also found a significant variance in ΩΛ, for a sample of N supernovae out to a

redshift zmax: σ2
Λ ∼ (100/N)(vmax/0.2)−6 + 0.03(vmax/0.2)−8.



Appendix A

Details of the Calculation in Chapter 4

A.1 Combining the Redshift and Luminosity Distance Re-

lations

Adding the redshift equations (4.77), (4.85), and (4.86) yields

z(t, r, θ, φ) =

[
2r

3t
+

r2

9t2
+

4r3

27t3
+ O

(
ε4
)]

+

[
vr

s(1) − vr
o(1) + Φo(1) − Φs(1) +

2r

3t

(
vr

s(1) − vr
o(1)

)
− 2

∫ r

0

Φ̇(1)dr′

+
2r

3t
Φo(1) −

2r

t
Φs(1) −

r2

9t2
vr

o(1) +
r2

3t2
vr

s(1) + O
(
ε4δ
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+
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1
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s(1)
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(
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r
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r
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+ O

(
εδ3
)

. (A.1)

where the right hand side is evaluated at r = r(λ) = −λ and t = t(λ) = t0 + λ.

To point out a few of the above effects, the terms linear in velocity and linear

in Φ correspond to the Doppler effect and the gravitational redshift, respectively.

We also see the second order Doppler shift with the v2 terms, and the integrated

Sachs-Wolfe effect with the integrated terms. The perturbed luminosity distance
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is found from Eqs. (4.78), (4.82), and (4.83) to be

DL(t, r, θ, φ) =
(1 + z)2

H0

2r

3t

{[
1− r

t
+

8r2

9t2
+ O

(
ε3
)]

−

[∫ r

0

dr′

r′2

∫ r′

0

(r′′)
2∇2Φ(1)dr′′ + O

(
ε3δ
)]

−

[∫ r

0

dr′

r′2

∫ r′
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(r′′)
2∇2Φ(2)dr′′ + O

(
ε3δ2

)]

+O
(
εδ3
)}

. (A.2)

Here we can see the effects of weak gravitational lensing. Note that as the cos-

mological portion of the redshift goes to zero, and hence r → 0, the luminosity

distance also goes to zero, as expected.

By combining Eqs. (A.1) and (A.2), we can eliminate λ and compute DL as a

function of z, θ, and φ. This computation can be carried out explicitly by using

the fact that the expressions are power series in ε and δ. This procedure gives

DL(z, θ, φ) ≈ Da
L(z, θ, φ) + Db

L(z, θ, φ) , (A.3)

where
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(A.4)
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and
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L(z, θ, φ) ≡ (1 + z)2
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Here, d/dz ≈ (3t0/2)∂/∂r to leading order, and we have had to split up DL in a

very unappealing way so that we do not leave too much white space and thus have

an inappropriately-formatted thesis. The functions of r and t that appear on the

right hand side of Eq. (A.5) are evaluated at r = z/H0 and t = t0 − z/H0. Note

that the redshift z here is the full redshift as measured by the observer. Next we

need to average DL(z, θ, φ) over viewing angles in the observer’s rest frame, and

also take an ensemble average. In doing so, the averages of first order quantities

will vanish. We also will find that we will only need the second order velocities and

potentials to Newtonian order, so that we may compute the lowest-order effect.
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A.2 Newtonian Second-Order Perturbation Theory

In terms of comoving coordinates r = x/a(t) [33], the equations of Newtonian

hydrodynamics are

∂δ

∂t
+

1

a
∇ · [(1 + δ)vp] = 0 , (A.6)

∂vp

∂t
+

ȧ

a
vp +

1

a
(vp · ∇)vp = −∇Φp

a
, (A.7)

and

∇2Φp = 4πρ0a
2δ , (A.8)

where vp = v(1) + v(2) + . . . is the peculiar velocity, Φp = Φ(1) + Φ(2) + . . . is

the perturbation to the Newtonian gravitational potential, the density contrast is

δ = [ρ(r, t)− ρ0(t)]/ρ0(t), and the zeroth order quantities are given in Section 4.2.

The Newtonian first order results are very well known; for a detailed review, see

Peebles [33]. For a Newtonian analysis to second order in δ, see Ref. [72].

The first order result is that the density contrast consists of mode that grows

with time, and one that decays with time:

δ(1)(r, t) = f(r)t2/3 + g(r)t−1 , (A.9)

where f and g are functions of the spatial coordinates. We will only consider the

growing mode. It is useful to rewrite the hydrodynamic equations in terms of their

Fourier modes. Writing

δ =

∫
d3k

(2π)3
δke

ik·r (A.10)

and

Φp =

∫
d3k

(2π)3
Φke

ik·r , (A.11)
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Eq. (A.8) becomes

k2Φk = 4πρ0a
2δk . (A.12)

The second order density contrast is

δ(2) =
9t4

14a4t40

(
Φ(1),ijΦ(1),j +

5

2
∇2Φ(1)Φ(1),i

)
,i

; (A.13)

this result came from perturbing Eqs. (A.6)-(A.8) to second order and then solving

these by using the first order solutions, Eqs. (A.9) and (A.11). It can be seen that

the expected value of δ(2) vanishes by substituting the mode expansion of Φ(1) into

Eq. (A.13): 〈δ(2)〉 = 0. We also see from Eq. (A.12) that 〈Φp〉 depends only on

boundary conditions; we can choose to add overall constants to Φ at each order in

δ, and it is natural to choose these constants to satisfy 〈Φ(1)〉 = 〈Φ(2)〉 = 0.

Assuming that we only have the growing mode solution of Eq. (A.9), we find

that the first order peculiar velocity is related to the Newtonian potential,

v(1)(r, t) = − t

a(t)
∇Φ(1) = −t1/3t

2/3
0 ∇Φ(1) . (A.14)

This averages to zero but its square does not. The second order velocity pertur-

bation is

vi
(2) = − 3t3

14a3
Φ(1),ijΦ(1),j (A.15)

which also averages to zero: 〈v(2)〉 = 0. Note that these averages are ensemble

averages, not spatial averages.

A.3 Averaging the Luminosity Distance-Redshift Relation

Now we can scrutinize the terms of Eq. (A.5), so that we may find their angular and

ensemble averages. Note that the angular averages will be performed with respect
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to the observer’s angles (θ̃, φ̃), and so we will need to use the Jacobian given in

Eq. (4.70). The first three terms of Eq. (A.5) only depend on the background

cosmology, and are unchanged after averaging, and all terms that are to first order

in δ will have a vanishing ensemble average. As shown in Appendix A.2, terms

that depend on vi
(2) and Φ(2) also average to zero.

In addition, there are many terms that have vanishing ensemble averages be-

cause they contain an odd number of spatial derivatives of the potential, such

as 〈
vr

o(1)Φo(1)

〉
=
〈
vr

s(1)Φs(1)

〉
= 0 , (A.16)〈

vr
s(1)

∂

∂r
vr

s(1)

〉
= 0 , (A.17)〈

xi
(1)v

r
s(1),i

〉
= 0 , (A.18)〈

vr
s(1)

d

dz

∫ r

0

Φ̇(1)dr′
〉

= 0 , (A.19)

et cetera. We also find that

〈(
vθ(1)k

θ
(1) + vφ(1)k

φ
(1)

)
s
−
(
vθ(1)k

θ
(1) + vφ(1)k

φ
(1)

)
o

〉
∼ O

(
ε4
)

, (A.20)

since vθ(1)k
θ
(1) ∼ vφ(1)k

φ
(1) ∼ ε3, and taking the difference of the averages at the

source and at the observer introduces another factor of z ∼ ε.

We can further rewrite the average 〈v2
s(1)〉 by exploiting the power law scaling

v2
(1) ∝ t2/3, to find

〈v2
s(1)〉 =

〈(
t
2/3
0 t1/3∇Φ(1)

)2
〉
≈
〈(

t
2/3
0 ∇Φ(1)

)2
〉

(t0 − r)2/3

= 〈v2
o(1)〉

[
1− z +O(z2)

]
. (A.21)

We also use 〈(vr
(1))

2〉 = 〈v2
(1)〉/3, and introduce the two point correlation function
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f(r),

〈vr
s(1)v

r
o(1)〉 =

1

3
〈v2

o(1)〉
(

1− 1

2
z

)
[1 + f(r)] , (A.22)

where f(r) is defined by

〈n · v(r0, t)n · v(r0 + rn, t)〉 =
1

3
〈v2

o(1)〉 [1 + f(r)] , (A.23)

and n is a unit vector that defines the viewing direction.

We can write this correlation function in terms of a more general correlation

function cij(r), using the Fourier transform of Eq. (A.11) and Eqs. (4.94)-(4.97):

〈v2
o(1)〉cij(r) ≡ 〈vi(r0, t0)vj(r0 + r, t0)〉 =

H2
0

4π

∫ ∞

0

d3kkikj∆
2(k)e−ik·r

k7
. (A.24)

This function can be rewritten as

〈v2
o(1)〉cij(r) ≡ H2

0

[
1

3
A(r)δij +

rirj

r2
B(r)

]
, (A.25)

where

A(r) =
3

8π

∫ ∞

0

d3k∆2(k)

k5

[
1− (k · r)2] e−ik·r

=

∫ ∞

0

dk∆2(k)

k3
[j0(kr) + j2(kr)] (A.26)

and

B(r) =
1

8π

∫ ∞

0

d3k∆2(k)

k5

[
3 (k · r)2 − 1

]
e−ik·r

=

∫ ∞

0

dk∆2(k)

k3
[−j2(kr)] , (A.27)

and where we are using spherical Bessel functions of the first kind:

j0(x) =
sin x

x
(A.28)

and

j2(x) =

(
3

x3
− 1

x

)
sin x− 3

x2
cos x . (A.29)
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It follows that

1

3
〈v2

o(1)〉 [1 + f(r)] = 〈v2
o(1)〉ninjcij(r) = H2

0

[
1

3
A(r) + B(r)

]
=

C2k2
eq

H2
0

∫ ∞

0

ydyT 2(y)

[
1

3
j0

(
keqzy

H0

)
− 2

3
j2

(
keqzy

H0

)]
, (A.30)

where keq = 1/λc ∼ 103H0. We plot 1 + f(r) in Figure 4.2; we see that it falls

to approximately zero for r � λc ∼ 10 Mpc, and thus we do not expect it to be

important when measuring the distances to supernovae at redshifts z ∼ 0.1. Note

also that f becomes negative for large enough r.

Using these simplifications, we finally get

DL(z) =
z

H0

(
1 +

1

4
z − 1

8
z2

)
+ ∆Drms

L (z) + ∆Dcorr
L (z) , (A.31)

where ∆Drms
L (z) is the perturbation that depends on RMS quantities at a given

point, which vanishes:

∆Drms
L (z) = 0 , (A.32)

and ∆Dcorr
L (z) is the perturbation that depends on f . To subleading order, this is

∆Dcorr
L (z) ≈

(1 + z)2〈v2
o(1)〉

H0

[
3

2
f

(
z

H0

)
− 1

3H0

f ′
(

z

H0

)
(1− 2z)

]
+O

(
fε3δ2

H0

)
, (A.33)

where the subleading terms are suppressed by a factor of λcH0 or z. We will only

use the lowest order piece,

∆DL(z) = ∆Dcorr
L (z) ≈ −

〈v2
o(1)〉

3H2
0

f ′
(

z

H0

)
=

C2k3
eq

H4
0

∫ ∞

0

dyT 2(y)

[
y cos(keqzy/H0)

keqz/H0

− 3
sin(keqzy/H0)

(keqz/H0)2
− 6

cos(keqzy/H0)

(keqz/H0)3y

+ 6
sin(keqzy/H0)

(keqz/H0)4y2

]
. (A.34)
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A.4 Transforming from the Standard Post-Newtonian Gauge

to the Synchronous Gauge

In the standard post-Newtonian gauge discussed in Section 4.2, we can rewrite the

metric in terms of conformal coordinates,

ds2 = a2(η)
[
−
(
1 + 2Φ(1) + 2Φ(2)

)
dη2 +

(
1− 2Φ(1) − 2Φ(2)

)
δijdX idXj

]
, (A.35)

where we will only need this to Newtonian order, and now the scale factor is

a(η) = (η/η0)
2. We will define η0 ≈ 3t0 to be the conformal time today. This new

time coordinate is related to that of Sections 4.2 - 4.5 by

η = 3

(
t

t0

)−2/3

t

[
1− r2

9t2
+ O

(
r4

t4

)]
=

3

a
t + O

(
tε2
)

, (A.36)

and the radial coordinates are related by

R =

(
t

t0

)−2/3

r

[
1 +

r2

9t2
+ O

(
r4

t4

)]
=

r

a
+ O

(
rε2
)

, (A.37)

where R =
√

(X1)2 + (X2)2 + (X3)2. Thus, we see that the potentials are the same

as before, to Newtonian order, except that they now are in terms of comoving

distance X i and conformal time η. We also now use Cartesian coordinates for

simplicity.

Our goal is to transform to the synchronous gauge, with new coordinates x̃µ =

(τ, x̃i), where the line element has the form

ds2 = a2(τ)g̃µνdx̃µx̃ν = a2(τ)
[
−dτ 2 + g̃ijdx̃ix̃j

]
. (A.38)

In this gauge, g̃ττ = −1 and g̃τi = g̃iτ = 0. We make the following ansatz for the

new coordinates:

η = τ + f(1) (τ, x̃) + f(2) (τ, x̃) + O
(
τ0ε

4
)

(A.39)
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and

X i = x̃i + hi
(1) (τ, x̃) + hi

(2) (τ, x̃) + O
(
x̃iε2

)
, (A.40)

where hi
(1) ∼ δx̃i, hi

(2) ∼ δ2x̃i, f(1) ∼ δτ0ε
2, f(2) ∼ δ2τ0ε

2, and τ0 ∼ η0 is the time

today. We are also assuming that we have the growing mode only, for which we

have the power law scalings Φ(1) ∝ τ 0 and Φ(2) ∝ τ 2.

In order to find the new metric, we will need the relations

a2(η) = a2(τ)

[
1 +

4

τ
f(1) +

4

τ
f(2) + O

(
ε4
)]

(A.41)

and

Φ(1)(η, X) + Φ(2)(η, X) = Φ(1)(τ, x̃) + Φ(2)(τ, x̃) + Φ(1),ih
i
(1)

+O(ε4) + O(δ3) . (A.42)

Using these and the coordinate transformations (A.39) and (A.40), we find

g̃ττ = −
(

1 +
4

τ
f(1) +

4

τ
f(2) + 2Φ(1) + 2Φ(1),ih

i
(1) + 2Φ(2) + 2ḟ(1) + 2ḟ(2)

)
+
(
ḣ(1)

)2

= −1 , (A.43)

implying

2

τ
f(1) + Φ(1) + ḟ(1) = 0 (A.44)

and

4

τ
f(2) + 2Φ(1),ih

i
(1) + 2Φ(2) + 2ḟ(2) − ḣi

(1)ḣ
i
(1) = 0 . (A.45)

Similarly, the time-space component of the new metric is

g̃τi = −f(1),i − f(2),i + ḣi
(1) + ḣi

(2) + hj
(1),iḣ

j
(1) + O

(
ε3
)

= 0 (A.46)
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and this implies

−f(1),i + ḣi
(1) = 0 (A.47)

and

−f(2),i + ḣi
(2) + hj

(1),iḣ
j
(1) = 0 . (A.48)

Equations (A.44), (A.45), (A.47) and (A.48) are solved by

f(1) = −τ

3
Φ(1) +

A

τ 2
, (A.49)

f(2) = −τ

5
Φ(2) +

2τ 3

45

(
∇Φ(1)

)2
+

B

τ 2
− τ

6
hi

0Φ(1),i , (A.50)

hi
(1) = −τ 2

6
Φ(1),i + hi

0 (x̃) , (A.51)

and

hi
(2) = −τ 2

20
Φ(2),i +

τ 4

120
Φ(1),ijΦ(1),j −

τ 2

12
Φ(1),jih

j
0 +

τ 2

12
Φ(1),jh

j
0,i + h̃i

0(x̃) , (A.52)

where the arbitrary constants A and B and functions hi
0(x̃) and h̃i

0(x̃) represent

residual gauge freedoms associated with synchronous coordinates. Setting A and B

to zero will give us comoving coordinates. We can imagine comoving coordinates to

be fixed on some spacelike hypersurface from which the worldlines of freely falling

particles emanate. If we set all of the clocks carried by these particles to the same

time on this spacelike hypersurface, then A = B = 0. The residual functions hi
0 and

h̃i
0 correspond to simply changing the coordinates on the spacelike hypersurface

from which worldlines emanate, and we will set hi
0 = h̃i

0 = 0. Using this solution

for the appropriate coordinate transformation, we find the spatial part of the new
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metric to be

g̃ij = δij

[
1 +

4

τ
f(1) +

4

τ
f(2) − 2Φ(1) − 2Φ(2) − 2Φ(1),kh

k
(1)

]
− f(1),if(1),j + h(1)i,j + h(1)j,i

+h(2)i,j + h(2)j,i + h(1)k,ih(1)k,j +

[
4

τ
f(1) − 2Φ(1)

] [
h(1)i,j + h(1)j,i

]
+ O(ε4) + O(δ3)

= δij −
τ 2

3
Φ(1),ij −

τ 2

10
Φ(2),ij +

τ 4

60
Φ(1),ijkΦ(1),k +

2τ 4

45
Φ(1),ikΦ(1),jk

+O
(
ε2
)

+ O(δ3) . (A.53)
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[30] M. N. Célérier, Astron. and Astrophys. 353, 63 (2000).

[31] H. Iguchi, T. Nakamura, and K. Nakao, Prog. of Theo. Phys. 108, 809 (2002).

[32] F. J. Tipler, Phys. Lett. 64A, 8 (1977).

[33] P. J. E. Peebles, The Large-Scale Structure of the Universe, 1st ed. (Princeton
University Press, 1980), Ch. 10.

[34] H. Alnes, M. Amazguioui, and Ø. Grøn, astro-ph/0512006.
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