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Experimental and simulation-based analyses of the superferric wigglers operat-

ing in the Cornell Electron Storage Ring (CESR) have provided significant prac-

tical experience with a wiggler-dominated accelerator. A modified version of the

CESR wiggler will be discussed and shown to meet all physics performance speci-

fications for the International Linear Collider (ILC) damping rings. Results from

optimizations of the parameters of this wiggler will also be discussed and shown

to both maintain the physics performance and additionally provide modifications

that reduce the wiggler’s cost and engineering risk. The conceptual design and

simulated performance of the superferric ILC-optimized CESR-c (SIOC) wiggler

will be presented, leading to a recommendation of the SIOC wiggler as the baseline

ILC damping wiggler.
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Chapter 1

Introduction
The International Linear Collider is a proposed energy frontier particle accelera-

tor that will further the world’s understanding of the fundamental nature of space,

time, matter, and energy. The International Linear Collider (ILC) will unlock these

secrets through collisions of bunches containing billions of electrons and positrons,

at energies between 500 and 1,000 GeV, over 14,000 times per second. The po-

tential for this machine to reveal new elementary particles, fundamental forces,

or even entirely new paradigms of physics is great. However, the challenge of de-

signing and operating this 500 GeV electron-positron collider is perhaps greater

still.

The challenge of the ILC lies in its shape. The ILC will be a straight-line

collider which presents obstacles to its design and operation that have not existed

for the predominantly circular colliders built thus far. One clear design requirement

unique to the ILC is to identify where there is room for a 25-mile straight-line

particle accelerator.

Even before the site of the ILC is chosen, physicists will be faced with many

more important questions, including, “How can we maximize our chances of finding

new particles or forces with this accelerator?” Finding new particles or forces with

the ILC will require getting individual electrons and positrons to collide and the

probability of doing this is increased by squeezing the electron and positron beams

tightly. Thus, the answer to increasing the chances of finding new physics lies in

squeezing, or damping, the particle beams as tightly as possible, and this is where

the damping rings enter the ILC.
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The damping rings are circular accelerators through which the electrons and

positrons travel before being accelerated by the straight-line accelerator which gives

the linear collider its name. As the electrons and positrons circulate in the damping

rings they emit synchrotron radiation which takes energy away from the beam

causing the beam to be damped down to the desired smaller size. Unfortunately,

the radiation emission inherent with a circular accelerator can be slow and as a

result, the beams have to circulate in the damping ring for thousands of turns

before the beams will be damped to a small enough size. To minimize this delay,

the International Linear Collider will use dedicated accelerator components to

speed along the radiation emission process.

The primary accelerator component used for speeding up synchrotron radiation

production in the damping rings is the wiggler magnet. Unfortunately, wiggler

magnets present their own challenges to the operation of the ILC damping rings.

Wigglers produce very strong and rapidly alternating magnetic fields which can

disrupt stable beam trajectories. The interplay between the wiggler’s beneficial

synchrotron radiation production and its damaging impact on the beam trajectory

means that wigglers must be precisely designed to work best in the ILC, which

leads to the motivation for this dissertation.

1.1 Outline

This dissertation begins with a description of the International Linear Collider’s

operation to further motivate the need for damping wigglers. The physics principles

of a wiggler magnet will be explained along with the challenges it presents to the

successful operation of the damping rings.

The conceptual design of an optimized International Linear Collider damping
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wiggler will be derived through the combination of a proposed permanent mag-

net wiggler and an existing superconducting magnet wiggler. This dissertation

concludes with the results, achieved through computer simulations, of the opti-

mized damping wiggler’s successful operation in the International Linear Collider

damping ring.



Chapter 2

Particle Accelerator Physics
Particle accelerators are scientific instruments used by a variety of scientists in-

cluding physicists, chemists, biologists, and engineers, for a number of different

purposes including producing new particles, studying radiation effects, probing

elemental composition, and killing malignant cells. Despite their wide range of

application, all particle accelerators serve the same fundamental purpose of accel-

erating beams of charged particles to a higher energy. How high an energy the

accelerator should achieve or the type of particle that should be accelerated are

questions that depend on an accelerator’s specific application, but the basic goal

of bringing a large number of very small particles to a higher energy is the same

in all accelerators.

2.1 The Elements Of Particle Accelerators

Particle accelerators range in size from meters to kilometers and include table-

top devices as well as some of the largest and most complex electromechanical

devices ever created. At their core, particle accelerators consist of a sequence of

electromagnetic devices through which a beam of charged particles passes. These

individual electromagnetic devices are designed to accelerate the particle beam to

a desired energy, or range of energies, while steering it in the direction it needs to

go in as tight a package as the application requires.

There are many different types of electromagnetic devices in particle accelera-

tors, but the forces they exert on the particle beam are all given by the Lorentz

4
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Table 2.1: Magnet multipoles and their effect on the motion of the beam.

Multipole By(x,y = 0) ∝ Effect

Dipole B1 Steering

Quadrupole B2 ·x Focusing

Sextupole B3 · x
2 Energy-dependent compensation

Octupole B4 · x
3 Field error compensation

force law:

F = q(E + v × B), (2.1)

where F is the force on the particle, q and v are the charge and velocity of the

particle, and E and B are the electric and magnetic fields from the given electro-

magnetic device. Given a source of E and B fields, charged particles will experience

a force that will guide them on a specific path through the particle accelerator. To

determine the trajectory of this path and whether or not it will lead to a useful

beam, the shape and strength of the electromagnetic guide fields must be under-

stood. In a particle accelerator, the two most common sources of guide fields are

magnets and electromagnetic cavities.

2.1.1 Magnets

Magnets are critical components of particle accelerators as their magnetic fields

are what steer the charged particles through the accelerator. Depending on the

number of poles that make up the magnet, the shape of the magnetic field can be

altered to steer the particles in different ways (see Table 2.1).
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Dipole Magnets

Dipole magnets consist of just two poles, a north pole and a south pole that are

placed above and below the center of the particle path. This configuration of

magnetic poles produces a vertical magnetic field that is uniform over the region

of the beam and will bend the particle beam horizontally. For relativistic particles,

this bend in trajectory has a radius equal to:

R = ρ =
E

qcB
, (2.2)

where E is the particle’s energy, c is the speed of light, and B is the strength of

the uniform dipole field. Thus, the energy of the beam and strength of the dipoles

set the circumference of a circular particle accelerator.

Quadrupole Magnets

A quadrupole magnet possesses two north poles and two south poles arranged in

equally spaced pairs around the center of the particle path and produces a magnetic

field that depends on position. The magnetic field of a quadrupole magnet is

shaped in such a way that it exerts a restoring force on particles that are offset from

center. Particles above center will be pushed downwards and particles below center

will move upwards, back to the center of the magnetic field. Thus, quadrupole

magnets are used to focus the beam of particles into tight bunches.

This description is slightly complicated by the fact that a quadrupole can only

focus in one plane at a time. With no current or electric field in the center of the

quadrupole field-region, Maxwell’s equations require that the curl of the magnetic

field be zero, ∇× B = 0. So a quadrupole whose field lines are arranged to steer

a vertically offset particle back to center automatically has field lines which steer
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focusing and defocusing quadrupole magnets. In this example, the beam size was
calculated using εx,y = 1 m · rad for a lattice with βx,max = 44 m and βy,max = 51 m.

a horizontally offset particle away from center.

To overcome this limitation, the fields of more than one quadrupole magnet

are combined to produce a focusing force in both planes. As with the combi-

nation of a convex and concave lens in optics, a vertically-focusing/horizontally-

defocusing quadrupole can be combined with a vertically-defocusing/horizontally-

focusing quadrupole (rotated 90◦ relative to the first) to produce a net focusing

force in both planes (see Figure 2.1). This effect is called strong-focusing and is

utilized in the majority of current day particle accelerators.

Higher Order Magnets

Magnets with more than four poles are also common in accelerators. Sextupole

magnets have three north-pole/south-pole pairs and produce fields that depend on

the square of the particle’s displacement from the center of the guide field. This
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results in fields that change with horizontal and vertical position in the magnet,

coupling the horizontal and vertical motion of the beam. Additionally, sextupole

focusing can be used in combination with quadrupole focusing to modify the focus-

ing of the beam based on its energy. The particles in an accelerator can have a range

of energies and this can cause the quadrupoles to focus each particle by a different

amount. If sextupoles are placed in a region of the accelerator where the particle

trajectories depend on energy, then they will produce the precise amount of focus-

ing on the beam to counteract the energy dependent focusing of the quadrupoles;

therefore sextupoles are commonly found adjacent to quadrupoles to provide this

compensation.

Octupoles have four magnet pairs and produce fields that depend on the cube of

the particle’s displacement, thus the strength of octupole-focusing does not grow

linearly with the particle’s amplitude. Particles at different amplitudes will be

strongly focused or defocused by an octupole and cannot be directly refocused

with extra quadrupoles. The usefulness of octupoles comes when errors in the

construction of the hundreds of quadrupoles in an accelerator produce fields with

octupole-like dependencies and a few octupole magnets can be used to correct

these undesirable field errors.

2.1.2 Electromagnetic Cavities

Like magnets, electromagnetic cavities are critical in particle accelerators, as their

electric fields are what accelerate the charged particles. Electromagnetic cavities

are metal structures that the beam travels through and which, when struck with

electromagnetic energy, produce oscillating electric and magnetic fields. The cavi-

ties are shaped in such a way that the dominant mode of oscillation produces an
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electric field which is longitudinal and peaks on the centerline of the accelerator,

thus producing a field which will accelerate the beam of particles.

Since the accelerating fields are oscillating, particles will receive a different gain

in energy depending on the phase of the electromagnetic oscillation as they move

through the cavity. The energy gain of a particle from one cavity is given by:

∆E = qVmax sin(Ψ0), (2.3)

where Vmax is the maximum voltage of the cavity and Ψ0 is the phase of the field

oscillation when the particle passes through the cavity. The field oscillates at radio

frequencies so that it can be precisely timed to optimally accelerate each group

of particles every time they pass through the cavity; thus, these electromagnetic

cavities are called RF cavities.

2.2 What Are Particle Accelerators?

The simplest example of a particle accelerator is a single RF cavity that accelerates

a group of particles to a higher energy. However, the particles would not be in

a useful state after passing through just one RF cavity. One problem is that the

group of particles would be diffuse and would grow more as it drifts beyond the

RF cavity. To solve this problem, a pair of focusing and defocusing quadrupoles

can be combined with the RF cavity to form a cell. This cell accepts a beam of

particles and outputs it at a higher energy and with a tighter focus than initially

accepted.

However, a particle accelerator made of just one RF cavity and two quadrupoles

is still not very useful because experimental physicists frequently want much higher

energies than the field that just one RF cavity can provide. To overcome this
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challenge either more RF cavities can be used or the beam can pass through the

single RF cavity multiple times. Both of these solutions are commonly used; the

first is called a linear accelerator and the second is called a circular accelerator.

A linear accelerator, or linac, is a sequence of accelerating cavities and focusing

magnet cells that the beam passes all the way through once. This sequence of cells

is called a lattice. The beam exits such a linac lattice tightly focused and at an

energy proportional to the number of RF cavities. In a circular accelerator, or ring,

the beam revolves around the lattice many times, traveling through a repeating

sequence of dipoles, focusing and defocusing quadrupoles, and accelerating cavities.

A circular accelerator is essentially a linear accelerator with enough dipoles to

bend the end of the accelerator back around to its front so that the beam can pass

through the cavities repeatedly, gaining energy each time.

2.3 Technical View

In either a linear or a circular accelerator, individual particles travel through the

lattice in grouped bunches that follow each other, one after another, in a train of

bunches. A sequence of bunch trains forms a beam of high energy particles.

A particle accelerator is designed to control the bulk behavior of the beam.

For example, quadrupoles keep the overall size and spread of the particle beam

small by limiting the maximum amplitude of particle trajectories. This allows

accelerator operators to not worry about the exact trajectory an individual particle

takes through the lattice. In this way, the behavior of individual particles in the

accelerator is averaged over and the entire ensemble of particles is described by

the beam’s average position, momentum, and energy.

The energy and momentum of each of the particles are averaged to give the
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Figure 2.2: The local reference system in the particle accelerator. Particle positions
are given as displacements from a reference particle at the center of the guide fields.

beam’s average energy and momentum, E0 and P0. The average position of the

particles in the beam is represented by a reference particle, which for many ac-

celerators remains horizontally and vertically centered in the field region. The

longitudinal position of the reference particle is given by s, which is zero at the

start of the lattice and increases in the direction of particle motion (see Figure 2.2).

2.3.1 Locating the Beam

When analyzing the dynamical performance of an accelerator the local position of

a particle needs to be known in order to determine its exact trajectory through the

magnets and cavities. The local coordinates of a particle are measured relative to

the reference particle in the center of the bunch. As seen in Figure 2.2, horizontally,

x increases at larger radii in a ring; vertically, y increases upward from center; and

longitudinally, z increases as particles move ahead of the center of the bunch, in

the direction of increasing s.



12

As the beam moves around the accelerator, in addition to the position of circu-

lating particles changing, their angle of trajectory changes as well. The horizontal

and vertical angle of the trajectory is equal to the slope of the particle’s path

relative to the beam direction, x′ = dx/ds and y′ = dy/ds. When the particle

is traveling at the speed of light in the direction of increasing s, these transverse

angles are very small and can be approximated by the ratio of the component mo-

mentum in that direction, Px,y, to the average beam momentum, P0. This ratio,

px,y = Px,y/P0 in radians, is another useful way to describe the motion of individual

particles in the accelerator.

The position and angle of a particle’s trajectory is determined by the lattice of

electric and magnetic elements in an accelerator. The forces these elements exert

on the beam produce an oscillating trajectory, known as a betatron oscillation,

around the reference orbit that can be represented by:

x(s) = C
√

β(s) cos (ψ(s) + φ) (2.4)

x′(s) = −
C

√

β(s)
[α(s) cos (ψ(s) + φ) + sin (ψ(s) + φ)].

In these equations, the horizontal position and angle at a given s-coordinate are

given by an amplitude, C, and phase, φ, that are specified by the particle’s initial

conditions, and by amplitude and phase functions, α, β, and ψ, that depend on

the strength of the magnets in the accelerator and vary around the lattice.

2.3.2 Variable Definitions

When the trajectories of individual particles are averaged over, the total size of the

particle beam is an important characteristic. The difference between the maximum

and minimum position particles in each dimension gives the horizontal, vertical,
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Figure 2.3: The physical size of the charged particle bunch in the vertical and
longitudinal planes is 6 σy and 6 σz.

and longitudinal sizes of the beam. If the particles are arranged in a Gaussian

distribution in space, the beam size, or σ, corresponds to one standard deviation

of the statistical distribution of particles in each dimension. For example, if the

particles are in a Gaussian distribution longitudinally, then the total length of the

beam–the size which includes 99.7 % of the particles–is 6×σz (see Figure 2.3). The

beam σ’s depend on the β-function and therefore vary around the ring depending

on the strength of the quadrupoles.

If we look at the σ’s not around the lattice, but at a single s position, we will see

that a well behaved beam has reached equilibrium and the beam distribution does

not change from one revolution, or turn, in a circular accelerator to the next. In

this equilibrium case, the beam in an electron accelerator can be well approximated

with a Gaussian distribution of particles in position and angle in each dimension.

A Gaussian beam is thus well described by its beam sizes.

Energy Spread

The beam’s spread in energy is another important beam parameter and is con-

sidered specifically here. The beam has a certain average energy, E0, but the

individual electrons that make up the beam are free to move independently. De-

pending on a particle’s z coordinate, it will be at a different longitudinal position
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in the beam when it reaches the RF cavities than another particle,a particle will

therefore arrive at a different phase of the accelerating wave than another particle.

From Equation 2.3 it is clear that particles will gain a different amount of energy

based on their distance from the center of the beam. Thus, the energy of each

particle in the beam is slightly different from E0 by ∆E allowing particles to be

described by their fractional energy deviation, δ = ∆E/E0. The distribution of

energy deviations in the beam forms a spread in the total beam energy given by

σδ.

Tunes

The change in phase of the betatron oscillation is another way that the bulk beam

behavior is described in a circular accelerator. The difference in the betatron phase

over one complete ring revolution is called the tune of an accelerator and is given

by Q, where:

Q =
∆ψ

2π
=
ψ(s+ L) − ψ(s)

2π
. (2.5)

The tune gives the number of betatron oscillations a particle undergoes per revo-

lution. In the transverse dimension these are called the betatron tunes, horizontal,

Qx, and vertical, Qy, and longitudinally this is the synchrotron tune, Qs. The

betatron and synchrotron tunes are determined by the strength of the magnets

and the cavities, which are set so that the accelerator will operate at a specific set

of tunes that is called the ring’s called the operating point

If the operating tunes of an accelerator are not chosen carefully, magnetic field

errors can create a resonant build-up in the betatron oscillation that leads to

particles loss. The simplest example of this resonance condition is if Qx = 1, in this

case a particle could experience a magnetic field error at the same betatron phase
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on every turn. The kick corresponding to that field error would be in the same

direction and would grow with each successive turn until the particle amplitude is

large enough to hit an aperture and be lost [1]. Horizontally and vertically coupled

resonances also exist between the betatron tunes if

mQx + nQy = p, (2.6)

where m, n, and p are all integers. The strength of the tune resonances are given

by the order which equals |m| + |n|.

Plotting the horizontal against the vertical tune gives a plane of possible oper-

ating conditions for the accelerator. In this tune plane, the coupled resonances are

shown as intersecting lines of potentially damaging accelerator performance that

accelerator operators learn to avoid (Figure 2.4).
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Emittance

To gain further information about the distribution of particles in the beam, the

position of every particle can be plotted in position-angle phase space. In phase

space, the area of the particle distribution is an invariant in a conservative system

and is called the beam emittance, ε, given by:

εx =
√

〈x2〉〈x′2〉 − 〈xx′〉2. (2.7)

The position and angle of individual particles change around the accelerator, but

only in such a way that the area of the entire distribution is conserved. The

emittance of the beam is defined for each dimension (for example plotting the

horizontal position of each particle against its horizontal angle gives the horizontal

emittance, or εx, see Figure 2.5). The emittance of the beam can change over time,

but only through non-Hamiltonian processes, processes that add or remove energy.

Non-Hamiltonian processes that the beam can undergo, resulting in an increase or

decrease in emittance, include acceleration, radiation, and hitting a target or wall.

Acceleration is ubiquitous in particle accelerators, so the fact that an accel-

erating beam has a constantly changing emittance makes characterizing a beam

based on its emittance less useful. To overcome this, a new variable is introduced,

the normalized emittance, which is equal to γ× ε. Here, γ is the relativistic factor

given by:

γ =
1

√

1 − v2

c2

. (2.8)

The normalized emittance is the normally defined emittance multiplied by γ which

depends on the beam energy in the same way that the emittance does. Thus, as

a particle beam is accelerated, its emittance (ε) decreases by a factor of γ, but its
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in horizontal position-momentum phase space.

normalized emittance (γε) remains constant.

Physical and Dynamic Apertures

As the beam of charged particles moves through a lattice of electric and magnetic

elements, it is contained in a metal pipe, called the beam pipe. The beam pipe

goes around the whole circumference of the ring or down the entire length of the

linac and has a transverse opening on the order of a few inches. If an accelerated

particle grows to a large enough amplitude to come in contact with the beam pipe

(for example, when it hits a tune resonance), it will be scattered by the atoms in

the metal pipe and become lost from the accelerated beam.

Thus, the physical beam pipe sets a limit on the maximum amplitude of a

surviving particle and is called the physical aperture of an accelerator (see Fig-

ure 2.6). The physical aperture is typically smallest in sections of the lattice where

the source of the magnetic or electric field needs to be very close to the center of

the beam pipe and therefore, the beam pipe has to be very narrow. The physical
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region). A particle is lost when it hits the beam pipe.

aperture can also narrow around collimators which are located inside the beam

pipe in order to protect sensitive magnets from intense radiation damage (see Sec-

tion 2.4.1). It is these aperture-limiting locations in the ring which define the

physical aperture and set the maximum beam sizes and emittances that can be

safely accelerated without losing any particles.

The physical aperture is the actual point of beam loss in the accelerator but,

in reality, particles traveling at smaller amplitudes cross a non-physical boundary

where they start to grow uncontrollably until they hit the physical aperture. The

boundary between a stable, stored particle trajectory and an unstable one that

will grow very fast and be lost defines the dynamic aperture of the accelerator (see

Figure 2.6). The dynamic aperture typically is a poorly defined, jagged boundary

determined by the combination of all of the position-dependent magnetic field

errors in the ring, which can resonate with the tune of the beam and drive particles

to larger and larger amplitudes depending on their initial positions.
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2.4 Physics Examples

Depending on its regime of operation, different physics phenomena dominate the

performance of a particle accelerator at different times. When a realistic treat-

ment of the physics is included, a beam’s emittance can grow or shrink, its tune

can vary, the beam can blow up and be lost on the physical aperture, or any num-

ber of other productive or unproductive results can occur. Three specific physics

phenomena present in a typical particle accelerator are given below in an attempt,

not to complicate the discussion, but to examine particle accelerators in a realistic

manner.

2.4.1 Radiation

When charged particles accelerate they radiate, and particles bending through a

circular accelerator are continuously accelerating and thus radiating. The emission

of radiation from circulating particles was discovered at a synchrotron accelerator

and because of this it is called synchrotron radiation. Synchrotron radiation comes

in a range of frequencies from x-rays to infrared and can be useful for scientists

performing x-ray crystallography or using other beam-imaging techniques. In fact,

some circular accelerators are dedicated to the production of synchrotron radiation

for use by physicists, chemists, biologists, and materials scientists; these accelera-

tors are called light sources [1].

For other types of circular accelerators, synchrotron radiation can be a nuisance,

as the emitted photons take away some of the beam’s energy and momentum. The

total beam energy lost due to radiation in one turn is determined by the energy of

the beam and the strength of the magnetic field doing the bending. This can be
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combined to give [2]:

U0 =
q2c2

2π
CγE

2
0

∮

B2(s) ds, (2.9)

the total beam energy radiated in one turn, where Cγ = 8.8460× 10−5 m ·GeV−3,

E0 is the energy of the beam, and the magnetic field, B depends on s and must

be integrated around the whole lattice. Plugging equation 2.2 into this expression

gives:

U0 =
Cγ

2π
E4

0I2, (2.10)

where:

I2 =
∮

1

ρ2
ds. (2.11)

The radiated energy loss is cast in this form to pull out the variable I2 which is the

second of five integrals of fundamental lattice parameters, such as the bending ra-

dius, that can be used to describe the important impacts synchrotron radiation has

on the beam. Thus, by increasing the energy of the beam, increasing the strength

of the dipoles, or equivalently reducing the circumference of the accelerator, more

energy is lost per turn. However, the effects of synchrotron radiation are more

than simply lowering the energy of the particle beam, and it is these effects which

will be discussed further.

Quantum Excitation

Another consequence of synchrotron radiation comes from the fact that photons

are quantum mechanical entities. The timing and energy of emitted photons is

random, so each particle loses a slightly different amount of energy when it ra-

diates. Since the magnets in accelerators produce different forces for particles at

different energies, the trajectory of a particle through an accelerator depends on its

energy. The dispersion of the accelerator measures the energy dependent nature
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of the trajectory, so a region with zero dispersion produces the same trajectory

for particles of all energies. The biggest source of dispersion in accelerators is the

large number of horizontal dipole magnets which bend particles through an angle

that depends on their energies.

If synchrotron radiation is emitted in a region of the accelerator where the dis-

persion is non-zero, then the trajectory of the beam will change after the emission

of radiation. Horizontal dispersion coming from the bending magnets can result

in the horizontal beam size, horizontal emittance, and energy spread increasing

after the emission of radiation from the entire distribution of particles. Because of

the quantum generated growth of the beam emittance, this phenomenon is called

quantum excitation and has a larger effect when the radiation is emitted in a region

of the accelerator with significant dispersion [3].

Since the bending magnets in accelerators are typically only horizontal, quan-

tum excitation affects the vertical dimension at a much smaller level. Excitation

of the vertical emittance comes from the fact that the radiation emitted by an

electron as it bends through the horizontal plane is emitted into the vertical plane

as well. This is because radiation is emitted into a cone that points in the forward

direction and opens into the x and y-planes with an opening angle of 1/γ. This

quantum mechanically driven process sets the minimum vertical emittance achiev-

able, but this minimum is extremely small and often can be taken as essentially

zero.

Radiation Damping

Since the goal of a particle accelerator is to raise the beam to a desired energy,

the energy lost to synchrotron radiation will have to be restored with the RF
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Figure 2.7: Schematic diagram of the reduction in horizontal and longitudinal
momentum coming from photon emission in a dipole followed by energy gain, in
the form of longitudinal momentum, in a RF cavity.

cavities. The interplay of the emission of radiation in a dipole and the gain in

energy from an RF cavity is another important physical phenomenon, as it can

change the beam emittance. When an electron travels on a curved path through

a dipole and emits a photon, the photon travels tangentially to the path of the

electron, with momentum in the tangential direction. For example, if the electron

is traveling around a horizontal curve in the +z and +x direction, the photon will

have momentum +pz and +px, while the electron’s momentum will change by −pz

and −px (see Figure 2.7).

The energy of the electron will be restored as soon as it passes through the next

RF cavity, but since the cavity uses a longitudinal electric field to accelerate the

electron it will regain all of its energy in the form of +pz. The result is that the

particle’s energy will be unchanged from before the emission of a photon to after

passing through an RF cavity, but the ratio of Px to Pz of the electron is reduced
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(px3 < px2). This mechanism is called radiation damping since the emittance of

the beam will be reduced, or damped, by the continual reduction in each electron’s

horizontal momentum. Since the vertical orbit of the particle is also undergoing

betatron oscillations, the electron’s momentum can also change by −py after a

photon is emitted, resulting in vertical emittance damping as well.

Radiation Equilibrium

Synchrotron radiation reduces the horizontal and vertical beam emittances through

radiation damping and increases the horizontal beam emittance through quantum

excitation. The balance of these two effects is reached after the beam radiates in a

circular accelerator for thousands of turns. When these effects reach equilibrium,

the horizontal beam emittance is given by the equation [2]:

εx,rad = Cqγ
2 I5
JxI2

, (2.12)

where:

I5 =
∮

H

ρ3
ds (2.13)

and Cq = 3.8319 × 10−13 m. I5 is another of the synchrotron radiation integrals

and depends on the bending angle all the way around the accelerator and H, which

is a function of lattice parameters and is given by [2]:

H = γη2 + 2αηη′ + βη′2. (2.14)

In this expression, η is the dispersion, the energy dependent trajectory through

the accelerator, and η′ is the slope of the dispersion. Likewise, Jx is a function of

lattice parameters that includes the bending angle and the dispersion all the way

around the accelerator.
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If the accelerator does not couple the horizontal and vertical motion, then the

vertical beam emittance will damp to zero because quantum excitation is so weak

vertically that the radiation damping dominates the equilibration process. In re-

ality, however, an operating accelerator may have skew quadrupole magnets (a

quadrupole field rotated by 45 ◦) or quadrupoles and sextupole magnets that pro-

duce skew errors due to a misalignment in position or rotation. These skew terms

couple the horizontal and vertical planes together which means that the minimum

vertical emittance is coupled to and determined by the minimum horizontal emit-

tance. The coupling of the horizontal plane to the vertical plane can be made 0.5 %

or smaller by tuning the accelerator to reduce and compensate for the skew errors.

From the preceding sections it is clear that the total effect synchrotron radiation

has on the accelerated beam includes both radiation damping, quantum excitation,

and transverse coupling. A description of this effect in terms of the accelerator

lattice is clearly a complicated combination of the total amount of bending in the

ring, magnet misalignments, the beam energy, and the ring’s dispersion. These

ideas will continue to be discussed throughout this dissertation.

2.4.2 Magnet Nonlinearities

Deviations from ideal magnetic fields are another physical reality that complicates

the simplified picture of particle accelerators presented thus far. A dipole bends

all particles in the beam by the same angle, with a uniform magnetic field. But

a dipole only creates a uniform magnetic field near the center of the field region;

when the beam is far from the center of the magnet the edges of the poles produce

non-uniform fringe fields. If particles in the beam move to large displacements,

they can sample the non-uniform dipole field which can cause the particles to hit



25

the dynamic aperture.

Even in the center of the beam pipe, the dipole field will not be completely

uniform if the faces of the two poles are not perfectly smooth or exactly parallel.

Errors in the construction of a dipole magnet produce magnetic field errors that

can deviate from an ideal dipole field in such a way that the dipole can produce a

focusing field like that of a quadrupole. Additionally, errors in a dipole can produce

a field with components coming from even higher order magnets than quadrupoles.

These deviations are called the higher-order multipole field errors of a magnet.

Multipole field errors complicate the trajectory of a bunch of particles because

they alter each particle differently. Some types of field errors in the lattice depend

on the distance the particle is displaced from the center of the beam pipe and

others depend on the energy of the particle. The cumulative effect of these errors

can result in a shrinking of the dynamic aperture [1].

A small dynamic aperture is not desired for a high-performance accelerator

so physicists attempt to design the lattice to mitigate these multipole field er-

rors. This is done with additional magnets: quadrupoles can be used to correct

the quadrupole-order multipole errors coming from the dipoles, sextupoles can be

used to correct the sextupole-order errors on dipoles and quadrupoles, and so on.

However, this correction method can be difficult and never completely eliminates

all field errors, so higher-order multipole errors are still a critical challenge that

must be overcome to achieve successful accelerator operation.

2.4.3 Beam Interactions

There are more electromagnetic sources in particle accelerators than just magnets

and RF cavities. The beam itself is an electromagnetic source, a very large one in
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fact. Even though the charge of each particle is weak, because there are so many

particles, the interaction of a beam with itself or with any other beams nearby

can be strong enough to alter the trajectory and behavior of the beam. This

type of interaction is called a collective effect since it involves all particles in the

beam working together; examples include the beam-beam interaction, the fast ion

instability, electron cloud, and space charge.

Space Charge

The electromagnetic repulsion of similarly charged particles can act within a single

beam in a process called space charge [3]. Space charge involves both the electric

and magnetic fields of a moving bunch of similarly charged particles. In this situ-

ation, the electric field produces a repulsive force and the magnetic field produces

an attractive force. The question of whether or not space charge will blow-up

the beam size becomes a question of which force is stronger. At high energies, the

beam is traveling near the speed of light and the magnetic field’s force balances the

electric field’s force. But at low energies, the velocity is smaller and the magnetic

field’s force becomes weaker than that of the electric field. Thus, when the particle

beam is at low energy, space charge can be a potentially damaging phenomenon,

especially when the beam size is already very small.

Beam-beam Interaction

The electromagnetic attraction of oppositely charged particles can act between two

beams in a process called the beam-beam interaction [3]. In the case of electrons

and positrons traveling in opposite directions in the same beam pipe, the beam-

beam interaction works to pull the two beams together. This can be beneficial
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when you want the beams to collide and the beam-beam interaction enhances

the collision. However, if you want the two beams to pass closely by each other

without interacting, the beam-beam interaction can pull the two beams together

and deviate their trajectories, resulting in shrinking dynamic aperture limits and

particle loss.

Fast Ion Instability and Electron Cloud

There is another interaction involving the beam and any stray particles in the beam

pipe that are attracted to the beam and become collected around and behind the

beam. When a bunch of electrons passes a point in the accelerator, it can attract

positively charged ions nearby which collect behind the electrons and form an

ion cloud in the path of the next bunch of electrons. This is called the fast ion

instability [3] because the ion cloud will cause the electron trajectories to become

unstable very quickly, resulting in a blow up of the beam emittance if the ions are

not removed.

For positrons, radiated photons hit the metal beam pipe wall and eject electrons

which will be attracted to the positively-charged core of the positron beam. Again,

the undesired particles (in this case the electrons) congregate in the center of the

beam pipe and blow up the emittance of subsequent bunches because they can

be excited and produce their own electromagnetic fields. Since, in this case the

bothersome particles are electrons, this is called an electron cloud [3].

2.5 Accelerators in Elementary Particle Physics

The tools and examples given above can be used to understand and describe the

operation of particle accelerators in general, regardless of their specific applica-
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tions. But more detailed examinations of the design and performance of particle

accelerators do depend on their specific applications. Some users of particle accel-

erators want beam sizes as small as possible, while other accelerator users might

only care about the final beam energy and no other beam parameter matters for

their needs. Thus, the examination of particle accelerators in this dissertation

must focus on the specific application relevant here: high energy accelerators used

for elementary particle physics experiments.

Elementary particle physics is a branch of physics that studies the fundamental

building blocks of the universe and how they interact. The present paradigm of

elementary particle physics sets the smallest subatomic particles as the indivisible

electron, five related leptons, and six quarks. However, as elementary particle

physicists sit at the start of the 21st century they are bound by the explorer’s

spirit of their predecessors, to ask “Are these twelve particles truly indivisible?”

Particle accelerators, and the physicists who construct and operate them, have

been and will continue to be crucial to the hopes of elementary particle physicists

to answer this question or to discover some other paradigm-altering particle or

force. This is because of the famous equation set forth by Albert Einstein:

E = mc2, (2.15)

which says that a particle’s energy, E, is related to its mass, m, by a factor of the

speed of light squared. This means that if physicists can generate a tremendous

amount of energy with a particle accelerator and somehow release that energy,

it will transform into a particle of matter with mass as determined by Einstein’s

equation.

For the past century, particle accelerators have accelerated beams of particles

like electrons, e−, positrons, e+, protons, p+, and anti-protons, p−, to high energy
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and then directed them into a target where the collision releases enough energy to

create new elementary particles for discovery and study. The target used in these

“particle collider” experiments can be either solid objects of matter (a block or

sheet of some pure element) or another beam of the same or different species of

particles coming from the opposite direction.

In a circular accelerator this can be as straightforward as sending the second

beam through the same lattice, but in the opposite direction as the first beam,

and steering them into collision when desired. In such an accelerator the beams

collide at a specific s-coordinate called the interaction point, or IP. The energy

released during collisions at the IP is equal to the total energy in the center of

mass system and equals the sum of the energies of the two beam, Etotal = ECOM =

Ebeam,1 + Ebeam,2.

Using a linear accelerator to create a high energy particle collider is a more

challenging operation. That is because two linear accelerators must be pointed

directly at each other so that the first beam exits its lattice at exactly the same

time as the second beam exits from the other side and the two beams must then

collide in the center.

For particle physicists to continuously search for unseen particles more massive

than those already discovered, accelerator physicists must begin designing a new

maximum energy accelerator before the accelerator that will replace the current

energy frontier accelerator is even operational. Currently, the plan is for the next

high energy accelerator to be a 0.5 TeV e+e− straight-line colliding accelerator

called the International Linear Collider. The International Linear Collider will

complement the p+p+ collisions at the Large Hadron Collider [3], which is a circular

collider at 14 TeV that will, upon completion in 2007, supersede the currently
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operational energy frontier accelerator: the Tevatron [3], a 2 TeV p+p− circular

collider. The International Linear Collider is the focus of this dissertation and will

be covered in more detail in subsequent chapters.



Chapter 3

The International Linear Collider
The historical progression to higher energy particle accelerators has taken us to the

next generation energy frontier machine, the International Linear Collider (ILC).

The ILC will send a beam of electrons and a beam of positrons down two 10-mile

linear accelerators that will accelerate them to an energy of 250 GeV and then

collide them at a total energy of 500 GeV. The ILC is proposed to be constructed

and operational sometime in the 2010’s and is currently in the design phase as

several research and development challenges still remain [4, 5].

3.1 Overall Design

The ILC is a 20 mile long complex of particle accelerators (see Figure 3.1). The

entire ILC includes sources of electrons and positrons, components to manipulate

the electron and positron beams, the main linear accelerator to raise the beam

energy to 250 GeV, and final components that are used to efficiently collide the

electron and positron beams coming from either side of the ILC.

Elementary particle physicists have specified the main features of the ILC’s

Figure 3.1: Site layout of the International Linear Collider.
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Table 3.1: Beam parameters in the ILC.

Beam energy 250 GeV

Particles per bunch 2 × 1010

Bunches per train 2820

Trains per second 5 Hz

γεx at the IP 10 µm · rad

γεy at the IP 0.04 µm · rad

design so that it will complement the physics that will be studied at the Large

Hadron Collider (LHC) [6]. To produce collisions that would complement the

research conducted at the LHC, the ILC must accelerate thousands of bunches

each with billions of particles and collide them at extremely small emittances (see

Table 3.1). However, complementing the LHC with the ILC will not be easy

since a single-pass linear machine presents unique advantages and disadvantages

as compared to a multi-turn circular accelerator.

The Stanford Linear Collider (SLC) [7] was a linear collider that operated

during the 1990’s but it differed in a number of respects from a full-fledged linear

collider (see Table 3.2). Compared to the SLC, the ILC will accelerate beams 100

times more powerful, focus them 10 times more tightly, and achieve 10,000 times

the collision rate. The challenges and risks increase greatly for a linear collider in

this parameter range, thus the SLC can only be considered a proof-of-principle for

the linear collider concept. As the first ever truly linear high energy collider, the

ILC will forge new ground in advanced particle accelerator design and operation.
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Table 3.2: Comparison of beam parameters in the SLC and ILC.

SLC ILC

ECOM (GeV) 100 500-1000

Pbeam (MW) 0.04 5-20

σy at the IP (nm) 50-500 1-5

L (1034 cm−2s−1) 0.0003 2

3.1.1 Energy and Particle Species

Collisions of 250 GeV beams are theoretically predicted to be sufficient to either

unveil the Higgs boson and supersymmetric particles or to restrict the possibility

of their existence at this energy range. If the LHC has already found the Higgs

boson and supersymmetric particles, or excluded their existence at this energy

range by the time the ILC turns on, then the ILC will still be useful because it

will use different particle species than the LHC. With electrons and positrons, the

ILC will produce much cleaner collisions than the proton collisions at the LHC.

This will allow physicists using the ILC to make measurements that will surpass

the precision of those same potential measurements at the LHC [8].

3.1.2 Why A Linear Machine?

The motivation for using a linear instead of a circular accelerator in this energy

range does not have as much to do with the advantage of a linear machine as it

does the disadvantage of a circular machine, which–simply stated–is its cost.

To accelerate a beam to its target energy in a circular accelerator, RF cavities

must replace the energy the beam loses during the emission of synchrotron radi-
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ation. At the energy range of previously built electron accelerators, the energy

removed by photons emitted from a circular accelerator is minimal. But at high

beam energies, replacing the lost energy is non-trivial because the amount of en-

ergy lost increases with the 4th power of the beam energy. The power radiated by

a beam of N particles with an energy corresponding to γ, bending in a curve of

radius ρ is given by the following equation [1]:

Prad =
c

6πε0
N
q2

ρ2
γ4. (3.1)

This equation explains why radiation is not a factor in the operation of proton

accelerators, because for electron and proton beams of the same energy, γe− is two

thousand times larger than γp+.

This equation also suggests that at a very high electron energy, the amount of

power radiated in a circular machine of reasonable size will be on the order of the

total beam energy. Therefore, replacing this energy with the RF cavities will no

longer be cost-effective. The largest circular electron machine ever built was the

Large Electron Positron (LEP) ring at CERN which was a ECOM = 180 GeV e−e+

ring with a circumference of 27 km. Using Equation 3.1 on LEP, the synchrotron

radiation power corresponds to an energy loss of 4 GeV on each turn, or 2 % of the

total beam energy [9]. The cost of enough RF cavities to restore 4 GeV on each

turn was not insignificant and would only become worse if LEP were upgraded

to higher energies. Thus, LEP provided a practical upper limit to the energy

of a circular electron accelerator. However, with a linear accelerator there is no

synchrotron radiation and the excessive cost of overcoming the radiation losses can

be avoided even at high energy. Thus, it is clear that any electron accelerator with

a higher energy than LEP will have to be linear.
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3.1.3 Luminosity

In addition to the total energy and species of the colliding particles, the ILC must

meet another important output parameter to be useful to the experimentalists

searching for the Higgs boson. Because of the extremely low probability of elec-

trons and positrons interacting to produce a previously unobserved particle or

phenomenon, maximizing the collision rate, or luminosity, will be critical for the

discovery of any new particles. To discover the extremely rare particles physicists

have not seen yet requires maximizing the beam energy, as well as the number

of interactions, so that the low probability per interaction will still result in a

measurably significant discovery.

The number of particles in each beam, how frequently the particles pass through

the IP, and how densely the beam is packed all combine to define the luminosity.

For Gaussian beams, the luminosity in a linear collider can be approximated by

the following equation [1]:

L =
nbN

2frep

4πσxσy

HD, (3.2)

where nb is the number of bunches per train, N is the number of particles per

bunch, frep is the number of trains per second, σx,y are the horizontal and vertical

beam sizes, and HD is the beam-beam enhancement factor.

The total rate of physics events that take place inside the experimental detector

is given by the number of interactions per second:

R = Lσ, (3.3)

where L is determined by the performance of the particle accelerator and the cross-

section, σ, is theoretically defined for each type of particle interaction. Both the

instantaneous and the integrated luminosity (total L over the machine’s lifetime)
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must be maximized in order to have a large event rate and a chance of discovering

and studying a new elementary particle. In the hopes of discovering the Higgs

boson, the ILC has been designed with a peak luminosity of 2 × 1034 cm−2s−1,

which will produce 500 fb−1 of integrated luminosity over four years of operation.

Given Equation (3.2), the beam sizes must be extremely small to produce such

a high peak luminosity. In fact, to achieve the same luminosity in a linear collider

as a circular collider, the beam sizes must be 10,000 times smaller in a linear

collider. This is because the power loads in the main linac of a linear collider

limit the repetition frequency to a few Hz, which is 10,000 times smaller than the

revolution frequency of a circular collider [2].

The ILC, will achieve this luminosity by colliding 2820 bunches, each containing

2 × 1010 particles, five times per second. The beam-beam enhancement factor in

the ILC will be about 2, so the beam sizes at the IP will have to be on the order of

1 nm vertically and 1 µm horizontally. This presents a problem because the particle

source can only generate a beam with sizes on the order of 1 mm. Thus, the beam

must be focused by a factor of 106 from particle creation to particle collision.

Quadrupoles are a likely candidate to provide such a large factor of focusing;

however, extremely strong quadrupoles cannot be used to focus a millimeter-sized

beam down to nanometer-size because of the hourglass effect.

If the IP quadrupoles are so strong that the vertical β-function is shorter than

σz, then the vertical beam size will vary over the length of the bunch. This is

called the hourglass effect because of the hourglass or butterfly shaped distortion

it causes in the z − y distribution. If two hourglass-shaped beams were to collide

at the IP they would not intersect completely and the luminosity would drop. To

avoid this luminosity-limiting effect, the strength of the focusing magnets at the IP
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Figure 3.2: Schematic representation of the components of a basic linear collider.

must be small enough that βy ≥ σz. The bunch length at the IP will be 300 µm, so

the quadrupoles at the IP cannot be strong enough to provide βy < 300 µm. This

requires the ILC to keep the whole phase space of the beam small and not just use

quadrupoles to focus the beam, which is essentially just trading off between the

beam’s spread and its divergence. Thus, small beam emittances are crucial for the

ILC to achieve its design luminosity.

3.2 Description of Operation

The International Linear Collider is composed of a number of individual parti-

cle accelerators and accelerator components that the electrons and positrons pass

through in sequence (see Figure 3.2). The first of these components is the source

which creates the electron and positron beams in tight groups, or bunches, of par-

ticles. The newly created electrons and positrons leave the source and travel to the

damping ring which makes the bunches useful for collision by reducing their size

and optimizing their timing. Coming out of the damping ring, the bunches travel

to the bunch compressor, which, like the damping ring, modifies the bunches to

make them ideal for maximum L collisions, in this case by shrinking their length.
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The main linear accelerator, or main linac, is next in the chain of accelerators

and it is the longest part of the ILC; it is made up of 10 miles of repeating sections

of RF cavities to accelerate the beams and quadrupoles to focus the beams. The

two main linacs are the most crucial pieces of the entire ILC and drive many of

the design considerations for the rest of the machine. For example, to minimize

the power load on the RF cavities in the main linac, the entire ILC cannot cycle

faster than five times per second. Therefore, to achieve the desired luminosity,

every other component in the ILC must be designed to handle more particles per

bunch, more bunches per train, and the stronger collective effects that come with

such a high beam current.

The beam delivery and final focus systems are the last machine sections before

the interaction point where the electrons and positrons meet and annihilate. The

beam delivery system collimates the beam at its final energy before it passes into

the final focus system where the beam is squeezed as tightly as possible without

driving the hourglass effect just before it collides at the IP in the center of the

experimental detector.

Going through each of the sections of the ILC to accelerate a beam of elec-

trons to 250 GeV while creating and preserving the many beam parameters which

ultimately produce the target collision luminosity is a challenging task. Doing it

twice, the second time with positrons, is even more difficult.

3.2.1 Operational Challenges

The challenge of accelerating two useful beams to 250 GeV translates to very strin-

gent target values for many parameters of the particle beams, and achieving these

parameters means that each section of the ILC faces demanding performance re-
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quirements. For example, the energy spread of the beam must be kept small enough

so that energy-dependent nonlinear effects in the damping ring or bunch compres-

sor are not strong enough to blow up the beam. This means that the positron

source must produce as many positrons as possible all at the same energy. In

addition, achieving the precise bunch timing required to ensure collision at the IP

demands that the elements that extract the beam from the damping rings turn on

and off very quickly and cleanly.

As the beams continue through the ILC, they must maintain their very small

emittances. This means that effects which can increase the emittance must be min-

imized otherwise they can build up over 10 miles of linac and push the emittances

over the γεx = 10 µm · rad, γεy = 0.04 µm · rad values required for a luminosity of

2×1034 cm−2s−1. Keeping the emittance low throughout the main linac means that

the alignment of the quadrupoles and RF cavities in the linac must be extremely

precise. In addition, after the main linac the beams must be kept focused so that

any clouds of particles that drift outside the core of the beam do not travel all the

way to the IP and damage the sensitive experimental detector. This requires colli-

mators in the beam delivery system that are strong and durable enough to scrape

away the large amplitude particles and also unobtrusive enough to not hinder the

performance of the experimental detector.

To minimize the total amount of energy required to accelerate 2820 bunches of

2 × 1010 particles to 250 GeV, the RF cavities in the main linac will be made of

niobium which becomes superconducting when cooled to 4.2 K. Superconducting

niobium cavities allow the accelerator to efficiently transfer power to the electrons

with minimal losses and so will save money on the total power bill of the accelerator.

Before the International Linear Collider was proposed as a superconducting
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linear accelerator, there was another collaboration that was proposing this same

technology. Based at the German Electron Synchrotron, Deutsches Elektronen-

Synchrotron (DESY), the TeV-Energy Superconducting Linear Accelerator (TESLA)

collaboration also used superconducting niobium RF cavities [10]. Once the ILC

collaboration was formed, efforts to construct TESLA ended, as did those of an-

other proposed linear collider, the Next Linear Collider (NLC) [11]. The design

of the ILC has been separate and distinct from that of TESLA; however, much of

the knowledge and experience gained from designing TESLA, as well as the NLC,

has been applied to producing a design of the ILC which minimizes its operational

challenges.

3.3 Principles of Design

The design of the ILC is quite complex given the strict performance requirements

on each individual component of the entire 20 mile accelerator. To optimize the

design of the ILC, each piece must be studied as thoroughly as if it were its own

particle accelerator. Since the ILC is a linear, single-pass machine, each component

is most directly impacted by the component immediately preceding it and most

directly impacts the component immediately following it. For example, the design

of the main linac can be decoupled from other challenges by merely specifying the

expected beam parameters coming from the bunch compressor preceding it and

the goal beam parameters set by the beam delivery system following it.

This has been a complex and time-consuming process involving a collaboration

of international scientists, professors, and students. The technical design of the

ILC is currently being finalized by the international community as further studies

reveal new problems and additional challenges to the ILC’s successful design and



41

operation [5]. Additionally, the specific details of design for the ILC are continually

being modified in order to minimize the total cost. One way the ILC is being

designed to minimize cost, as well as technical risk, is by using the knowledge and

experience gained from the particle accelerators successfully operating all over the

world, including concepts that were developed for TESLA.

The focus of the rest of this dissertation will be on the two damping rings in the

ILC. At the conclusion of this dissertation, cost-optimized conceptual design will

be proposed for one specific component of the ILC damping rings, the wigglers.



Chapter 4

The ILC Damping Rings
Synchrotron radiation is beneficial in circular colliders because the radiation damp-

ing process takes transverse momentum away from the beam, shrinking the hori-

zontal and vertical beam emittances. The automatic generation of small emittance

beams in circular colliders is crucial to the production of high luminosity collisions

with small vertical and horizontal beam sizes as shown in Equation 3.2. However,

since the luminosity benefit comes from bending, the ILC will not have any emit-

tance damping without a dedicated circular accelerator in which the beams can be

temporarily stored.

This is the purpose of the damping rings in the ILC. The damping rings, two

several km circumference rings that store electrons and positrons separately at a

few GeV, are the only circular accelerators in the entire ILC. The ILC damping

rings are designed so that the synchrotron radiation processes damp the beam from

a large injected emittance coming from the particle source to a small extracted

emittance beam that travels to the IP.

As long as the damping rings are inserted into the low energy end of the ILC

complex, the emitted synchrotron radiation will be more beneficial (by providing

small emittance beams) than harmful (by raising the cost of the RF system).

Assuming that the ILC components downstream of the damping ring can maintain

the small emittance beams, then a low energy circular accelerator is a required

component of a successful high energy linear collider.

42
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Table 4.1: Target emittance values in the ILC.

Horizontal Vertical

γε at the positron source: 0.01 m · rad 0.01 m · rad

γε at extraction from the damping rings: 8 µm · rad 0.02 µm · rad

ε at extraction from the damping rings: 0.80 nm · rad 2 pm · rad

γε at the interaction point: 10 µm · rad 0.04 µm · rad

4.1 Description of Operation

The damping rings are circular accelerators that the electron and positron beams

are stored in for a few thousand turns, long enough for synchrotron radiation

damping to reduce the vertical beam emittance by a factor of 106. This factor is

set by the demand for small emittance at the IP and the inability of the particle

sources to generate a bunch of 20 billion particles with a small enough emittance

(see Table 4.1).

The normalized vertical emittance generated at the positron source is 0.01 m · rad

and the normalized vertical emittance required at the IP to generate L = 2 ×

1034 cm−2s−1 is 0.04 µm · rad. However, to provide 0.04 µm · rad at the IP, the

damping rings actually need to achieve an emittance below that value to provide

a safety margin that allows for 100 % emittance growth in the main linac. Thus,

to achieve the target luminosity the damping rings will use radiation damping

and very low transverse coupling to reduce the electron and positron beams to

γεx = 8 µm · rad and γεy = 0.02 µm · rad.

The challenge in achieving these small emittances is that the entire beam has

to damp fast enough to allow the whole machine to cycle fives time per second.
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Table 4.2: Target beam parameters of the ILC damping ring.

Pulse repetition rate, frep 5 Hz

Number of particles/bunch, N 2 × 1010

Nominal number of bunches, nb 2820

Maximum number of bunches 5640

Maximum injected emittance 0.09 m · rad

Maximum injected energy deviation ±0.5%

Target extracted γεx 8 µm · rad

Target extracted γεy 0.02 µm · rad

Extracted rms bunch length, σz 6 mm

Extracted rms energy spread, σδ 0.13%

That is 2820 bunches of 2 × 1010 particles per bunch being damped to µm-scale

emittances every 200 ms. In addition, the damping rings must provide more beam

parameters than just the emittances (see Table 4.2). All of the beam parameters

in the damping rings have been specifically chosen to mitigate challenges coming

from inside the damping ring (like collective effects, dynamic aperture, and radi-

ation damping) and from the interface of the damping ring with other machine

components (like the sources, bunch compressor, and main linac). The challenges

which dictate the performance requirements of the damping rings will be given in

the following sections.

4.1.1 Challenges Arising From Collective Effects

The beam current will be quite large, 400 mA, making the ILC damping rings

susceptible to a number of collective effects. Electron cloud is a concern in the
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positron damping ring and the fast ion instability will cause problems in the elec-

tron damping ring. This is because both beam interactions could increase the

beam emittances. Mitigating the emittance increases caused by these instabili-

ties requires a large spacing between the bunches in the damping ring to give the

electron and ion clouds time to dissipate before the next bunch arrives. Thus, the

desire to avoid collective effects motivates designing a large circumference damping

ring [12].

4.1.2 Challenges Arising From The Bunch Compressor

Another challenge to the operation of the damping ring arises when the quality of

the damping ring’s extracted beam is coupled with the performance of the bunch

compressor. The damping rings need to output bunches that are short enough and

small enough in energy spread that the bunch compressor can accept them. The

bunch compressor is designed to accept a particle distribution long in longitudinal

position (σz = 6 mm) and small in longitudinal spread (σδ = 0.15 %). It will

then manipulate the distribution and return a beam with a short bunch length

(σz = 300 µm) and large energy spread (σδ = 1.5 %). However, without a careful

design, nonlinear dynamics and collective effects in the damping ring will increase

the bunch length and energy spread, greatly increasing the costs and risks of the

bunch compressor.

4.1.3 Challenges Arising From The Main Linac

The performance of the main linac also dictates parameter requirements in the

damping ring. The main linac accelerates a train of 2820 bunches with 337 ns

between each bunch. For that bunch train to fit as is in the damping ring would
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require a 285 km circumference ring. An alternative approach is to compress the

bunch train in the damping ring by injecting and extracting bunches individually,

as opposed to the whole train at once, thereby using the injection and extraction

kickers to specify a bunch spacing below 337 ns in the damping ring.

The damping ring kickers are further challenged by the timing requirements in

the ILC which require that bunches be extracted from the damping ring in a non-

sequential order. This means that the extraction kicker must be at peak field to

eject one bunch and at zero field to not disturb the very next bunch. Thus, the time

the extraction kicker takes to rise to peak field and fall to zero sets the minimum

spacing between bunches in the damping ring. So the smaller the circumference

of the damping ring, the smaller the spacing between bunches, and the faster the

extraction kicker must turn on. Conventional technology kickers can provide a 20 ns

rise-time without too much risk; this would correspond to 2820 bunches fitting in

a 17 km circumference ring. However, proven technologies have not advanced to a

level where fast rise- and fall-time kickers are available that produce a field smooth

enough to cleanly extract a bunch at the strength and rate required in the ILC

damping ring. So like the collective effects, the technical challenge of the extraction

kicker motivates a large circumference damping ring [12].

4.2 Acceptance

Like the bunch compressor and the main linac (which are sequentially after the

damping ring), the particle source (which is sequentially before the damping ring)

also constrains design requirements for the damping rings. This is because the

damping rings need to be designed to accept and store as many particles as possible

from the electron and positron sources. Equation 3.2 shows that the final collision
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luminosity depends directly on the total number of particles in the bunch, N .

Thus, to maximize L the damping rings should not waste any of the particles

coming from the source.

The ILC positron source will use synchrotron radiation photons to pair produce

electrons and positrons, and discard the electrons eventually leaving a beam of only

positrons. Unfortunately, this process will not produce a tight beam of positrons

and consequently the initial positron emittance will be very large, 0.01 m · rad.

Thus, the positron damping ring needs to have a large injection aperture to

accept the entire large emittance positron beam. Though the electron beam emit-

tance will not be as large as the positron beam when it is created, a large acceptance

for the electron damping ring is also required to provide the maximum possible

margin of error for operation of the ring. Without a large aperture electrons and

positrons will be lost, which is bad for luminosity and also bad for the damping

ring magnets that will get damaged by the radiation dose of the lost beam. Loss

of positrons can happen on the dynamic or physical apertures, so both need to be

large in the damping ring.

4.3 Damping Rates

In circular electron machines, synchrotron radiation damping and quantum exci-

tation counteract each other, with damping decreasing and excitation increasing

the beam emittance. The result is that the beam emittance is damped for many

turns until the excitation becomes strong enough to balance the damping, and

the two radiation processes equilibrate (see Figure 4.1). The final emittance a

beam damps to depends on the source’s injected emittance, εinj, and the lattice’s
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Figure 4.1: Reduction in beam emittance over time until radiation equilibrium is
reached.

radiation equilibrium emittance, εrad, and is given by [2]:

ε(t) = εinje
−2t/τdamp + εrad(1 − e−2t/τdamp). (4.1)

Here, τdamp is the damping time which is related to the energy of the beam and

the total amount of bending in the ring, given by:

τdamp ∝
1

E3I2
. (4.2)

Thus, to damp the beam faster requires raising the beam energy or increasing

the I2 integral by bending the beam in a smaller radius, similar to increasing the

energy loss per turn in Equation 2.9. Depending on the energy and circumference,

τdamp in electron accelerators ranges from 1,000 to 100,000 turns or more.

In the case of the ILC, the damping ring lattice is designed to produce a ra-

diation equilibrium horizontal beam emittance of γεx = 6 µm · rad and will be

aligned precisely enough to minimize skew fields and keep the transverse coupling

at about 0.3 % to achieve the desired extracted vertical emittance. Therefore,
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damping the vertical emittance from γεy = 0.01 m · rad at the positron source to

γεy = 0.02 µm · rad at extraction from the damping ring means that, from Equa-

tion 4.1, each individual electron and positron must be stored in the damping ring

for eight damping times. Given that the beams will only be stored in the damping

rings for 200 ms, the damping rings must be designed with τdamp = 25 ms.

To achieve such a short damping time, the ILC damping rings need to have a

lot of bending. This will generate the synchrotron radiation needed to allow the

beam to emit enough energy per turn to damp quickly. The easiest way to do this

is to have a very small circumference accelerator so that the radius of curvature

goes down and the revolution time is shorter. But the intrabeam instabilities and

extraction kicker requirements prohibit using a small circumference damping ring,

therefore the damping ring must meet τdamp = 25 ms with a large circumference

ring [12].

This requires that the accelerator must be equipped with dedicated synchrotron

radiation production components that increase the integral of 1/ρ2 without chang-

ing the overall circumference. A magnet that alternately bends the beam left and

right will do exactly this, generate a lot of synchrotron radiation and not change

the overall circumference or shape of the ring.

The wiggling trajectory of the beam through this type of magnet gives it its

name–it is a wiggler magnet. Wigglers are inserted in particle accelerators specif-

ically for the generation of a lot of synchrotron radiation. In the ILC damping

rings, hundreds of meters of wiggler magnets will increase the amount of radiation

damping and achieve τdamp = 25 ms in a large circumference damping ring. Wiggler

magnets are the focus of this dissertation and will be described more completely

in the following chapter.
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Figure 4.2: Site layout of the TESLA damping ring, showing the position of the
wigglers and RF cavities and the dogbone-like shape.

4.4 The TESLA Damping Ring

When the collaboration was formed to design the International Linear Collider, the

most complete damping ring design that met the majority of the ILC’s require-

ments was the one from the TESLA linear collider. Because of this, initial studies

of the ILC damping ring expanded on the experience and knowledge gained from

the TESLA damping ring.

The TESLA ring was a proposed 5 GeV machine that was designed with 20 ns

rise-time kickers, thus giving the TESLA damping rings a total circumference of

17 km [10]. To eliminate the need to dig 17 km of tunnel, the TESLA rings were

designed in a dogbone-like shape with the majority of the perimeter of the ring

being contained in the same tunnel as the main linac (see Figure 4.2). Additional

parameters of the TESLA damping ring design are given in Table 4.3.

A N -fold symmetric accelerator lattice is one where the magnet cells repeat N
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Table 4.3: Target beam parameters of the TESLA damping ring.

Damping time (ms) 28

Number of bunches 2820

Bunch spacing (ns) 20

Current (mA) 160

Extracted σδ (%) 0.13

Inj. Ext.

γεx,e+ (m · rad) 1 × 10−2 8 × 10−6

γεy,e+ (m · rad) 1 × 10−2 2 × 10−8

times; such a ring has the benefit that nonlinearities coming from the field in one

magnet can be canceled by the nonlinearities coming from the identical field in the

next repeating sequence. The cells that make up the TESLA dogbone shaped ring

do not repeat at all and this led researchers to be concerned over the possibility

of resonances in the tune plane making the TESLA ring less stable and harder to

operate.

Achieving a 25 ms damping time in the 17 km TESLA ring requires that the

beam radiate enough photons to lose 20 MeV of energy on every turn. With no

wigglers, the TESLA ring radiates 1.1 MeV per turn. Thus, in order to radiate

20 MeV per turn in a 17 km dogbone ring, the TESLA damping ring was designed

with 400 m of wiggler magnets. Using such a large number of wigglers to achieve

the damping time generated a lot of concern over the potentially poor performance

of the TESLA damping ring.

These performance issues were confirmed in dynamic aperture simulations which

show a small dynamic aperture without wigglers that is due to the asymmetric
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Figure 4.3: The TESLA dynamic aperture with and without wigglers in the lattice.
The 3σ curve encloses 99 % of the injected positrons.

shape of the ring, and an even smaller aperture with wigglers (see Figure 4.3).

The dynamic aperture in this plot is a computer simulation of the maximum in-

jected particle amplitude that is stable over one damping time. The dynamic

aperture target is 3 times the injected positron beam size so that over 99 % of the

injected particles will be stable at injection. With such a poor performance of the

TESLA ring even without wigglers, the design of the ILC damping ring required a

thorough reanalysis and reassessment of the TESLA damping ring design including

a comparison of the dogbone ring against all other candidate ILC damping ring

designs.

4.5 The Baseline ILC Damping Ring

By the time the ILC collaboration was formed, six damping ring lattices in addition

to the TESLA lattice were being designed. These additional lattices gave many

more options and potential for a comparison of the pros and cons of different
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Table 4.4: Details of the seven reference lattices used in the damping ring config-
uration studies.

Lattice Circumference Energy Lattice Layout

name (km) (GeV) style

PPA 2.82 5.00 π circular

OTW 3.22 5.00 TME racetrack

OCS 6.11 5.07 TME circular

BRU 6.33 3.74 FODO dogbone

MCH 15.94 5.00 FODO dogbone

DAS 17.01 5.00 π dogbone

TESLA 17.00 5.00 TME dogbone

types of damping ring designs. The seven damping ring designs covered a range of

beam energies, circumferences, magnet cell structures, and shapes (see Table 4.4).

Each of these damping ring lattices had merits, but they were difficult to compare

because each one was being designed by a different laboratory.

A detailed damping ring configuration study was undertaken to evaluate each of

the seven damping ring lattices using the same tools and procedures by a specified

team of scientists [13]. Each team evaluated every lattice on a different criterion.

Teams looked at the collective effects and instabilities, the dynamic aperture, the

magnet alignment sensitivities, injection and extraction considerations, and the

cost requirements of each lattice.

The result of this configuration study was a consensus design for the new base-

line ILC damping ring [13]. The baseline ILC damping ring was selected to keep

the TESLA damping ring’s beam energy (5 GeV) because it would provide a bal-
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Figure 4.4: Site layout of the baseline ILC damping ring (OCS), showing the
position of the wigglers and RF cavities.

ance between poor collective effects at a low energy and the difficulty of aligning

the magnets precisely enough to keep the emittance small at a high beam energy.

However, the baseline ILC damping ring deviates from the TESLA ring in its size

and shape, a more conventional 6 km circular shaped ring was chosen (see Fig-

ure 4.4). The 6 km circumference was chosen because it would provide a balance

between the expense of a large ring and the damaging collective effects of a small

ring.

Two lattices in Table 4.4 meet the specified energy and circumference require-

ments: OCS and BRU. The OCS lattice was chosen as a starting point for further

refinement of the baseline damping ring because its circular shape had a higher

degree of symmetry and resulted in a larger dynamic aperture than the dogbone-

shaped BRU lattice. Additional recommendations from the ILC damping ring con-

figuration study included using normal conducting electromagnets for the dipoles,
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Table 4.5: Injected and extracted beam parameters for the baseline ILC damping
ring.

Damping time (ms) 25

Number of bunches 2820

Bunch spacing (ns) 4-7

Current (mA) 400

Bunch length (mm) 6

Inj. Ext.

σδ (%) 1 0.14

γεx,e+ (m · rad) 1 × 10−2 8 × 10−6

γεy,e+ (m · rad) 1 × 10−2 2 × 10−8

quadrupoles, and sextupoles and superconducting 650 MHz cavities for the RF sys-

tem. Required and target beam parameters at the injection and extraction points

of the damping ring were also specified (see Table 4.5).

A 6 km circumference ring still requires the use of approximately 200 m of wig-

gler magnets to achieve γεy = 0.02 µm · rad in 25 ms. Though half as many wigglers

are needed than in the TESLA damping rings, wigglers are still a potentially chal-

lenging component of the ILC damping rings. The damping ring configuration

study investigated the available wiggler design options and recommended using

superconducting technology for the wiggler magnets. The motivation behind this

investigation and recommendation will be covered specifically in Section 6.3.
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4.5.1 Further Research and Development Requirements

The design of the baseline ILC damping ring has continued to be refined and

optimized as new challenges and risks are understood. For example, mitigating the

electron cloud is a very important challenge still remaining. In fact, if techniques

to actively remove the electron cloud between the tightly spaced positron bunches

in the damping ring are not developed, the positrons may have to be damped in

two 6 km damping rings at once to double the bunch spacing.

Designing an optimized wiggler magnet is another very important research

and development task for the ILC damping ring collaboration. The wigglers in the

damping rings have been specified as using superconducting technology, but wiggler

magnets can produce difficult beam behavior and can become very expensive if

they are not properly designed. Thus, with hundreds of meters of wigglers in the

damping rings, a well designed superconducting wiggler is critical for the minimized

cost and successful performance of the ILC and is the focus of the rest of this

dissertation.



Chapter 5

Wiggler Magnet Fundamentals
The uniform magnetic field of a dipole bends an electron beam in a circular arc,

resulting in synchrotron radiation being emitted tangentially from the beam’s path.

The alternating magnetic field of a wiggler produces synchrotron radiation similar

to that of a dipole; however, a wiggler does not bend the electron beam away from

its previous trajectory. Thus, wigglers can raise the amount of emitted synchrotron

radiation in a ring without changing the ring’s overall size and shape.

The increased production of synchrotron radiation by wigglers is used for a

variety of applications in different types of accelerators. For example, light sources

use wigglers (and their close relatives, undulators) to generate synchrotron radia-

tion for high-quality x-ray diffraction studies of biological samples. Alternatively,

damping rings and storage rings use the synchrotron radiation from wigglers to

alter the behavior of the electron beam. This is because, depending on how in-

dividual accelerators are designed and operated, wiggler generated radiation can

increase or decrease the energy spread and the horizontal and vertical emittances

of the particle distribution. In the International Linear Collider, the damping rings

will be precisely tuned to cause the wiggler radiation to reduce the beam’s emit-

tance, thereby increasing the collision luminosity and the chances of finding new

physics.

However, designing and operating wigglers that damp the beam’s emittance

in the ILC is challenging because of additional, non-desired features of wigglers.

Wiggler magnets produce complicated magnetic fields which makes it challenging

to design a wiggler that has minimal negative impact on the beam. Computer

57
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simulations are an important part of designing a wiggler as they help to determine

its impact on the beam before it is actually constructed. However, the generation of

a computer model of the wiggler is difficult given its complicated magnetic fields.

This chapter will describe the wiggler design and simulation challenges and the

techniques used to overcome these challenges.

5.1 What are Wigglers?

Wigglers are composed of a series of alternating north-pole/south-pole dipole mag-

net pairs which oscillate the beam’s trajectory (see Figure 5.1). The vertical mag-

netic field in a wiggler varies from +B0 to −B0 in the center of the magnet poles,

with typical values of the peak field being 0.1−10 T. The vertical field in a wiggler

varies from +B0 to +B0 over one wiggler period, λw, and repeats over the entire

wiggler length, Lw. The shape of the field variation is controlled by the size and

spacing of the poles and can be anything between a sinusoidal wave and a nearly

square wave. Wiggler magnets also produce horizontal and longitudinal magnetic

fields but these components are weaker and produce less of an effect on the beam.

Like any other magnet in an accelerator, the magnetic fields in a wiggler can

be produced with either permanent magnet or electromagnet technologies. Perma-

nent magnets are devices that produce an inherent magnetic field. Electromagnets

use electrical currents in coils of wire to produce magnetic fields. If these wires

are made of a material that conducts electricity without resistance below a critical

temperature, then it is called a superconducting electromagnet. One difference

between these technologies is that permanent magnets cannot be turned off (un-

less their poles are physically separated) while electromagnets become weaker or
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Figure 5.1: A wiggler magnet, including particle trajectory and fan of emitted
radiation. The end poles are shorter to return an incoming on-axis beam to its
original trajectory.

stronger with the current flowing in the wire. In the case of large aperture wigglers,

superconducting electromagnets are typically used above 1− 2 T because they are

not as large or as expensive as comparable strength permanent magnets.

5.1.1 Particle Trajectory

The horizontal and longitudinal magnetic fields in a wiggler cannot be ignored in

an accurate treatment of a wiggler’s negative impacts on the beam and will be

discussed further in the following section. For now, Bx and Bz are ignored and By

is approximated as perfectly sinusoidal, given by:

By(s) = B0 sin (
2π

λw
s). (5.1)

Solving the equation of motion for an electron moving through this field, yields a

sinusoidal oscillation in the electron’s horizontal trajectory given by [1]:

x(s) =
K

γ

λw

2π
cos (

2π

λw
s). (5.2)
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Here, K is the wiggler parameter and is related to the strength and period of the

field by:

K =
eB0

mc

λw

2π
= 93.4B0[T]λw[m]. (5.3)

The sinusoidal oscillation of a particle’s trajectory inside of a wiggler is bene-

ficial because it is what produces the synchrotron radiation, but if that oscillation

propagates through the rest of the accelerator problems can occur. Thus, wigglers

are designed to take a particle that comes in on-axis, (x, x′, y, y′) = (0, 0, 0, 0), wig-

gle its trajectory, and then return it to the beam axis (see for example Figure 5.1).

To achieve this, the first and second field integrals must be zero:

∫ Lw

0

By(x, z) dz = 0, (5.4)

∫ Lw

0

∫ z

0

By(x, z
′) dz′ dz = 0. (5.5)

The first integral of the vertical magnetic field in the wiggler controls the angle of

the particle’s outgoing trajectory. By pairing equal but opposite strength wiggler

poles adjacent to each other, the first integral and thus the outgoing angle can be

zeroed. The second integral of the vertical magnetic field determines the position

offset of a particle as it exits a wiggler. To zero this effect, the strength of the

poles at the end of the wiggler are tapered to transition By(z) smoothly from zero

to B0. Changing the strength of the magnetic field coming from the end poles is

achieved by changing the length of the end poles (see for example Figure 5.1) or,

if it is an electromagnetic wiggler, by reducing the current in the end pole coils.

5.1.2 Undulators and Wigglers

The wiggler parameter is a typical way to characterize a wiggler’s field since it does

not depend on the beam energy or any aspect of the rest of the accelerator. The
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K-value of a wiggler is related to the maximum angle of the electron’s oscillating

trajectory, Θ, by:

Θ =
K

γ
. (5.6)

This relationship leads to an important property of the radiation emitted by a

wiggler or undulator. If the electron oscillates with a maximum angle less than the

opening angle of the cone of emitted radiation (Θ < 1/γ), then the radiation emit-

ted by different periods coherently superposes which produces intense monochro-

matic radiation [1]. This characteristic of the radiation disappears if the electrons

have an angle of oscillation larger than the angle of spread in radiation (Θ > 1/γ).

Thus, an important distinction arises between small oscillation magnets (undula-

tors), and large oscillation magnets (wigglers) that can be characterized by the

relationship:

Undulator : K ≤ 1,Θ ≤ 1/γ (5.7)

Wiggler : K > 1,Θ > 1/γ.

From this idealized, perfectly sinusoidal wiggler field model, the basic trajectory

of an electron through a wiggler is known, as is the difference between a wiggler

magnet and an undulator magnet. However, the exact trajectory of an electron

through a wiggler is complicated by the realities of an actual wiggler. A real wiggler

has horizontal and longitudinal fields in addition to the vertical field, all of which

vary as the particle moves away from the center of the magnet. These realities

contribute to the nonlinearities present in wigglers that make them so difficult to

operate.
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5.2 Wiggler Nonlinearities

The magnetic fields in wigglers produce nonlinear terms in the equations of motion

for charged particles moving through them which greatly complicates the beam

dynamics of the entire accelerator [14, 15, 16]. Wiggler nonlinearities can cause

particles moving at different amplitudes to have tunes that vary in such a way that

they cannot be easily corrected with higher-order multipole magnets. This is called

an amplitude-dependent tune-shift and can result in particles crossing resonance

lines in the tune plane as they grow in amplitude. These resonances can accelerate

a particle’s growth in amplitude and significantly reduce the maximum amplitude

of stable orbits in the ring, thus shrinking the dynamic aperture.

5.2.1 Idealized Nonlinearities

A description of wiggler nonlinearities is simplified by separating the dominant

nonlinearity that is inherent in all wigglers and the weaker nonlinearities that can

be controlled by the shape of the wiggler poles. The inherent nonlinearity comes

from the periodic arrangement of north-pole/south-pole magnet pairs and cannot

be avoided with different sizes or shapes of poles. This is because this inherent, or

idealized, nonlinearity comes about from the longitudinal field that arises from a

periodic arrangement of north and south poles.

In fact, wigglers are unique among magnets commonly used in particle accelera-

tors because they have significant longitudinal fields in addition to their transverse

fields (see Figure 5.2). This causes a problem when coupled with the fact that the

vertical field in a wiggler produces a transverse wiggle in the orbit of a particle.

The problem is that the axis of the beam and the axis of the magnetic field are not
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Figure 5.2: Illustration of the inherent vertical wiggler nonlinearity coming from
the longitudinal field having a horizontal component in the reference frame of the
particle (on the left) which results in a vertically defocusing force (on the right).

aligned, therefore, a horizontal orbit wiggle results in the non-negligible longitudi-

nal field effectively having a horizontal component (see Figure 5.2). This effective

horizontal field produces a vertical force on the particle that strongly defocuses its

trajectory in a way that more quadrupoles cannot counteract.

Examining the cause and effect of this nonlinearity more closely requires knowl-

edge of the entire magnetic field in the wiggler; however, a full and complete def-

inition of the wiggler’s field is not required to approximate the strength of the

inherent wiggler nonlinearity. That is because this nonlinearity comes from the

periodic arrangement of the poles and can be described using only the peak field

and period of a wiggler. Thus, a description of this nonlinearity can be provided

with an ideal wiggler model which is infinitely long and infinitely wide.

A further simplification of the field can be made by separating the field into

harmonics using the linear superposition of electromagnetic fields. The inherent

nonlinearity from an idealized wiggler is driven by the dominant, fundamental field

harmonic which has a sinusoidal vertical field on-axis with an unknown vertical
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position dependence, as shown in:

By(y, s) = B0 b1(y) cos (kws). (5.8)

Determining the dependence of the vertical field on vertical position requires solv-

ing Maxwell’s equations, ∇ × B = 0 and ∇ ·B = 0, and reveals that the ver-

tically dependent field amplitude of the first wiggler field harmonic is b1(y) =

a cosh (kwy)+ b sinh (kwy). Using the symmetry of the field and more of Maxwell’s

equation to solve for a, b, and Bz(y, s), the complete magnetic field from this ideal

wiggler is given by [17]:

Bx(y, s) = 0,

By(y, s) = B0 cosh (kwy) cos (kws), (5.9)

Bz(y, s) = −B0 sinh (kwy) sin (kws),

where kw = 2π
λw

is the wavenumber. The basic form of this expression is similar

to the terms in a summation of all harmonics for a realistic wiggler magnet which

is finitely wide and long; the entire wiggler field is not required to describe the

inherent nonlinearity but will be discussed in greater detail in future sections.

The difference between the beam trajectory and the magnet axis is what causes

Bz to impact the vertical trajectory of the beam. This difference is given by the

wiggling angle as a function of s, given by:

θ(s) ∝
∫ s

0

By ds ∝
B0

kw
cosh (kwy) sin (kws). (5.10)

The projection of the longitudinal magnetic field in the horizontal direction is given

by:

Bx,effective = Bz tan θ ≈ Bzθ. (5.11)
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Which, after inserting Equation 5.9 and 5.10, becomes:

Bx,effective = −(B0 sin (kws))
2 sinh (kwy) cosh (kwy)

kw
. (5.12)

By expanding the hyperbolic functions up to 5th order, the dependence of the

vertically defocusing component of the longitudinal field is [17]:

Bx,effective = −(B0 sin (kws))
2(y +

2

3
k2

wy
3 +

2

15
k4

wy
5 + . . .). (5.13)

Finally, up to 3rd order, the y equation of motion for a charged particle moving

through such a field is [18]:

y′′ ∝ B2
0(y +

2

3
k2

wy
3). (5.14)

The first term in this expression is equivalent to quadrupole-like linear focusing.

Through this term, wigglers can change the tune of a circular accelerator by an

amount on the order of 0.1 per wiggler. However, this effect can be counteracted

in a straightforward manner by modifying the strengths of all of the quadrupoles

in the ring.

The second term is the inherent nonlinearity that all wigglers possess which

complicates the beam dynamics in an accelerator. This cubic focusing is similar

to an octupole magnet, but only in the vertical plane. Thus, wigglers produce a

shift in the vertical tune that depends on the particle’s amplitude like [19],

∆Qy(y) ∝ B2
0

y2

λ2
w

, (5.15)

growing with the vertical beam position squared (see Figure 5.3). Since this non-

linearity is only in one plane, it cannot be corrected with compensating octupoles

without introducing the same nonlinearity in the horizontal plane.

In addition to growing with the vertical beam position, the vertical tune shift

becomes stronger for shorter period wigglers (see Figure 5.4). This nonlinearity
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Figure 5.3: Example, from simulations with whole accelerator lattice, of inherent
wiggler vertical tune shift as it grows with the beam’s vertical position, for a wiggler
with λw = 40 cm.

is inherent in the fundamental design of wigglers and is thus unavoidable, but by

carefully choosing a magnetic field low enough and a period long enough, the effect

can be minimized.

5.2.2 Realistic Nonlinearities

A realized wiggler possesses the inherent vertical octupole nonlinearity but it also

possesses nonlinearities that come from a finite width and finite length magnet.

These boundary conditions can cause additional vertical tune variation, as well

as horizontal tune variation that can result in particles becoming unstable and

colliding with the physical aperture, even for particles near the core of the beam.

One important nonlinearity that is present in a realistic wiggler magnet with

finite width poles, comes from the fact that particles at different positions in the

magnet will experience different forces. For example, the vertical magnetic field
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only peaks to a value of B0 at (x, y) = (0, 0), as x increases By(x) decreases, or

rolls-off, from B0. This causes horizontally offset particles to experience different

forces, and similarly for vertically offset particles. Again the wiggling trajectory is

critical, because even a particle which enters the magnet at (x, y) = (0, 0) will be

displaced horizontally from the central axis as it wiggles and will experience the

vertical field horizontal roll-off.

This combination of vertical field horizontal roll-off and horizontal orbit varia-

tion produces an additional vertical component to the field. This causes a variation

in the horizontal orbit that depends on the variation of the vertical field. The dom-

inant effect is a horizontal tune shift that grows according to [19]:

∆Qx ∝ B0λ
2
w

∂2By

∂x2
. (5.16)

The variation of the By(x) is typically quadratic (see Figure 5.5), so this nonlinear-

ity is quantified by the deviation of the field from peak at some reference position.
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Figure 5.5: Example of the quadratic roll-off of the vertical magnetic field observed
with increasing horizontal position in a 2.1 T wiggler.

This is called the field quality and is commonly defined as the field roll-off at

10 mm, ∆B/B0 at (x, y, z) = (10 mm, 0, λ/2). Therefore, this nonlinearity causes

a horizontal tune shift that depends on the horizontal amplitude of the particle

(see Figure 5.6).

This effect is usually weaker than the inherent vertical nonlinearity but it can

still cause a significant impact on the performance of the accelerator. Therefore,

wigglers are designed and constructed which minimize this effect by having very

little field horizontal roll-off. This is done by making the wiggler pole width, wp,

large and the pole gap, gp, small. Since the field goes to zero outside of the poles,

widening the poles reduces the variation of the field and hence the horizontal tune

shift (see Figure 5.7). An alternative to widening the poles to reduce the field

roll-off is to add shims on the horizontal edges of the pole faces, or cut-out the

horizontal center of the pole faces. This enhances the ability of the iron poles to

amplify the magnetic field at large amplitudes, thereby achieving a reduced vertical
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field horizontal roll-off without a wider wiggler.

It is important to note that the inherent wiggler nonlinearity produces a ver-

tical tune shift with amplitude that grows with shorter periods, while this effect

produces a horizontal tune shift with amplitude that grows with longer periods.

Optimizing the wiggler period to balance these two nonlinearities is an important

step in designing a wiggler which will have minimal negative impact on the beam

dynamics.

There are more nonlinearities in realistic wigglers than just this horizontal tune

shift. In fact, there are additional higher-order terms in Equations 5.15 and 5.16

that have been neglected. Errors in construction, like pole misalignments, can

also produce nonlinear dynamics that are not known until a wiggler is actually

constructed and operational. Thus, detailed computer simulations are required to

measure the wiggler’s impact on the beam and then suggest changes to the design
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to minimize the negative impact before it is constructed. Additionally, extreme

care is required in the construction of a wiggler to prevent additional field errors.

5.3 Uses in Damping Rings

Wigglers are required in the ILC damping rings to increase the rate of synchrotron

production and reduce the beam emittance quickly, but if they are not designed op-

timally, wiggler nonlinearities can have a severe impact on the damping ring’s per-

formance. With an optimized design, adding wigglers can quickly reduce a ring’s

damping time without serious negative impact on the beam dynamics. Therefore,

the ILC damping ring can have a circumference of 6 km and beam energy of 5 GeV

and still achieve a damping time of 25 ms as long as it has well-designed wigglers.

Achieving a damping time of 25 ms with the ILC damping ring’s energy (5 GeV)

and circumference (6 km), requires that the beam lose 8.5 MeV per turn. With no
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wigglers, such a ring loses 0.5 MeV per turn and takes nearly 500 ms to damp the

beam emittance by 1/e, in τdamp = 500 ms. Clearly, this damping ring will require

a number of wiggler magnets to achieve the required damping rate.

Adding wigglers to decrease the damping time (Equation 4.2) can be repre-

sented mathematically by adding the bending of the wigglers to the bending of the

dipoles in the I2 integral, I2,tot = I2,dipoles + I2,wigglers. Plugging Equation 5.1 into

Equation 2.11 yields the relationship:

I2,wigglers ≈
1

2
Lw,totB

2
0 . (5.17)

Thus, in a ring where the emission of synchrotron radiation is dominated by wig-

glers and not dipoles, the damping time is given by [2]:

τdamp ∝
1

Lw,totB2
0

. (5.18)

In the ILC damping ring, approximately 200 meters of B0 ≈ 2 T wiggler magnets

would be needed to achieve τdamp = 25 ms.

The length of wigglers in the damping ring could be reduced to save money

while keeping the damping time fixed by raising the peak field, but this comes at the

prize of stronger nonlinearities. The inherent and realistic wiggler nonlinearities

will reduce the dynamic aperture through amplitude-dependent tune shifts that

can cause the beam to cross tune plane resonances. Additionally, to achieve a

higher peak field the physical aperture in the ring may be reduced. The physical

aperture is set according to the strength of the magnet–narrowing the vertical gap

between the poles allows weak poles to achieve a high peak field, but at the cost

of the physical aperture.

The desire to meet the target dynamic and physical apertures is not the only

motivation for keeping the wiggler field low. Like radiation damping and the I2
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integral, the amount of quantum excitation and the value of the I5 integral in

the ring are also increased when wigglers are inserted into the lattice. This will

result in changes to the radiation equilibrium horizontal emittance and the energy

spread of the beam. Since the I5 integral depends on the energy dependent orbit, or

dispersion, at the location of the radiation emission, wigglers will change a beam’s

energy spread and horizontal emittance differently depending on the value of the

dispersion in the lattice.

If wigglers are placed in a location with dispersion, then the I5 integral will

increase and the energy spread and horizontal emittance will equilibrate at a value

determined by the balance of radiation damping and quantum excitation. In a ring

where the majority of radiation comes from wigglers, the radiation equilibrium

energy spread is related only to the wiggler field as given by [20]:

σδ ∝
√

B0, (5.19)

and the radiation equilibrium horizontal emittance is given by:

εx,rad ∝ B0H, (5.20)

with H depending on the dispersion in the ring, as given in Equation 2.14.

However, even with no dispersion in the region around the wigglers, quantum

excitation will still prevent radiation damping from reducing the emittance and

energy spread all the way to zero because wigglers themselves generate dispersion.

Since dispersion comes from bending, wigglers internally generate dispersion even

if there is no dispersion in the section of the ring without the wigglers. The slope of

the wiggler-generated dispersion is related to the slope of the wiggling trajectory

so η′ ∝ Θ ∝ λwB0. Inserting this into Equation 2.14 yields H ≈ βx(λwB0)
2

because η is small and the contribution of η′ to H dominates. Finally, inserting



73

this expression into Equation 5.20 gives the impact on the radiation equilibrium

horizontal emittance in a wiggler dominated ring where the wigglers are located in

zero-dispersion straight sections [2]:

εx,rad ∝ βxλ
2
wB

3
0 . (5.21)

Combining these results with the dependence of the damping time on the wiggler

parameters reveals that while a stronger wiggler field will result in the beam emit-

tance damping faster, it will also result in the beam emittance and energy spread

not being damped to as small of a value.

From these relationships, it is clear that wigglers alter the fundamental proper-

ties of circular accelerators and result in changes to many of the beam’s parameters.

Depending on the choice of peak field, gap height, pole width, and period, wigglers

can modify the beam’s horizontal emittance and energy spread and the lattice’s

damping rate, physical aperture, and dynamic aperture. Detailed simulations and

calculations are required to set each wiggler parameter to a value that meets as

many of the beam and lattice parameters at once as possible.

5.4 Wiggler Simulation Techniques

Computer simulations are critical tools for predicting the behavior of a proposed

particle accelerator so that the design can be modified to maximize its performance

before it is actually built. Computer simulations are used by the ILC damping

ring lattice designers as a feedback loop, allowing them to test one version of the

lattice then recommend and quickly implement the next version of the lattice.

This is particularly true for the design of the damping ring wigglers, because

minimizing one beam parameter, like the beam emittance, can require changing
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the characteristics of the wiggler magnets in a way that negatively impacts another

beam or ring parameter, like the dynamic aperture. Thus, during magnet design

studies, particle tracking simulations are critical for evaluating the impact of a

specific magnet design on the target beam and lattice parameters.

5.4.1 Particle Tracking

The most basic and useful method of accelerator simulation is to create a com-

puter model of the accelerator lattice and determine the trajectory of particles

through the lattice. Bmad [21] is a library of computer programs that is used for

the simulation of relativistic charged-particle dynamics in circular and linear high

energy particle accelerators [22]. Bmad can track individual particles or beams of

particles through lattice elements such as dipoles, quadrupoles, higher-order mag-

nets, wigglers, RF cavities, and arbitrary electromagnetic fields. Bmad includes

the effects of the beam-beam interaction, space charge, radiation damping, and

quantum excitation during calculations of the particle trajectories and other beam

and lattice parameters.

Dipoles, quadrupoles, and other accelerator elements produce simple enough

electromagnetic fields, that an analytic expression can determine their influence

on a particles’ trajectory using only information like the length and strength of

the elements. However, wiggler fields are too complex to parameterize particle

trajectories with simply the length and strength of the magnet. Therefore, the

exact behavior of B(x, y, z) in a wiggler is used to calculate the precise trajectory

of a particle through the wiggler magnet.

If B(x, y, z) can be expressed analytically, then a Taylor series expansion of

the particle’s trajectory through the field, or a Taylor map, can be generated. If
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B(x, y, z) is only known at discrete points and an analytic equation cannot be

written for the field, then the trajectory of a particle can be determined through

Runge-Kutta integration from one discrete step to the next. There are trade-offs

between tracking with a Taylor map or with Runge-Kutta integration. A Taylor

map is much faster, but the analytic expression of B(x, y, z) is only approximate,

leading to a result that is not as accurate as Runge-Kutta. A comparison of the

wiggler trajectories calculated using a Taylor map versus Runge-Kutta integration

confirms that the accuracy of Taylor tracking is sufficient for wiggler simulation

needs [23].

The wiggler modeling in Bmad was developed at Cornell when wigglers were

being studied and developed for use in the Cornell Electron Storage Ring (CESR)

in the late 1990’s and early 2000’s [23]. Therefore, Bmad provides a practical and

useful collection of diverse diagnostic tools for wiggler modeling. One such tool is

the ability to use different wiggler representations that are based on increasingly

nonlinear models. Switching between more simplified and more complex wiggler

models allows a computer simulation to reveal the impact of the different types

of wiggler nonlinearities on the beam. A full nonlinear wiggler model, an ideal

nonlinear linear wiggler model, and a completely linear wiggler model are available

in Bmad.

Model A: Linear Wiggler

The simplest wiggler model available is a purely linear wiggler model which is com-

posed of a series of alternating dipole magnets. The alternating bend field focuses

and damps the beam as a real wiggler does; however, the poles of the dipoles do

not give an accurate wiggler field with longitudinal components and field roll-offs.
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This results in the linear wiggler model omitting the nonlinear beam dynamics that

would come from a real wiggler magnet. Nevertheless, the linear wiggler model

is useful for damping ring studies, because it allows the evaluation of the perfor-

mance of the ring while ignoring the complication of the wiggler nonlinearities,

thus giving the baseline performance of the ring.

Model B: Ideal Nonlinear Wiggler

The next more complex wiggler model includes some, but not all, of the wig-

gler nonlinearities. This wiggler model is equivalent to the infinitely wide and

infinitely long wiggler magnet described in Section 5.2.1 so it does have a longitu-

dinal field component. This model includes the effects of the linear wiggler model

plus quadrupole-like focusing and the vertical octupole term intrinsic in all wiggler

magnets.

Since this model includes the dominant nonlinearity but none of the nonlin-

earities that only come from a realistic wiggler, this is called the ideal nonlinear

wiggler model. This model is useful for determining how the dominant octupole-

like nonlinearity degrades the baseline performance of the ring. This model only

requires B0, λw, and the number of poles to calculate particle trajectories, so it

does not depend on the precise arrangement of wiggler poles in a specific magnet

design. Therefore, the ideal nonlinear wiggler model gives the ring performance

that would be expected if the wiggler poles were designed perfectly to minimize as

many non-inherent nonlinearities as possible.
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Model C: Full Nonlinear Wiggler

The most complex wiggler model is a Taylor map generated from an approximate

analytic expression of the exact wiggler field. Since this model is based on a realistic

wiggler field, it includes all of the wiggler nonlinearities of a realistic wiggler and

is called the full nonlinear wiggler model [23]. The full nonlinear wiggler model

includes the nonlinearities of the ideal nonlinear model plus those coming from a

realistic wiggler magnet with finite width poles, end poles, and fringe fields.

The exact wiggler field used depends on the specific shape, size, and arrange-

ment of poles for a specific wiggler design. Thus, comparing a full nonlinear model

to an ideal nonlinear model reveals the impact of a wiggler’s pole design on the

optimal performance of the beam dynamics which can lead to redesigning the wig-

gler poles. For example, Figure 5.8 shows how the three different tracking models

incorporate varying amounts of the wiggler tune shifts. The linear wiggler model

produces no horizontal or vertical tune shifts as the vertical amplitude of the parti-

cle increases. The ideal nonlinear wiggler model incorporates the inherent wiggler

nonlinearity which provides a majority of the total vertical tune shift and no hor-

izontal tune shift. Finally, the full nonlinear wiggler model produces all of the

horizontal tune shift coming from finite width poles and a vertical tune variation

that adds to the effect of the inherent wiggler nonlinearity.

5.4.2 Generating the Magnetic Field

Wigglers with slightly different pole shapes or arrangements can have totally dif-

ferent fields resulting in completely different particle trajectories. Thus, the first

step in performing wiggler tracking studies with the full nonlinear wiggler model

is to determine the exact magnetic field coming from the specific wiggler under



78

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0  2  4  6  8  10  12  14

∆Q
y

Vertical Beam Position (mm)

Linear
Ideal Nonlinear

Full Nonlinear

-0.0001

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0  2  4  6  8  10  12  14

∆Q
x

Vertical Beam Position (mm)

Linear
Ideal Nonlinear

Full Nonlinear

Figure 5.8: Comparison of wiggler tracking models.

investigation.

Wiggler magnets can be composed of permanent magnets or electromagnets,

therefore the B-field comes from combinations of field sources and current sources.

Finite element analysis and similar techniques are used to approximate the mag-

net as a finely discretized mesh of individual field and current sources, allowing

the entire magnet’s field to be solved through a system of equations. Common

finite element analysis codes for 3-D magnet modeling are OPERA-3d [24] and

Radia [25]. These programs allow the user to graphically assemble the wiggler

poles and coils in the same arrangement as the real magnet (whether the magnet

has been actually built or is just proposed, see Figure 5.9) and then output the

value of the magnetic field on a table of (x, y, z) points.

These models include the intricate design components of a real wiggler, in-

cluding features like the size and curvature of the poles, the horizontal width and

vertical gap of the poles, pole shims or cut-outs, end poles of various sizes, wire

dimensions, and the saturation of the magnetic material. The resulting magnetic

field table includes all of the details of a real field and can be used to determine

the exact impact of such a field on the accelerator’s performance.
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Figure 5.9: A set of wiggler poles with coils, in Radia.

5.4.3 Fitting the Magnetic Field

For Taylor map tracking, calculating derivatives from discrete data is inaccurate

and the field table cannot be directly tracked through [23]. Therefore, to quickly

and accurately calculate all order derivatives needed to create a reliable Taylor

map, the discrete data must be represented by a functional form. Deriving an an-

alytic equation for the fields in a wiggler magnet is not possible for realistic fields;

however, a harmonic expansion of the fields is possible using the Halbach approxi-

mation [26]. The Halbach approximation extends Equation 5.9 to the x dimension

with additional sinusoidal and hyperbolic terms and incorporates the higher order

field harmonics. The higher order field harmonics describe how uniform and how

sinusoidal the magnetic field is and determine the strength and form of the realistic

nonlinearities unique to each wiggler magnet.

At Cornell, a field model has been developed based on the Halbach approxi-
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mation in Cartesian coordinates [23]. In the Cornell model, the Halbach approx-

imation is extended by performing an iterative fit which varies the wavenumbers

and the field strength,

Bfit =
N

∑

n=1

Bn(x, y, s;Cn, kxn, ksn, φsn, fn), (5.22)

to minimize a merit function, M , given by the difference between the fit and the

data:

M =
∑

data

|Bfit − Bdata|
2. (5.23)

It is important to note that this fitting procedure does not require the wavenumber

to be directly related to the period (kn 6= 2πn/λ). Allowing the wavenumbers to

vary minimizes the total number of terms needed in the summation, and provides

a result which represents a non-periodic longitudinal field. This is required in

wigglers where λw is different for the end poles and the central poles so that the

second field integral and the outgoing trajectory offset are zeroed.

The Cornell wiggler fitting model is described by three sets of functions that

each describe the wiggler field appropriately over a different range of wavenumbers.

When kxn > 0 then fn = 1 selects the following set of functions:

Bx = −C
kx

ky

sin(kxx) sinh(kyy) cos(kss+ φs),

By = C cos(kxx) cosh(kyy) cos(kss+ φs), (5.24)

Bz = −C
ks

ky

cos(kxx) sinh(kyy) sin(kss+ φs),

k2
y = k2

s + k2
x.

Note that this expression is equivalent to Equation 5.9 for the specialized case of

x = 0, C = B0, and ks = ky. When −|ksn| ≤ kxn ≤ 0 then fn = 2 selects the next
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set of functions:

Bx = C
kx

ky
sinh(kxx) sinh(kyy) cos(kss + φs),

By = C cosh(kxx) cosh(kyy) cos(kss+ φs), (5.25)

Bz = −C
ks

ky
cosh(kxx) sinh(kyy) sin(kss+ φs),

k2
y = k2

s − k2
x.

And when kxn < −|ksn| then fn = 3 selects the final set of functions:

Bx = C
kx

ky
sinh(kxx) sin(kyy) cos(kss+ φs),

By = C cosh(kxx) cos(kyy) cos(kss+ φs), (5.26)

Bz = −C
ks

ky
cosh(kxx) sin(kyy) sin(kss + φs),

k2
y = k2

x − k2
s .

The relations between the wavenumbers insure that the fields satisfy Maxwell’s

equations.

The result is a sum of sinusoidal and hyperbolic sinusoidal functions that rep-

resents the wiggler field at an accuracy corresponding to the precision of the fit.

The precision of the fit (χ2) depends on the number of terms in the fit and the

length of time that the fitting program is allowed to run. Once completed, the

field residuals between the field table data and the fit can be evaluated and the fit

can continue if the quality of the fit is not sufficient for accurate particle tracking

studies (see Figure 5.10). The field fit in this figure ran for multiple days and is

typical for the fits utilized in this dissertation in regards to its number of terms

(132), residuals to the data (less than a few Gauss on-axis), and quality of fit with

the data (χ2 = 0.002).

The Cornell-developed Cartesian-based iterative fitting method was compared

with the wiggler field fitting procedures used at other laboratories. Detailed results
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data (By,fit(x, z) − By,data(x, z)), over one half period.

of these benchmark studies are in Appendix A. These benchmark studies showed

strong agreement between the field fitting and wiggler tracking methods allowing

wiggler simulation results to be compared between investigators and validating the

results of all of the simulations.

5.4.4 Dynamic Aperture and Frequency Map Simulations

Once the magnetic field has been fit to an analytic expression, it can be used for

particle tracking studies in Bmad. The two most common simulation tools used

to characterize the performance of the accelerator are dynamic aperture and the

frequency map analysis simulations.

Dynamic Aperture

The dynamic aperture is used to quantify the impact of wiggler nonlinearities on

the beam. The size of the dynamic aperture is determined by the amplitude-
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dependent tune shifts which can push particles to unstable locations in the tune

plane. Throughout this dissertation, the dynamic aperture is simulated with single

particle tracking studies in Bmad that include longitudinal dynamics but ignore

radiation effects. A particle is tracked through the accelerator for multiple rev-

olutions, long enough for the particle to circulate for one damping time. If the

particle is stable over one damping time then its initial displacement is increased

and it is tracked again, this is repeated until the particle becomes lost during one

damping time. The smallest initial displacement that is large enough to produce

a trajectory that is unstable over one damping time defines the dynamic aperture

of the accelerator.

Simulating the dynamic aperture of an accelerator lattice in this manner gives

a baseline aperture for a ring with no errors or misalignments and only including

the nonlinearities that are described in the theoretical models used in the tracking

program. This is a best-case scenario as an actual accelerator is made of electro-

magnetic elements with construction errors that can be misaligned or even moving

over time. The realistic errors in the elements of an accelerator produce magnetic

field errors that couple to existing nonlinearities and drive the beam to nonlinear

resonances and degrade the beam dynamics in ways that computer simulations

cannot fully include.

In order to leave a sufficient margin of error to account for unanticipated deteri-

oration of the ring’s stable dynamics when the machine is actually constructed and

operated, the target for a baseline lattice aperture during computer simulations

is generally at least as large as ten times the maximum beam size. For the ILC

damping rings the maximum beam size is the size of the positron beam at injection;

therefore, it is hoped that if the ILC damping ring starts with 10 × σe+,inj then
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the dynamic aperture will be large enough that realistic errors and misalignments

will not limit the final dynamic aperture below approximately 5 × σe+,inj.

A more realistic simulation of the dynamic aperture is achieved for the ILC

damping ring by using multipole field errors on the main ring magnets: the dipoles,

quadrupoles, and sextupoles. The strength of the field errors used for these simula-

tions were measured from the actual errors on the PEP-II and SPEAR-3 magnets

and are given in Reference [12]. Since these errors include systematic and random

effects, simulations are performed with 15 different configurations of the random

errors on the magnets, or 15 random seeds. In the graphs of these results, the thick

line is the average dynamic aperture result for the 15 seeds and the thin line is the

minimum dynamic aperture result for the 15 seeds (see for example Figure 8.8).

Frequency Map Analysis

Frequency map analysis is a tool that is used to map the beam’s movement in the

tune plane and potentially explain degradation or growth of the dynamic aper-

ture [27]. Like dynamic aperture studies, the frequency map analysis is performed

with single particle tracking studies in Bmad that include longitudinal dynamics

but ignore radiation effects. A single particle is tracked for τdamp with an initial

position defined by a dense grid of points in the ±x, +y plane. If a particle at a

given amplitude is lost on the physical aperture within τdamp, that initial position

is left blank; if a particle at a given amplitude is not lost then its initial position

has a point of a certain color or intensity (see for example Figure 8.5b). Thus, on

a frequency map analysis plot, the boundary between the colored points and the

white points defines the dynamic aperture.

However, the frequency map analysis provides further information about the
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beam dynamics than just the dynamic aperture. The color or intensity of the

point is related to the tune of the particle. The rate of change of the horizontal

or vertical tune from the first half of the damping time (t = 0 − 1/2 τdamp) to the

second half (t = 1/2 τdamp − τdamp) is a measure of the chaoticity of the particle’s

orbit. The tune of the particle for the first half or second half of the damping

time is calculated in the computer simulations by taking a Fourier transform of

the particle’s trajectory and locating the peak frequency [27]. A larger change in

tune over time corresponds to a more chaotic orbit or an orbit that is near the

aperture of stable beam dynamics. Therefore, the intensity of the points in the

frequency map analysis plots is given by:

Intensity = log (
√

(∆Q2
x + ∆Q2

y)), (5.27)

where ∆Qx = Qx, 1st 1/2 τdamp
−Qx, 2nd 1/2 τdamp

, and similar for y. Small tune changes

are indicated with darker colors and large tune changes with lighter colors (see for

example Figure 6.4).

When the frequency map analysis is examined in physical space (x, y), the

dark colors are located near the center of the guide field region (at (x, y) = (0, 0))

where amplitude-dependent tune shifts are weak. Lighter colors are located at large

amplitudes just inside the dynamic aperture limit, this is where the tune shifts are

strong enough that the tune is changing with time. These brightly colored points

at the edge of the dynamic aperture also mean that if the amplitude is increased

slightly the particle will cross the dynamic aperture, become chaotic, and be lost.

Finally, the frequency map analysis can be represented in tune space (Qx, Qy)

and not just physical space (x, y). In tune space plots, the position of each particle

is given by the value of the particle’s tune in the first half of the damping time and

the color is again related to the difference in tune from the first half to the second
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half, given by Equation 5.27. Particles at small amplitudes orbit the accelerator

and experience few tune shifts, so the frequency of their betatron orbits stays at

the operating point; therefore, in tune space plots, the largest density of dark

colored points are located at and near the operating point of the machine. Lighter

colored points are located farther away from the operating point because wiggler

nonlinearities change the tune with position (given by the distance of a point from

the operating tunes in the plot) as well as with time (give by the color of a point

in the plot).

The position of all of the points in the tune plane create a tune “footprint”

which describes the direction and size of tune shifts in the accelerator. A large

tune footprint means that wiggler magnets are causing the horizontal and vertical

tunes to change as the beam’s horizontal and vertical position is increased. A

large tune footprint will cross more tune resonances which increases the time rate

of change of the tune and is shown by brightly colored points following the line

of the tune resonances. The brightly colored points in the frequency map anal-

ysis can be located on both the tune space plots and the physical space plots to

show how wiggler nonlinearities are shifting the beam to tune resonances and to

large amplitudes. Thus, comparing the frequency map analysis in tune space and

physical space can reveal which tune resonances are producing limitations in the

dynamic aperture.

These simulation techniques will be utilized in the following chapter to create

nonlinear models of two candidate ILC damping wigglers and then evaluate their

performance in the baseline damping ring. Their performances will be simulated

through dynamic aperture and frequency map analysis studies to determine how

the unique characteristics of the two wiggler options result in different impacts on
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the beam dynamics of the ILC damping ring. In evaluating the unique aspects of

the design and performance of the two candidate wiggler designs the conceptual

design of an optimized wiggler will be achieved.



Chapter 6

Existing Wiggler Designs
Wiggler magnets are operating in particle accelerators around the world with a

wide range of performance capabilities and magnet designs (see for example [28,

29]). However, only a small number of wigglers in the world actually provide the

required beam parameters and meet the technical requirements of the ILC.

In this dissertation, the two most promising ILC damping wiggler options will

be examined. The first is a proposed wiggler and the second is an existing wiggler:

the proposed wiggler design [30] from the TESLA linear collider, and the Cornell

wiggler [31] which is used in the Cornell Electron Storage Ring (CESR).

These two wigglers are well suited for a direct comparison of their potential

performance in the ILC damping ring because they have some of the same wiggler

parameters but differ in some very important ways. The largest difference between

these two magnets is their technology; the TESLA wiggler design is permanent

magnet and the CESR wiggler is a superconducting magnet. Comparing these two

wiggler options highlights the critical decision of which technology option should

be used in the ILC damping wiggler.

6.1 TESLA Permanent Magnet Wiggler

The TESLA collaboration developed a damping wiggler prioritizing compact-size

and ease of operation. They chose a permanent magnet instead of an electromagnet

because as a passive device it would not need a power supply and would result

in negligible operating costs and maintenance needs [32]. The TESLA wiggler

is actually a hybrid permanent magnet wiggler, with iron poles in the center to

88
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Figure 6.1: The TESLA permanent magnet wiggler. The permanent magnet ma-
terial, NdFeB, surrounds the iron poles in the center, all of which are enclosed in
an iron yoke.

reinforce the field coming from the neodymium, iron, and boron magnets (NdFeB)

surrounding the poles (see Figure 6.1) [30].

The TESLA wiggler has λw = 400 mm and gp = 25 mm and the hybrid per-

manent magnet structure was built within those constraints (see Table 6.1). The

resulting magnet structure would produce a 1.67 T peak field (Brms = 1.17 T) with

a non-sinusoidal vertical field profile (see Figure 6.2). With that field strength, 108

wigglers, over 400 m, were required to achieve a 25 ms damping time in the TESLA

dogbone ring.

6.1.1 Principles of Design

The TESLA damping ring was designed with all of its wigglers in a 400 m straight

section (see Figure 4.2), with the wigglers hung from the ceiling of the tunnel that

the damping ring would share with the main linac. Because of this configuration,

a premium was placed on compact wigglers. Additionally, in order to minimize

the total cost of 400 m of wigglers the design aperture was chosen to be only as

large as required to fit the beam [30].
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Table 6.1: Physical specifications of the TESLA wiggler.

Parameter Unit Value

Peak Field T 1.67

Number of poles 18

Total length m 3.6

Period m 0.4

Pole Width cm 6.0

Gap Height cm 2.5

∆B/B0 at x = 10 mm 5.7 × 10−3

Beam Energy GeV 5
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Figure 6.2: Vertical magnetic field profile on-axis (x, y) = (0, 0) coming from the
TESLA wiggler.
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The pole width was initially set at 40 mm to be as narrow as possible while

achieving a field quality of ∆B/B0 = 4 × 10−2 at x = 10 mm, which previous

studies had concluded would be sufficient [33]. However, further studies by the

TESLA collaboration determined that such a large field horizontal roll-off was

not sufficient and the TESLA baseline wiggler was widened to 60 mm in order

to achieve ∆B/B0 = 5.7 × 10−3 at x = 10 mm which was hoped to improve the

simulated beam dynamics [34].

6.1.2 Simulated Performance in ILC

Bmad is one of the only accelerator simulation programs in the world that has

the capacity to generate a full nonlinear wiggler model. Thus, the Bmad simula-

tions performed for this dissertation were one of the first to examine the complete

and realistic impact of the TESLA wiggler on the TESLA damping ring. These

simulations began with the linear wiggler model to establish the ring’s baseline

performance, without the extra complication of wiggler nonlinearities. Then, the

ideal nonlinear and full nonlinear wiggler models were inserted in the ring to look

at the specific impact the wigglers had on the ring’s performance. The magnetic

field used in Bmad to generate a full nonlinear model of the TESLA wiggler came

from a Radia model generated by DESY [35].

With the linear wiggler model, the on-energy dynamic aperture of the TESLA

dogbone damping ring is approximately 6 times the injected positron beam size (see

Figure 6.3). The ideal target of the TESLA damping ring dynamic aperture is over

10 times the size of the positron beam injection so that the operational realities of

misalignments and field errors do not push the dynamic aperture below 3-5 times

the injected beam size. Therefore, this ring’s linear wiggler dynamic aperture is not
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Figure 6.3: Dynamic aperture results for the linear, ideal nonlinear, and full non-
linear models of the TESLA wiggler in the TESLA damping ring.

very large to begin with and will only become smaller when multipole field errors

and magnet misalignment errors are included as will happen in actual operation.

Before all of the other realistic errors are included in the lattice, it is impor-

tant that a nonlinear wiggler not further compromise the ideal lattice’s dynamic

aperture. Unfortunately, including the full TESLA wiggler in tracking studies

does yield a much smaller dynamic aperture and much larger tune spread with

amplitude. The full nonlinear wiggler model yields a dynamic aperture between

1−2×σe+ ,inj which would result in excessive beam loss (see Figure 6.3). Figure 6.4

reveals that the poor dynamic aperture is due to the large tune footprint of the

TESLA wiggler. The tune plane shows that the TESLA wiggler causes the beam

to spread over half an integer in horizontal and vertical tune. Such a large spread

makes the damping ring impossible to operate without crossing many resonances

that can blow up the amplitude of stable particles and cause them to be lost. Thus,

this wiggler design has strong amplitude-dependent tune shifts that are causing
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Figure 6.4: Frequency map analysis result in tune-space for the full nonlinear model
of the TESLA wiggler in the TESLA damping ring. Operating point is Qx = 0.31,
Qy = 0.18.

the particles to cross many resonance lines as they grow in amplitude, resulting in

a smaller dynamic aperture.

Figure 6.3 reveals that with the ideal nonlinear wiggler model, the dynamic

aperture is larger than the full nonlinear aperture and is close to the linear wiggler

aperture. This suggests that the nonlinearities inherent in a wiggler can be accom-

modated by the TESLA damping ring design without sacrificing the ring’s dynamic

performance; but the nonlinearities coming from the specific shape and arrange-

ment of the poles in the TESLA wiggler design result in reduced performance of

the TESLA damping ring.

In addition to the dynamic aperture, the wiggler sets the limiting physical

aperture in the dogbone ring. The TESLA wiggler has a vertical pole spacing of

25 mm. Such a small aperture would result in a reduced wiggler cost, however it

corresponds to a half-aperture of only 2.1×σe+,inj in the TESLA positron damping
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Table 6.2: Wiggler-related lattice parameters in the TESLA damping ring lattice,
using the full nonlinear model of the TESLA wiggler.

τdamp 30.2 ms

εx,rad 2.10 nm · rad

σδ 0.13 %

ring. This physical aperture is extremely small and has the potential to cause

significant beam loss leading to magnet irradiation and luminosity degradation.

Using the full nonlinear model of the TESLA wiggler, also shows the impact

the TESLA wiggler has on the beam parameters as the particles are extracted from

the TESLA damping ring (see Table 6.2). The TESLA damping ring lattice was

designed with 108 18-pole, 3.6 m wigglers placed in dispersion-free straight-sections

to achieve the damping time with minimal quantum excitation generated emittance

growth. With this model of the TESLA wiggler, the damping time is 30 ms, not

quite meeting the target that was specified for the TESLA damping ring of 28 ms,

the energy spread meets the 0.13 % TESLA target and the equilibrium horizontal

emittance misses the 0.6 nm · rad target. The damping time and emittance targets

could be easily achieved with slightly longer wigglers but this modification to the

TESLA lattice was not performed in this study.

6.1.3 TESLA Wiggler Conclusions

From the results of these and other simulations [36, 37], it is clear that the TESLA

wiggler design imposes severe dynamic and physical aperture limitations on the

TESLA dogbone damping ring. It is anticipated, that the TESLA wiggler would

produce similar aperture limitations if it were used in the ILC damping ring.
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Therefore, the TESLA wiggler is not an acceptable candidate for the ILC damping

wiggler unless it were to be redesigned.

Since the full nonlinear dynamic aperture is significantly smaller than the ideal

nonlinear aperture, the TESLA wiggler could potentially be redesigned to increase

the full nonlinear aperture. The design of the TESLA wiggler is in many respects

not optimized so its poor beam dynamics is not unexpected [35]. The permanent

magnet wiggler described above was created for a cursory comparative analysis

with an electromagnetic design and was not completed to the full extent required

for achieving optimal damping ring performance [30].

For example, wider magnet poles would decrease the field roll-off and improve

the dynamic performance of the full nonlinear wiggler model in the ILC damping

ring. In addition to meeting the dynamic aperture, if the pole spacing was raised

the TESLA wiggler design would avoid an unacceptable amount of beam loss and

would provide the required physical aperture.

6.2 CESR-c Superferric Wiggler

A thorough design effort was conducted at Cornell leading to the decision to in-

stall twelve superconducting damping wigglers in CESR [38]. The results of this

work and the ensuing wiggler installation and operation have received international

recognition. Wiggler studies performed at other accelerator laboratories are fre-

quently measured against the standard set by the CESR wigglers. Therefore, the

Cornell superconducting wigglers are a promising candidate for the ILC damping

wigglers.

Twelve 2.1 T superconducting wigglers have been designed [31], fabricated [39,

40], tested [41], simulated [23, 42], and operated [43, 44] at Cornell University’s
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Table 6.3: Physical specifications of the CESR-c wiggler.

Parameter Unit Value

Peak Field T 2.1

Number of poles 8

Total length m 1.3

Period m 0.4

Pole Width cm 23.8

Gap Height cm 7.6

∆B/B0 at x = 10 mm 7.7 × 10−5

Coil Current A 141

Beam Energy GeV 2

Laboratory for Elementary Particle Physics. These wigglers were required in

order to operate CESR in a low-energy CESR-c configuration for the CLEO

experiment’s current research program to study charmonium resonances around

ECOM = 3 GeV [38].

The CESR-c wigglers are hybrid superconducting magnets with a magnetic

field produced by superconducting wires and amplified by iron pole cores; this

type of magnet is called a superferric magnet. The superconducting material is an

alloy of Niobium and Titanium (NbTi) that is cooled to 4.2 K. With superferric

technology, a field strength of 1.7− 2.1 T is achievable over a significant portion of

the 238 mm pole width and 76 mm gap height (see Table 6.3).

The CESR-c wigglers have eight total poles, with four central poles and two

end poles on each side (see Figure 6.5). The central poles have a length of 200 mm,

giving a wiggler period of 400 mm. The end poles are shorter, 150 and 100 mm
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Figure 6.5: The 8-pole CESR-c wiggler shown with iron poles and NbTi coils.
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Figure 6.6: 20, 15, and 10 cm end poles used on the 8-pole CESR-c wiggler to
eliminate the position offset in particle trajectory.

(see Figure 6.6), to zero the position and angle offset coming out of the wiggler

for a particle entering on-axis. This gives the CESR-c wigglers a total length of

1.3 m to transition smoothly from zero field to ±2.1 T and back to zero field (see

Figure 6.7).

The CESR-c wigglers were decided to be 8-pole after prototypes with an odd

number of poles, 7, and an even number of poles, 8, were constructed and experi-

mentally compared. One difference in these two wiggler design options is that an

even pole wiggler produces a vertical magnetic field integral that does not depend
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Figure 6.7: Vertical magnetic field profile on-axis (x, y) = (0, 0) coming from the
CESR-c wiggler.

on systematic errors in the poles, either in construction or position. Additionally,

through experiments and simulations, the CESR-c wiggler designers determined

that the field integral of an even pole wiggler was independent of the current in

the superconducting coils. These benefits arise because with an even number of

poles the integral of the vertical field from each pole is canceled by an identical

pole at the opposite end of the magnet with the opposite polarity. The cancella-

tion is not as simple with an odd number of poles, thus resulting in a less flexible

range of operation for the 7-pole wigglers and the choice of 8 poles for the CESR-c

wigglers [41].

6.2.1 Principles of Design

One of the features of CESR that drove the size of the wigglers was the “pretzel”

orbits used during CLEO colliding-beam conditions. The pretzel describes the

intertwined oscillations which the electron and positron beams experience after
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Figure 6.8: Fractional deviation of the wiggler field from B0 (∆By(x, y)/B0, %),
over the entire region of the CESR beam pipe (solid black line).

passing through horizontal and vertical electrostatic separators in CESR. These

pretzel orbits result in the counter-rotating electron and positron beams colliding

only within the CLEO detector, thereby eliminating unwanted collisions outside

of CLEO and minimizing the beam-beam interaction.

The CESR beam pipe has a 9 cm horizontal aperture and a 5 cm vertical aper-

ture, and contains both beams as they undergo x, y = ±2 cm pretzel orbits. This

means that the wiggler needs to be strong enough to produce 2.1 T with a pole

separation of at least 5 cm and wide enough to produce a suitably uniform field

over a significant fraction of the 9 cm horizontal aperture. This is achieved with a

238 mm pole width and 76 mm gap height (see Figure 6.8).

This field would be expensive to produce with a permanent magnet of reason-

able size and weight with a pole separation of over 5 cm. Additionally, permanent

magnet wigglers had the disadvantage of being impractical to turn off during the

multiple modes of operation for CESR. Using an electromagnetic wiggler overcomes
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Figure 6.9: Vertical cross-section of the magnet, cryostat, shielding, and support
structure for the CESR-c wigglers in CESR.

this problem, but achieving the desired field and gap with a normal conducting

electromagnetic wiggler would have required a magnet with prohibitively large

power consumption. Thus, superconducting magnet technology was the option

chosen for the CESR-c wigglers [38].

The pole gap in the CESR-c wigglers, gp = 7.6 cm, is as small as possible

while still providing room between the 5 cm tall beam pipe and the pole face for

the required cryogenics, insulation, radiation shielding, and mechanical support

structure. Fitting all of the supporting infrastructure for the wigglers into a 1.3 cm

vertical gap between the poles and the beam pipe was at the limit of what was

feasible (see Figure 6.9).
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With a combination of wide poles and cut-outs in the pole faces (see Fig-

ure 6.10), the CESR-c wigglers achieve a field roll-off of ∆B/B0 = 7.7 × 10−5 at

x = 10 mm and ∆B/B0 = 2.0 × 10−3 at x = 40 mm. A final design consideration

on the CESR-c wigglers was the exact coil curvature around the ends of the poles.

The radii of curvature are chosen separately for the central (Lpole = 20 cm) and

end poles (Lpole = 10, 15 cm) to keep the local field strength below the quench limit

(see Figure 6.10) [31].

6.2.2 Experimental Performance in CESR

The CESR-c wigglers have been studied using direct experiments involving the

wigglers and indirect evidence gathered during daily operation of CESR for the

past three years. These studies have shown that the wiggler nonlinearities have

produced no significant complication to the machine performance or degradation

of the machine luminosity or dynamic aperture [44, 20]. Nonlinearities are not
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nonexistent in the CESR-c wiggler dynamics, but with a lattice full of indepen-

dently tuned sextupoles, the entire ring performance has been optimized to produce

a dynamic aperture that is limited by the 5 cm tall beam pipe and not the wiggler

nonlinearities.

The dominant field error in the CESR wigglers is an effective skew quadrupole

component that was not identified until after the wigglers were constructed. This

error was determined to come from left/right symmetric coil widening that was

different for the upper and lower coils. When the coils were wound around the

poles, successive layers of wires were not held at a fixed position at the transverse

edges of the poles; this resulted in the pole plus coil width varying by up to

approximately 1 mm for the poles in the CESR-c wigglers. The coil widening effect

was not identified until after the poles were already constructed but its negative

impact on the beam dynamics was successfully minimized by sorting coils with

similar deformations into upper and lower pairs [42].

Experiments have been performed in CESR to characterize the behavior of

the twelve superferric wigglers in order to improve the low energy performance of

CESR and maximize the success of CLEO’s physics program [44, 20]. In these

experiments, the amplitude dependent tune shifts coming from the wigglers were

determined by measuring the tune while varying the beam position in the wiggler.

The beam position in the wiggler can be varied with a closed orbit bump which

reveals amplitude-dependent tune shifts coming only from the region where the

beam is being displaced. This can be constrained to either one wiggler or a group

of wigglers. The beam position in the wiggler can also be varied with an orbit

oscillation around the entire ring which shows the effect of the wigglers plus all

other sources of amplitude-dependent tune shifts in the accelerator, like multipole
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magnets and field errors.

The tune shift with bump position and tune shift with shaking amplitude

have been measured in CESR with the wigglers at their design field strength,

2.1 T [43, 20]. These experiments have shown reliable agreement with Bmad-based

simulations using the full nonlinear wiggler model fitted to a field from OPERA-3d.

The successful performance of the superferric wigglers in CESR suggests that

they might also perform well as the ILC damping wigglers. However, using the

CESR-c wiggler in the ILC damping ring could require operating them below their

operational range (1.9 − 2.1 T). The amplitude-dependent tune shifts given in

Equations 5.15 and 5.16 become weaker with peak field, but it is important to

verify that there are not additional field-dependent nonlinearities in the wigglers

that have a larger effect a lower magnetic fields. If this type of nonlinearity exists,

it would not have been explored in standard CESR operation but may be relevant

if the CESR wigglers were redesigned for the ILC damping rings. Whatever the

field-dependent effect on the beam by the wigglers, it is important to verify that

the real effects observed in CESR are accurately represented in the Bmad-based

simulations.

The tune shift versus bump position experiment was repeated in CESR for

this dissertation in a low field (B0 = 1.4 T) wiggler configuration to examine the

dependence on the peak field. Three vertical steering elements were used to create

a closed-orbit bump in wigglers No. 18E1, 18E2, and 18E3 in CESR. The resulting

data and corresponding curves from Bmad simulations can be seen in Figure 6.11.

Additionally, a closed-orbit bump was created in wigglers No. 15E, 14E1, and 14E2

(see Figure 6.12). The simulation curves correspond to linear, ideal nonlinear, and

full nonlinear models of the wiggler only, in all cases a full nonlinear model is used
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Figure 6.11: Vertical and horizontal tune shift with vertical beam position in
wigglers 18E1, 18E2, and 18E3 of CESR operating at B0 = 1.4 T.
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Figure 6.12: Vertical and horizontal tune shift with vertical beam position in
wigglers 15E, 14E1, and 14E2 of CESR operating at B0 = 1.4 T.

for the rest of the lattice.

The agreement between the data and the full nonlinear wiggler model in Fig-

ures 6.11 and 6.12 is an excellent validation of this wiggler model. Additionally,

the simulation results for the linear and ideal nonlinear wiggler models are val-

idated by the way in which they disagree with the data. For example, a linear

wiggler model produces no amplitude-dependent tune shift, so varying the beam

position in a localized section of wigglers should result in no horizontal or vertical

tune shift. Figures 6.11 and 6.12 do show a small amount of tune variation with

the linear wiggler model, this variation is not coming from the wigglers but from
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sources in the rest of the ring that came about because the orbit distortion was not

able to be perfectly zeroed outside the localized wiggler regions. An ideal nonlinear

wiggler model has the vertical octupole-like amplitude-dependent tune shift, but

no horizontal dependence. Therefore, this model should incorporate the majority

of the vertical tune shift seen in the data and none of the horizontal tune shift; this

is again confirmed by the results in Figures 6.11 and 6.12. The small amount of

horizontal tune shift with vertical beam position seen in the ideal nonlinear wiggler

model is again coming from other sources in the ring and not the wigglers.

6.2.3 Simulated Performance in ILC

The CESR-c wigglers have the same period and roughly the same peak mag-

netic field as the TESLA wiggler. However, with four times the pole width and

three times the gap height, the CESR-c wigglers have a field roll-off two orders

of magnitude smaller than the TESLA wigglers (see Figure 6.13). Additionally,

comparing Figure 6.2 with Figure 6.7 shows that the TESLA wiggler produces a

field that is shaped more like a square wave and the CESR-c wiggler produces a

more sinusoidal field. These differences in field roll-offs and profiles suggest that

the CESR-c wiggler could be better represented with only the dominant field mode

than the TESLA wiggler. This would mean the CESR-c wiggler would be more

like an ideal nonlinear wiggler model, have less realistic nonlinearities coming from

higher order field modes, and result in a better performance. Given the antici-

pated improvement in beam dynamics coming from the more horizontally uniform

and longitudinally sinusoidal field, the CESR-c wiggler was suggested as a possible

candidate for the ILC damping wiggler.

Design modifications were made to the OPERA-3d model of the CESR-c wig-
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Figure 6.13: Field roll-off of the TESLA and CESR-c wigglers.

gler to correspond with the TESLA wiggler design. The current in the superferric

wigglers was lowered from 141 A to 92 A to lower the field of the CESR-c wigglers

to that of the TESLA wiggler, B0 = 2.1 → 1.67 T. The number of poles in the

CESR-c wiggler design was changed from 8 to 22 to correspond with the number

of central poles in the TESLA wiggler design utilized in the TESLA dogbone ring,

18, plus 2 trajectory-matching poles on each end of the wiggler. This changed the

length of the CESR-c wiggler from 1.3 m to 4.1 m. This new wiggler design has not

deviated significantly from the fundamental properties of the CESR-c wiggler, thus

this is called the modified CESR-c wiggler (see Figure 6.14 and Table 6.4) [45].

Using the modified CESR-c wiggler for tracking studies in the TESLA dog-

bone ring yields a significant increase in the dynamic aperture for the full non-

linear wiggler model compared with the full nonlinear TESLA wiggler model (see

Figure 6.15). This is also reflected in the smaller tune footprint of the modified

CESR-c wiggler as compared to the TESLA wiggler (see Figure 6.16).

Comparing Figure 6.16 with Figure 6.4, reveals that the amplitude-dependent
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Figure 6.14: Vertical magnetic field and horizontal trajectory of a 5 GeV electron
through the 22-pole, modified CESR-c wiggler.

Table 6.4: Physical specifications of the modified CESR-c wiggler.

Parameter Unit Value

Peak Field T 1.67

Number of poles 22

Total length m 4.1

Period m 0.4

Pole Width cm 23.8

Gap Height cm 7.6

∆B/B0 at x = 10 mm 7.7 × 10−5

Current A 92

Beam Energy GeV 5
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Table 6.5: Wiggler-related lattice parameters in the TESLA damping ring lattice,
using the full nonlinear model of the modified CESR-c wiggler.

τdamp 22.7 ms

εx,rad 0.50 nm · rad

σδ 0.13 %

tune shifts are much smaller in the case of the CESR-c wiggler. This results in

particles crossing less tune-plane resonances and the dynamic aperture not being

degraded as much from the linear wiggler case for the modified CESR-c wiggler as

compared to the TESLA wiggler. In fact, the dynamic aperture for the modified

CESR-c wiggler is nearly “ideal” meaning that the dynamic aperture of the full

nonlinear model is not significantly smaller than dynamic aperture of the ideal

nonlinear model. This means that the total nonlinearities in the modified CESR-

c wiggler are dominated by the inherent wiggler nonlinearity, and the realistic

nonlinearities coming from a wide pole width and high field uniformity are very

weak and are not degrading the dynamic aperture.

The CESR-c wiggler vertical gap of gp = 7.6 cm provides a beam stay-clear in

CESR of 5 cm. This gap is three times that of the TESLA wiggler and is expected

to be sufficient to minimize beam loss in the ILC damping rings. Additionally,

the wiggler-related lattice parameters meet their specified targets in the TESLA

damping ring after the TESLA wiggler is replaced with the modified CESR-c

wiggler (see Table 6.5).
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6.2.4 CESR-c Wiggler Conclusions

A modified version of the CESR-c wiggler was used in the TESLA dogbone damp-

ing ring with excellent results. The full nonlinear wiggler produces a dynamic

aperture which is dominated by the aperture defined by the inherent octupole-like

wiggler nonlinearity. This suggests that the specific pole shape and size of the

CESR-c design have been well optimized for reducing the realistic wiggler nonlin-

earities. The TESLA dogbone dynamic aperture is still not large enough to handle

the misalignments and errors of a non-ideal lattice, but simulations suggest that

this is a feature of the TESLA dogbone ring itself and not the CESR-c wigglers.

Therefore, initial results suggest that a modified version of the CESR-c wigglers

would perform well as the ILC damping wiggler.

6.3 ILC Wiggler Technology Decision

At the time of these results, the international ILC damping ring design commu-

nity was mobilizing to organize and evaluate the damping ring options available

throughout the world. The damping ring community felt that there was an ade-

quate amount of information known about the poor performance of the TESLA

wiggler; however, a more thorough analysis was requested of the performance of the

modified CESR-c wigglers in the seven damping ring configuration study lattices

(see Table 4.4).

Dynamic aperture, dynamic aperture with multipole field errors, and frequency

map analysis simulations were performed using the modified CESR-c wiggler, with

the linear, full nonlinear, and ideal nonlinear tracking models, in each of the seven

lattices. Results from these simulations can be found in Appendix B with the
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Figure 6.17: Dynamic aperture results for the linear, ideal nonlinear, and full non-
linear models of the modified CESR-c wiggler in version 1.0 of the OCS damping
ring.

conclusion being that the modified CESR-c superferric wigglers operated very well

in all of the configuration study lattices [12]. In all lattices, the modified CESR-

c wiggler produced negligible degradation of the dynamic and energy apertures

beyond that of the linear and ideal nonlinear wiggler results; for example, the

performance of the initial baseline ILC damping ring lattice, OCS, is given in

Figure 6.17. This suggests that the modified CESR-c wiggler meets and exceeds

the physics requirements of the ILC damping ring.

Other simulations confirmed that, in addition to the dynamic aperture, the

physical aperture of the modified CESR-c wiggler is sufficient for meeting the re-

quired apertures in each of the candidate ILC damping ring lattices. Simulations

studied the injection efficiency [46] and electron cloud production thresholds [47]

with physical apertures and determined that in both cases a vertical beam pipe

aperture of over 48 mm is needed in the wiggler to meet ILC damping ring perfor-



112

mance requirements. The CESR-c wigglers have a 76 mm vertical gap and operate

with a 50 mm vertical beam pipe in CESR, thus meeting the physical aperture

requirements of the ILC damping ring.

A decision on the magnet technology to be used for the ILC damping wiggler

was made based on the results of these physical and dynamic aperture simulations.

Additionally, the practical costs and risks (e.g. radiation resistance, availability,

and power consumption requirements) associated with the choice of technology for

the ILC damping wigglers were considered [48]. Ultimately, superferric technology

was chosen for the ILC damping wiggler, in part because the TESLA permanent

magnet wiggler did not meet the dynamic and physical aperture requirements and

no other permanent magnet option existed.

6.4 Baseline ILC Damping Ring

Since superferric technology was chosen for the ILC wigglers, work has proceeded

using the best available option for a superferric damping wiggler, the modified

CESR-c wiggler. In addition, development and optimization has proceeded on the

overall lattice design of the damping ring, resulting in more recent lattice versions

of the OCS lattice [49, 50]. The circumference and detailed lattice design of these

rings differs considerably from TESLA and it is important to confirm that the

modified CESR-c wiggler still performs at a high level in these rings.

The biggest difference between the wigglers in the TESLA ring and the wigglers

in the OCS ring are their unit and total lengths. The OCS ring is a 6 km ring and

so it has a shorter revolution time than the TESLA ring and requires less wigglers

to achieve τdamp = 25 ms. The OCS ring was designed with 80 wigglers, less than

the 108 in the TESLA ring. Using 80 modified CESR-c wigglers in the OCS ring
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Table 6.6: Wiggler-related lattice parameters in version 2.0 of the OCS damping
ring lattice, using the full nonlinear model of the modified CESR-c wiggler.

τdamp 20.3 ms

εx,rad 0.62 nm · rad

σδ 0.13 %

to achieve the target damping time allowed the magnets to be shortened from 22-

pole, 4.1 m in TESLA to 14-pole, 2.5 m unit length in OCS. This change in length

was accepted to the modified CESR-c wiggler to make it suitable for use in the

OCS lattice, the baseline ILC damping ring lattice.

In OCS, the modified CESR-c wiggler provides a damping time significantly

shorter than is required (see Table 6.6) allowing the possibility of using even less

wiggler to save money in the damping ring. Simulations with the full nonlinear

model of the modified CESR-c wiggler meet the energy spread requirements and

provide an equilibrium horizontal emittance which is right at the target value.

Additionally, in these more recent OCS lattice versions, the modified CESR-c

wiggler still provides the required dynamic, physical and energy apertures (see

Figure 6.18).

The OCS lattice was modified in version 6.0 by moving the wigglers and RF

cavities to four locations in the ring, instead of the eight locations in version 2.0.

This modification was made in order to satisfy the desires of the scientists designing

the conventional systems associated with the ILC; by concentrating the wiggler

magnets and RF cavities, the cryogenic production plants and transfer lines would

only have to supply four locations, not eight. However, this change reduced the

symmetry of the OCS lattice in version 6.0 resulting in the baseline lattice dynamic
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Figure 6.18: Dynamic aperture results for the linear and full nonlinear models of
the modified CESR-c wiggler in version 2.0 and 6.0 of the OCS damping ring.

aperture being degraded to an amplitude below that of the wiggler-limited dynamic

aperture.

Additionally, the nonlinearities of the modified CESR-c wigglers are weak

enough to produce a large dynamic aperture even when including multipole field

errors on the dipoles, quadrupoles, and sextupoles (see Figure 6.19). These re-

sults suggest that the multipole field errors used are quite strong and are limiting

the dynamic aperture below that of both the baseline lattice aperture and the

wiggler-limited dynamic aperture. Finally, at B0 = 1.67 T and L = 2.5 m, using

80 modified CESR-c wigglers in the OCS damping ring results in a 20 ms damping

time which is less than required to meet the required emittance in 200 ms.
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Chapter 7

ILC-Optimized Wiggler Design
The previous results show that the modified CESR-c wiggler is a better wiggler

choice for the ILC damping rings than the TESLA design, but it is not necessarily

the best choice possible. Simulations show that the modified CESR-c wiggler

exceeds the physics requirements of the ILC; however, superior performance is

accompanied by a wiggler that is perhaps larger and more expensive than necessary

to meet the goals of the ILC.

The amplitude of the modified CESR-c wiggler dynamic aperture is nearly that

of the linear wiggler aperture in the ILC which suggests a larger field roll-off could

be accommodated. There is likely room in the phase space of wiggler parameters

to design a new wiggler which is less expensive than the CESR-c wiggler but still

minimizes the impact of the wiggler on the ILC damping ring’s dynamic aperture.

Potentially, a superferric wiggler could be designed that satisfies the damping ring

requirements with a lower cost and with fewer construction challenges than the

CESR-c wiggler model.

7.1 Optimization Goals

The design of the modified CESR-c wiggler resulted from a melding of the existing

wiggler used in CESR with the wiggler constraints considered for the TESLA

damping ring. Therefore, the modified CESR-c wiggler has not been optimized for

the specific engineering and cost challenges present in the ILC damping rings. The

goal of this dissertation is to present the conceptual design of a superferric wiggler

that is suitable for the ILC damping ring which has been realistically optimized

116
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considering cost, construction, and performance requirements.

Practical constraints like cost, construction, operation, and reliability of the

wiggler may make certain beam or lattice parameters unattainable. For example,

a large dynamic aperture requires wide poles with a long period, but it is also

desirable to minimize the cost and thus size of the wiggler. Alternatively, re-

optimization may reveal that a large reduction in the width of the wiggler leads

to a slight reduction in the dynamic aperture and a significant reduction in cost,

which could be an acceptable trade-off.

7.2 Motivation

There are a number of factors that must be balanced during the wiggler redesign

process–the most important element being cost. The twelve 1.3 m CESR-c wigglers

each had a capital cost of roughly $250,000 [48], and with a 2.5 m length the

modified CESR-c wiggler will cost nearly twice that, or $500,000. Additionally,

international cost studies have concluded that the approximate cost of the damping

ring is 10 % of the cost of the entire ILC, and the cost of the damping wigglers is

approximately 22 % of the entire damping ring [51].

Therefore, a reduction in the physical size or total number of wigglers could

yield significant cost savings when integrated over two 6 km damping rings, each

with 80 2.5 m wigglers. Reducing the size of a single wiggler would save on the

cost per wiggler and increasing the damping capacities of the wiggler would save

on the total number of wigglers required. Increasing the peak field of the modified

CESR-c wiggler would be an easy way to use less wigglers and save money in the

ILC damping rings; however, detailed simulations must be performed to determine

if a stronger wiggler would compromise the ring’s performance by increasing the
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horizontal emittance, energy spread, or nonlinearities.

7.2.1 Construction

Modifying the superferric wiggler construction process has the potential to reduce

the unit cost of the ILC damping wigglers without compromising the ring’s dy-

namic performance. The twelve CESR-c wigglers were carefully constructed in

house at Cornell with, for example, technicians winding the superconducting wires

around the iron poles by hand. It is believed that this process could be redesigned

for the ILC to use machines to wind the coils. Automating this process would

eliminate the winding errors that led to coil misalignments and field errors in the

CESR wigglers, and allow the 160 ILC wigglers to be feasibly mass-produced [52].

In addition to saving money, changes to the physical design of the wiggler

might simplify the engineering challenges expected during the construction and

installation of 160 wiggler magnets. One engineering challenge present when the

superferric wigglers were assembled and installed in CESR was the support struc-

ture for the magnet. The stainless steel plate used to support the wigglers in CESR

is 1.3 m long and narrows to 3 mm for a portion of the width (see Figure 6.9).

Moving and supporting this plate during construction and installation was a

delicate process. If the plate became twisted during installation it was taken back

to the machine shop to be re-smoothed and aligned. Performing multiple iterations

of smoothing this extremely thin plate was a time consuming but surmountable

task for twelve CESR-c wigglers; however, it will not be feasible for the quick and

reliable mass-production of 160 ILC wigglers. Therefore, the vertical gap in the

superferric CESR-c wiggler assembly does not meet the engineering requirements

of the damping ring and the pole gap must be increased.
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The ILC damping ring wiggler is currently designed with a 2.5 m unit length

(14 poles in the OCS lattice), nearly twice that of the CESR-c wiggler (8 poles,

1.3 m). Doubling the CESR-c wiggler length also requires doubling the length of

the cryostat, vacuum chamber, and the rest of the wiggler assembly. All of which

may have to be redesigned and could potentially become significantly more difficult

to construct, install, and operate at a longer length.

7.2.2 Radiation Load

Additionally, the beam current and energy going through the wigglers in the ILC

damping ring will not be the same as in their proven application in CESR and

this will change the radiation load on the ring. The total power of the photons

radiated by a wiggler is given by [3]:

Prad(kW) = 0.633 · I(A) ·Lwig(m) ·E2(GeV) ·B2
0(T), (7.1)

where E and I are the energy and current of the electron beam. In CESR, the

wigglers operate with beams having a maximum current of 130 mA and an energy

of about 2 GeV per beam. This results in ≈ 2 kW of radiated power per wiggler

in CESR which can be reasonably handled with radiation absorbers around the

wigglers.

In the ILC damping ring the beam will be significantly more intense at 400 mA

and 5 GeV. This results in 42 kW of radiated photon power which means that sig-

nificant radiation shielding is required to protect the wiggler vacuum chamber and

prevent the radiated photons from ejecting electrons from the chamber walls and

forming an electron cloud. The horizontal chamber aperture needs to be as wide

as possible and made at a shallow angle to reduce the incident radiation density.
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This could potentially require widening the support structure and even the wiggler

poles themselves to keep the heat load below an acceptable level. Widening the

support structure and the poles would require a complete redesign of the structure

and would be expensive.

7.2.3 Vacuum Chamber

To simplify construction and assembly, the CESR-c wigglers are designed so that

the wiggler vacuum chamber is actually welded to the magnet and is not separable.

This precludes removing the chamber and treating it or cleaning it in order to

achieve ultra-low vacuum. The required vacuum in CESR is not low enough for

this to be a problem; however, because of the higher beam current in the ILC

damping rings, the vacuum in the damping ring will have to be kept lower than in

CESR to stay below the instability thresholds for the collective effects.

This lower vacuum requirement requires modifying the CESR-c wigglers to

allow for a separate vacuum chamber which can be baked to clean the surface

and achieve ultra-low vacuum. This difference again could necessitate changes to

the CESR-c wiggler design in order to make it suitable for the ILC damping ring

engineering requirements. For example, there needs to be enough space between

the vacuum chamber and the cold-mass to be able to reliably remove and reinsert

the beam pipe during vacuum processing without damaging the chamber or the

magnet.

7.2.4 Cryogenics

Another costly feature of the superferric wigglers in CESR is the 4.2 K liquid

helium bath used to cool the superconducting NbTi coils. Again, this design was
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appropriate for twelve wigglers in CESR but does not scale suitably to the ILC

requirements.

Cooling 160 damping ring wigglers, each entirely surrounded by their own liquid

helium bath, would require a very large amount of expensive liquid helium and a

significant amount of cool-down time. Therefore, the CESR-c wiggler design may

have to be changed to allow for switching the cryogenic structure from directly

bathing all of the poles and coils in liquid helium to a system of tubing on the

poles which indirectly cools the coils [52]. This would save money by improving

reliability and allowing for quicker repair and recovery time in the ILC damping

ring. Additionally, without the liquid helium bath, the wiggler assembly would

be simplified by eliminating the need for the wall inside the magnet poles which

separates the helium from the vacuum. Eliminating this wall saves time and money

during construction and allows a larger vertical margin between the poles and beam

pipe permitting a thicker support plate with the same pole gap.

Another change that must be made to the CESR-c wiggler design for it to

be an acceptable ILC damping wiggler is to remove the liquid nitrogen from the

system. At 80 K, liquid nitrogen is used in the CESR wigglers to shield the room

temperature (300 K) copper beam pipe from the liquid helium temperature (4.2 K)

wiggler magnet. Additionally, using liquid nitrogen cools the wiggler magnet to an

intermediate temperature without using as much expensive liquid helium. How-

ever, the safety requirements in certain countries do not allow liquid nitrogen in

enclosed tunnels. Since the global location of the ILC is not known, all of the

cryogenic systems in the ILC must be designed with only liquid helium and no ni-

trogen. With even more liquid helium in the system, this another reason to avoid

the liquid helium bath and use less helium in an indirect cryogenic system.
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The design of the construction, radiation load, vacuum chamber, and cryogenics

requirements of the ILC damping wiggler are realistic engineering considerations,

but will not be covered further here. These practical requirements will only be

used as guidelines while interpreting the results and motivation while selecting the

desired outcome of the wiggler design optimizations in the rest of this chapter.

7.3 Optimization Methods

The ILC damping wiggler optimizations began with minimal changes to the overall

CESR-c wiggler design. The reason for this was to keep the final ILC-optimized

superferric wiggler model as similar in design, construction, and operation to the

CESR-c wigglers as possible in order to prove its practical feasibility.

The pole gap and width were modified to establish the possibility of meeting the

specified apertures while simplifying the engineering problems. The peak magnetic

field was changed to learn how short the wiggler length could be made and still

meet the desired beam parameters. Finally, the wiggler period was varied to map

out the impact of the field nonlinearities on the damping ring’s performance.

7.3.1 Details of the Magnet Model

Optimizations to the modified CESR-c wiggler model were performed using Radia.

Straightforward modifications to the number of poles, coil currents, pole width, and

other magnet parameters generates a magnetic field specific to that magnet shape,

including sources of nonlinearities and fringe fields. Unless otherwise stated, all

results were generated with the full nonlinear wiggler model in Bmad.

The quality and performance of each new magnet shape was evaluated through

dynamic aperture and amplitude-dependent tune shift studies in version 2.0 of the
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OCS damping ring. Though 2.0 is not the most recent version of the OCS lattice,

it has the largest dynamic aperture and thus can reveal the dynamic aperture

limits imposed by a wiggler model and not the lattice. This was necessary in

order to observe potentially small changes in the dynamic aperture as the wiggler

parameters changed during the optimization

The pole cut-out and variable radius coil curvature of the CESR-c wiggler (see

Figure 6.10) were eliminated before the optimizations were performed. This was

done to simplify changes to the pole dimensions and create a direct variation of

field roll-off with pole width. These changes did not increase the field roll-off con-

siderably (∆B/B0 = 0.020 % at x = 10 mm), therefore this “simplified” modified

CESR-c wiggler still meets the ILC damping ring physics requirements with a

less complicated and presumably cheaper magnet design. Thus, the optimizations

given below can be viewed as worst-case scenarios, as the pole profiles and cur-

vatures are taken to be a simplified version of the CESR-c wiggler pole and are

not re-optimized for each new width, period, gap, or field. Once the ILC damping

wiggler is ultimately selected, an optimization of the pole profiles and curvatures

should be done to minimize the field roll-off, but this was not completed for the

present analysis.

Finally, the optimizations described in the following sections were performed

before taking into account the results of the previous sections. The magnet param-

eter being varied in each section is the only one changed from the simplified mod-

ified CESR-c wiggler’s original design. The final ILC-optimized CESR-c wiggler

will implement the recommendations coming from each individual optimization to

follow and will be given in Section 7.8.
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Figure 7.1: Variation of vertical field horizontal roll-off versus pole width of the
simplified modified CESR-c wiggler.

7.4 Pole Width

Decreasing the pole width increases the roll-off of the magnetic field in the hor-

izontal direction, causing the region of high field-uniformity to decrease until it

hits the dynamic aperture and begins to negatively impact the trajectory of the

beam core. With the simplified modified CESR-c wiggler, varying the width of the

wiggler poles in Radia reveals a cubic dependence in the transverse field roll-off

(see Figure 7.1).

Using these wiggler models in version 2.0 of the OCS lattice shows the impact

of increased field roll-off on the dynamic aperture (see Figure 7.2). A clear range

of dynamic aperture areas, from 10 σ near the CESR-c wiggler width (238 mm) to

below 5 σ near the TESLA wiggler width (60 mm), allows the possibility of selecting

the required dynamic aperture and then working backwards to see how wide the

wiggler poles have to be. Additionally, as the width of the poles decreases, the

maximum allowable error in the horizontal position of the wigglers also decreases
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Figure 7.2: Dynamic aperture results for a range of pole widths of the simplified
modified CESR-c wiggler.

(see Figure 7.3).

Recommendation

The size of the dynamic aperture depends clearly and directly on the wiggler pole

width. This allows a reduction of the wiggler width if the benefit of narrower poles

outweighs the minimal-to-significant decrease in dynamic aperture that would hap-

pen at a reduced pole width. Therefore, as long as a smaller dynamic aperture

is acceptable, the wiggler width could be reduced to save money. However, the

increased engineering challenges of a narrower wiggler support structure and in-

creased photon density on the vacuum chamber do present a serious barrier to re-

ducing the pole width. Balancing the cost/benefit ratio of narrower poles against

these challenges leads to a final recommendation to keep the wiggler pole width at

238 mm–the same as the original CESR-c wigglers.
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modified CESR-c wiggler.

7.5 Pole Gap

Increasing the pole gap will be a necessary modification in order to meet the

engineering requirements of the ILC. This should be possible given the weak linear

dependence of field quality on the pole gap observed with the simplified modified

CESR-c wiggler in Radia (see Figure 7.4). This small variation in field quality

with pole gap results in minimal dynamic aperture degradation at larger pole gaps

in version 2.0 of the OCS lattice (see Figure 7.5).

With a 1.67 T peak field in the damping ring, the modified CESR-c wiggler

has a significantly lower current (92 A) than the 2.1 T wigglers in CESR (141 A).

The wiggler current in CESR has an operational limit of 141 A to provide a safety

margin below the quench limit of NbTi at T = 4.2 K and B0 = 2.10 T. Table 7.1

shows that with a 1.67 T wiggler, the wiggler current could be increased to allow

the pole gap to be raised by at least 22 mm and still be below the NbTi quench

limit at this temperature and lower field.
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Table 7.1: Current values required to meet τdamp = 25 ms in the ILC damping ring
at pole gaps equal to and larger than the CESR-c value.

gp (mm) 76.4 86.4 98.0

B0 (T) 1.67 1.67 1.67

I (A) 92 107 125

Recommendation

Given the challenge in constructing a 3 mm thin stainless steel support plate, the

superferric wiggler pole gap should be raised by at least 10 mm. The observed

minimal dynamic aperture degradation at increased pole gap suggests that the gap

could be raised even more, as long as the current can be increased to achieve the

τdamp = 25 ms ILC target. With a 1.67 T peak field, this allows the wiggler pole gap

to be raised to 98 mm, leaving a sufficient safety margin below the superconducting

quench limit.

7.6 Peak Field and Length

The TESLA wiggler was designed with a peak field of 1.67 T to meet τdamp = 28 ms

without pushing the radiation equilibrium horizontal emittance and energy spread

above their specifications (see Table 7.2). However, this trade-off may need to be

re-examined against the potential cost savings of a lower number of higher field

wigglers. Another advantage of higher field wigglers would be achieved by using the

same number of wigglers but reducing the length per wiggler to provide greater

spacing between wigglers and allow more room for radiation shielding between

the wigglers. Simulations described below were performed in this configuration

(the same number of shorter wigglers) in order to examine the costs and benefits
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Table 7.2: Lattice parameters that depend on the wiggler’s peak magnetic field
and their target extracted values in the ILC and TESLA damping rings.

Parameter Dependence ILC target TESLA target

τdamp L−1
wigB

−2
0 25 ms 28 ms

εx,rad βxλ
2
wB

3
0 0.6 nm · rad 0.6 nm · rad

σδ B
1/2

0 0.15 % 0.13 %

of a modified wiggler magnet without requiring time-consuming changes to the

number and location of wigglers in the baseline lattice which could change the

ring’s performance independent of changes to the wiggler.

Investigation of these options was performed using Radia models of the sim-

plified modified CESR-c wiggler that ranged in number of poles from the 8-pole

CESR-c wiggler to the 14-pole modified CESR-c wiggler in the OCS lattice, with

the magnetic field changed to keep τdamp = 25 ms (see Table 7.3). Taking into

consideration the dependence of εx,rad on βx, the shorter wigglers were moved to

the low βx end of the wiggler FODO cell, which has ηx = 0 throughout, in order

to minimize the emittance. All of these configurations meet the target equilibrium

energy spread of 0.15 % (see Table 7.3) and the required dynamic aperture in the

version 2.0 of the OCS damping ring (see Figure 7.6). However, only the longest

magnet has a peak field low enough to meet the target radiation equilibrium hor-

izontal emittance, 0.6 nm · rad.

Recommendation

Reducing the number of poles in the ILC damping wigglers would produce instant

cost-savings in the construction of 160 wigglers; however, for a fixed damping time,
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Table 7.3: Wiggler and lattice parameters resulting from peak field and length
optimization, with peak field set to fix τdamp = 25 ms.

Lwig (m) 1.3 1.7 2.1 2.5

Npoles 8 10 12 14

B0 (T) 2.25 1.92 1.69 1.51

τdamp (ms) 24.2 24.2 24.1 24.6

εx,rad (nm · rad) 1.02 0.77 0.64 0.56

σδ (%) 0.143 0.133 0.126 0.119
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Figure 7.6: Dynamic aperture results for a range of pole numbers of the simplified
modified CESR-c wiggler, with peak field set to fix τdamp = 25 ms.
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the same number of shorter wigglers leads to an increase in horizontal emittance

coming from the stronger wiggler fields. However, since εx,rad also depends on

λw, a 12-pole wiggler with a shorter period could shift the emittance, εx,rad =

0.64 nm · rad, below the target of 0.60 nm · rad. Therefore, if the period of a 12-

pole wiggler can be reduced to meet the target emittance, then a 12-pole ILC

damping wiggler could work, otherwise the current 14-pole design should be used.

7.7 Magnet Period

The results of Section 7.6 motivate a magnet period optimization study for a

12-pole ILC damping wiggler. The wiggler period controls the strength of the

dominant wiggler nonlinearity, so a short wiggler period can potentially increase

the amplitude-dependent tune shift enough to push the tune footprint over reso-

nances in the tune plane and degrade the dynamic aperture. Therefore, though a

shorter period is good for the emittance–as long as the increased peak field does

not counteract the benefit–and good for the horizontal dependent nonlinearities,

it is bad for the dynamic aperture-limiting inherent vertical nonlinearity.

Generating the full nonlinear wiggler model is a detailed and time-consuming

process as every new Radia field table must be re-fit to the harmonic expansion.

Speeding this process up would simplify an examination of changes in the damping

ring performance as the wiggler period is shortened. The dominant octupole-

like wiggler nonlinearity is expected to exhibit the strongest growth with shorter

periods and this nonlinearity is included in the ideal nonlinear wiggler model.

Therefore, the ideal nonlinear model was used to initially determine where the

wiggler period begins to degrade the dynamic aperture, and then the full nonlinear

model was generated to examine the complete dependence.
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Figure 7.7: Dynamic aperture results for a range of wiggler periods of a 12-pole
ideal nonlinear wiggler model, with peak field set to fix τdamp = 25 ms.
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Figure 7.8: Amplitude-dependent tune shift results for a range of wiggler periods
of a 12-pole ideal nonlinear wiggler model, with peak field set to fix τdamp = 25 ms.

Using 12-pole ideal nonlinear wiggler models in version 2.0 of the OCS damping

ring reveals the dynamic aperture and tune-shift with amplitude as the wiggler

period is decreased from 40 cm (see Figure 7.7 and 7.8). The increase in tune-shift

with amplitude exhibited at shorter periods accounts for the decrease in dynamic

aperture, which becomes significant at λw = 30 cm. These results suggest that a

wiggler period below ≈ 32 cm would produce significant degradation of the beam

dynamics in the ILC damping ring.

Generating detailed magnet descriptions in Radia led to full nonlinear models

of the 12-pole simplified modified CESR-c wiggler with periods of 38 − 32 cm and
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Figure 7.9: Dynamic aperture results for a range of wiggler periods of a full non-
linear model of the 12-pole simplified modified CESR-c wiggler, with peak field set
to fix τdamp = 25 ms.

peak fields raised accordingly (1.70−1.95 T) to achieve a 25 ms damping time. The

performance of these wiggler models is shown in version 2.0 of the OCS damping

ring lattice in Figure 7.9 and Table 7.4.

Including all of the wiggler nonlinearities in the shorter period models confirms

that no significant decrease in dynamic aperture exists from 40− 32 cm. Table 7.4

shows that reducing the period and pole number from 40 cm with 14-poles to 32 cm

with 12-poles still meets the target horizontal emittance. However, raising the peak

Table 7.4: Wiggler and lattice parameters for the full nonlinear model of shorter
period designs of the 12-pole simplified modified CESR-c wiggler.

λ (cm) 38 36 34 32

B0 (T) 1.70 1.77 1.85 1.95

τdamp (ms) 26.0 25.9 26.1 25.7

εx,rad (nm · rad) 0.59 0.58 0.56 0.55
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field to meet the target damping time with the same number of wigglers proved

difficult without sacrificing the target radiation equilibrium horizontal emittance.

Therefore, none of these wiggler configurations meet the target damping time with-

out adding wigglers to the ring and changing the baseline lattice design.

Finally, comparing dynamic aperture results for the ideal nonlinear (see Fig-

ure 7.7) and full nonlinear (see Figure 7.9) wiggler models with λw = 38 − 32 cm

shows reasonable agreement. This validates the initial assumption that the in-

herent octupole-like vertical nonlinearity will dominate the damping ring’s perfor-

mance as the wiggler period is decreased.

Recommendation

Given these dynamic aperture results, a 32 cm wiggler looks to be above the period

where the dynamic aperture starts to degrade. Reducing the period and pole

number from 40 cm with 14-poles to 32 cm with 12-poles corresponds to a 31 %

reduction in total wiggler length which will greatly reduce the wiggler unit cost.

The damping time from a 32 cm, 12-pole wiggler is 3 % higher than the target;

therefore, in a 200 ms storage cycle, the beam will be damped for 7.8 τdamp instead

of 8 τdamp. This will result in very little decrease in the radiation equilibrium

emittance and should be an acceptable trade-off given that a 31 % reduction in

total wiggler length corresponds to about a 25 % reduction in the cost of this

superferric wiggler. Compared to the modified CESR-c wiggler which would cost

nearly $500,000/wiggler, implementing this length reduction for 160 ILC damping

wigglers will save $20 million which is considerable enough to recommend that the

ILC damping wiggler be designed with 12-poles and a 32 cm period.
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Table 7.5: Parameters achieved after combining the individual optimization rec-
ommendations into a superferric ILC-optimized CESR-c wiggler.

Parameter Unit Value

Peak Field T 1.95

Number of poles 12

Total length m 1.68

Period m 0.32

Pole Width cm 23.8

Gap Height cm 8.6

∆B/B0 at x = 10 mm 6.0 × 10−4

Coil Current A 141

Beam Energy GeV 5

7.8 Optimization Conclusions

Taking the recommendations of each of the individual optimizations and combin-

ing them into a fully optimized and consistent wiggler model gives the wiggler

description in Table 7.5. By reducing the number of poles and shortening the

wiggler period at the same time as raising the wiggler field, 31 % less wiggler will

be needed in the damping ring. This will result in significant cost savings during

construction and operation. The wiggler unit length has been shortened to a value

close to that of the CESR-c wiggler, thus eliminating the engineering challenge of

constructing a wiggler considerably longer than the proven CESR-c design. Ad-

ditionally, a shorter wiggler length provides additional space between subsequent

wigglers for radiation absorbers. Finally, a larger vertical pole gap has simplified

the engineering challenge into a process that could be feasibly mass produced.
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Combining the results of each of the optimizations required a final consistency

check when designing the magnet in Radia. For example, the minimal degradation

of machine performance would allow gp > 86 mm, but the results of the length

and peak field optimization require gp ≤ 86 mm. This is because at gp = 86 mm,

the current had to be raised to the CESR-c operational limit (141 A) in order to

produce a field that gave τdamp ≈ 25 ms with 31 % less wiggler in the ring.

This new wiggler model remains similar in basic design to the superferric CESR-

c wigglers, but has been optimized for cost and performance in the ILC damping

ring. Thus, it is called the superferric ILC-optimized CESR-c (SIOC) wiggler. The

performance of the SIOC wiggler in the ILC damping rings will be given in the

following chapter.



Chapter 8

ILC-Optimized Wiggler Performance
Throughout the ILC wiggler studies, the CESR-c superferric wiggler performed

very well. A significant improvement in the dynamic aperture of the TESLA

damping ring was observed after a replacement of the TESLA wiggler with a mod-

ified version of the CESR-c wiggler. The modified CESR-c wiggler has performed

well in all versions of the OCS baseline damping ring lattice.

Performing variations of independent parameters of the CESR-c wiggler has

revealed a number of possible modifications to the CESR-c design that reduce the

cost of the final ILC damping wiggler. This wiggler design has features that are

based closely on the existing superferric CESR-c wigglers, therefore proving the

feasibility of overcoming the engineering challenges and risks that would potentially

be faced during construction, installation, and operation of 160 of these wigglers

in the ILC damping rings.

The parameters of this superferric ILC-optimized CESR-c (SIOC) wiggler are

given in Table 7.5. The lattice parameters resulting from using the SIOC wiggler

in version 2.0 of the OCS damping ring are given in Table 8.1. This shows that

by combining the results of each independent magnet parameter optimization into

Table 8.1: Wiggler-related lattice parameters in version 2.0 of the OCS damping
ring lattice, using the full nonlinear model of the SIOC wiggler.

τdamp 26.4 ms

εx,rad 0.56 nm · rad

σδ 0.13 %

137
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the final SIOC wiggler, the exact impact of the wiggler on the damping ring beam

parameters is not the same as the individual optimizations suggested.

For example, the emittance and energy spread targets are still satisfied but

the damping time of 26.4 ms is larger than the 25.7 ms damping time achieved

in the period optimization study. This difference came once the recommendation

from the gap optimization study was combined with the recommendation from

the period optimization study. At a 86 cm pole gap, the peak field could not be

increased beyond 1.95 T to reduce the damping time without exceeding the CESR-

c wigglers’ operational current limit of 141 A. The superconducting quench limit

is at a higher current now that the SIOC wiggler field strength is lower than the

CESR-c wiggler field strength; however, even with the same current limit, a slightly

larger damping time is still an acceptable trade-off given the cost-savings the SIOC

wiggler provides.

The following sections detail the performance of the SIOC wiggler in version 2.0

of the OCS damping ring. Comparing results for the linear, ideal nonlinear, and

full nonlinear models of the SIOC wiggler revealed additional information about

the performance and limitations of this design.

8.1 Dynamic Aperture

The dynamic apertures of linear, ideal nonlinear, and full nonlinear wiggler models

of the SIOC wiggler are presented in Figure 8.1. The nonlinear wiggler models

produce dynamic apertures that, while below the linear wiggler aperture, are still

greater than eight times the injected positron beam size. An 8 × σe+,inj dynamic

aperture provides an acceptable performance level for the ILC damping ring with

a realistic nonlinear model of 80 damping wigglers.
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Figure 8.1: Dynamic aperture results for the linear, ideal nonlinear, and full non-
linear models of the SIOC wiggler.

Additionally, Figure 8.1 shows that the full nonlinear SIOC wiggler performs as

well in version 2.0 of the baseline damping ring lattice as the ideal nonlinear wiggler

model. Therefore, the dynamic aperture limitation produced by the SIOC wiggler

is dominated by the vertical octupole-like nonlinearity inherent in all wigglers.

The parameters of the SIOC wiggler have been successfully chosen to minimize

the realistic wiggler nonlinearities coming from field roll-off and fringe fields, even

with a vertical field roll-off of ∆B/B0 = 6.0 × 10−4 at x = 10 mm.

The off-energy performance of the full nonlinear model of the SIOC wiggler is

presented in Figure 8.2. The SIOC wiggler provides as large a dynamic aperture

(8 × σe+,inj) for particles that deviate from the design energy by ∆p/p = 0.5 %

and 1.0 % as particles on the design energy. Larger energy deviations including

all models of the SIOC wiggler (see Figure 8.3) show that the full nonlinear SIOC

wiggler meets the energy aperture requirements of the ILC damping ring.
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Figure 8.2: Off-energy dynamic aperture results for the full nonlinear model of the
SIOC wiggler.
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8.2 Frequency Map Analysis

Like the dynamic aperture, the vertical tune shift with vertical amplitude for all

models of the SIOC wiggler confirms that the wiggler is well designed to minimize

the impact of realistic wiggler nonlinearities on the ILC damping ring performance

(see Figure 8.4). This result shows that there is a small difference in tune shift

with amplitude between the full nonlinear and the ideal nonlinear wiggler mod-

els. Therefore, the SIOC wiggler’s realistic nonlinearities produce a measurable

impact on the beam dynamics, but not enough to adversely influence the dynamic

aperture.

All of these results are confirmed with the frequency map results given in Fig-

ures 8.5-8.7. The frequency map results couple the tune shift with amplitude to

the dynamic aperture to provide a detailed picture of where the performance of

the ring is being degraded. These results show that the nonlinearities of the
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Figure 8.5a: Frequency map analysis result in tune-space for the linear model of
the SIOC wiggler. Operating point is Qx = 0.28, Qy = 0.40.

SIOC wiggler are moving the tune across resonances as the particles increase in

amplitude. When compared with the frequency map analysis result for the linear

wiggler model, the dominant wiggler nonlinearity is responsible for the majority of

the changes to the dynamic aperture and tune plane. However, the realistic wiggler

nonlinearities do manifest themselves in Figure 8.7b as large amplitude particles

that have a lighter intensity. These particles are inside the dynamic aperture but

have tunes that are changing (lighter intensity), though not fast enough to cause a

limitation to the dynamic aperture. This suggests that the damping ring with the

SIOC wiggler might be more susceptible to field errors or magnetic misalignments

in the ring dipoles, quadrupoles, and sextupoles, which could reduce the dynamic

aperture by perturbing those nearly chaotic but stable particles into chaotic and

unstable trajectories.
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Figure 8.5b: Frequency map analysis result in physical-space for the linear model
of the SIOC wiggler. The lines show the standard dynamic aperture limit (dashed)
along with the 8σ curve (solid).
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Figure 8.6a: Frequency map analysis result in tune-space for the ideal nonlinear
model of the SIOC wiggler. Operating point is Qx = 0.28, Qy = 0.40.

8.3 Multipole Field Errors

Further simulations examined the performance of the ILC damping ring with non-

linearities coming from both the SIOC wiggler and higher-order multipole field

errors on the dipoles, quadrupoles, and sextupoles. Simulations reveal that in this

condition, the full nonlinear SIOC wiggler does not reduce the on-energy dynamic

aperture below that of the limit imposed by the combination of the multipole field

errors with a linear wiggler model (see Figure 8.8). For an off-energy beam expe-

riencing higher-order multipole field errors in the ring magnets, the full nonlinear

SIOC wiggler produces a minimal dynamic aperture degradation compared to the

performance of a linear wiggler model (see Figure 8.9).

These results show that multipole field errors on the ring magnets limit the am-

plitude of the dynamic aperture, even when a realistic wiggler model is included.
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Figure 8.6b: Frequency map analysis result in physical-space for the ideal nonlinear
model of the SIOC wiggler. The lines show the standard dynamic aperture limit
(dashed) along with the 8σ curve (solid).
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Figure 8.7a: Frequency map analysis result in tune-space for the full nonlinear
model of the SIOC wiggler. Operating point is Qx = 0.28, Qy = 0.40.

Therefore, the potential susceptibility of the SIOC wiggler to other errors (that

was hinted at in the frequency map analysis results) was not revealed with these

multipole field errors. Additionally, even with these strong field errors the dy-

namic aperture is limited to 5 × σe+,inj which is an acceptable aperture for a ring

that includes realistic performance limiting effects like magnet errors and wiggler

nonlinearities.

8.4 Performance Conclusions

All of the previous results show that optimizing the CESR-c wiggler for opera-

tion in the ILC damping ring yields a magnet which provides practical cost and

engineering benefits without any significant degradation of beam dynamics and

machine performance. Further, since the full nonlinear model does not reduce
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Figure 8.7b: Frequency map analysis result in physical-space for the full nonlinear
model of the SIOC wiggler. The lines show the standard dynamic aperture limit
(dashed) along with the 8σ curve (solid).
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Figure 8.8: Dynamic aperture results, with multipole field errors included on
dipole, quadrupole, and sextupole magnets, for the linear and full nonlinear models
of the SIOC wiggler.
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Figure 8.9: Off-energy dynamic aperture results, ∆p/p = 1 %, with multipole field
errors included on dipole, quadrupole, and sextupole magnets, for the linear and
full nonlinear models of the SIOC wiggler.

the dynamic aperture beyond that of the ideal nonlinear model, the SIOC wiggler

was well designed to minimize realistic wiggler nonlinearities. In conclusion, the

advantages and performance of the SIOC wiggler motivates selecting this wiggler

design as the baseline superferric ILC wiggler.

8.5 Next Steps

The next step in a complete wiggler design is to optimize the coil curvature and pole

cutouts to reduce the vertical field roll-off from its value of 6.0×10−4 at x = 10 mm.

Optimizing both the precise coil curvature and pole cutout designs was required

to achieve a field roll-off of 7.7 × 10−5 in the CESR wigglers. Reducing the roll-

off will not improve the simulated performance of the SIOC wiggler since the full

nonlinear model does not reduce the simulated dynamic aperture beyond that of

the ideal nonlinear model; however, minimizing the roll-off is potentially crucial
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for allowing a sufficient margin of error during operation of a real accelerator.

Another lesson learned from operating the superferric wigglers in CESR, was

that optimizing the sextupole distribution was required to minimize the dynamic

aperture reduction caused by the wigglers. Sextupole fields cannot completely

correct the magnetic fields in the wigglers that cause nonlinearities in the particles’

trajectories, however, in the operation of CESR they nevertheless proved useful.

The overall design of this version of the OCS lattice, including sextupoles, was

optimized to provide a very large dynamic aperture, but this was completed with a

linear wiggler model. Using a nonlinear model of the SIOC wiggler during sextupole

and lattice design optimizations could potentially produce a maximum dynamic

aperture with different sextupole settings.

Finally, realizing this conceptual design in the ILC damping ring requires the

construction of a prototype. The significant experience and tools developed at

Cornell for the twelve superferric wigglers in CESR would be valuable to the con-

struction of a prototype ILC damping wiggler. Constructing the ILC damping

wiggler prototype would be a significant multi-year man-power investment, but

there would be minimal additional hardware research and development required if

the Cornell resources were fully utilized. This would be a straightforward research

and development project and should be feasible given Cornell’s interest and the

approval of the global ILC organization.



Chapter 9

Conclusions
Specifying the technical design of the International Linear Collider has been a

complex on-going process involving years of productive international collaboration.

Optimal performance of the ILC damping rings is crucial for producing collisions

between beams of electrons and positrons that are useful to experimental particle

physicists looking for the Higgs boson and other new physics. Within the damping

rings, the wigglers are a particularly challenging component. This dissertation

provides the conceptual design of the first wiggler to meet both the physics and

engineering requirements of the ILC damping rings.

9.1 The ILC Damping Wiggler

Wigglers will be used in the ILC damping rings to speed the emission of synchrotron

radiation from a 5 GeV, 6 km ring. The damping rings must damp the electron and

positron beams to γεx = 8 µm · rad and γεy = 0.02 µm · rad in 200 ms, requiring the

installation of hundreds of meters of wiggler magnets. Using this many wigglers

has the potential to greatly complicate the performance of the damping rings due

to strong wiggler nonlinearities. The poor beam dynamics produced by wigglers

come from an inherent vertical nonlinearity as well as realistic nonlinearities which

can be minimized with the proper choice of magnet parameters.

The wiggler design proposed in this dissertation is based on the 2.1 T superferric

wigglers that are operating with minimal degradation of the beam dynamics in the

Cornell Electron Storage Ring (see Table 9.1). The performance of this magnet in

the ILC was compared against a proposed permanent magnet wiggler designed by
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the TESLA damping ring collaboration (see Table 9.1).

Replacing the TESLA wiggler with a modified version of the CESR-c wiggler

significantly improved the dynamic performance of the TESLA damping ring. This

wiggler performed so well because its nonlinearities are dominated by the inher-

ent nonlinearity and the specific pole design of the CESR-c wiggler produces low

levels of realistic wiggler nonlinearities. The superferric, modified CESR-c wiggler

continued to perform at this high level in all candidate ILC damping ring lattices.

9.2 The ILC-Optimized Wiggler

The modified CESR-c wiggler met the physics performance requirements of the

ILC damping rings and some, but not all, of the technical engineering require-

ments. With 160 superconducting wigglers in the ILC damping rings, the tech-

nical requirements during construction, installation, and performance will be on

an entirely different scale than the twelve wigglers operating in CESR. Therefore,

optimizations were conducted on the peak field, unit length, period, pole width,

and pole gap of the CESR-c wigglers in order to ease the technical requirements

without compromising the physics performance of the ILC damping rings.

Optimizations achieved a superferric ILC-optimized CESR-c (SIOC) wiggler

design that minimized the cost and technical engineering risks (see Table 9.1).

Evaluating the physics performance of the SIOC wiggler in the baseline ILC damp-

ing ring showed that this wiggler continues to meet the targets for dynamic aper-

ture, tune shift with amplitude, off-energy dynamics, and dynamics with multipole

field errors.
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Table 9.1: Parameters of the TESLA permanent magnet wiggler, the CESR-c
superferric wiggler, and the superferric ILC-optimized CESR-c wiggler.

Parameter Unit TESLA CESR-c SIOC

Peak Field T 1.67 2.1 1.95

Number of poles 18 8 12

Total length m 3.6 1.3 1.68

Period m 0.40 0.40 0.32

Pole Width cm 6.0 23.8 23.8

Gap Height cm 2.5 7.6 8.6

∆B/B0 at x = 10 mm 5.7 × 10−3 7.7 × 10−5 6.0 × 10−4

Coil Current A NA 141 141

Beam Energy GeV 5 2 5

9.3 Recommendations

With the results of the above magnet optimizations, a range of beam and lattice

parameters are available with only slight changes to the design of the modified

CESR-c wiggler. Modifications to the design of the CESR-c wiggler have reduced

the cost per wiggler by roughly 25%, saving approximately $20 million for the

entire ILC project. Additionally, this conceptual design eases the technical risks

and challenges associated with the mass-production of 160 ILC damping wigglers.

Therefore, the superferric ILC-optimized CESR-c wiggler is recommended to be

the baseline superferric ILC wiggler.

Additionally, the wiggler parameter optimizations performed here will provide

crucial data to any future discussion of changes to the ILC damping wiggler. The

results presented in this dissertation detail the full effect of realistic wiggler nonlin-
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earities on the beam dynamics as the design parameters of the wiggler are varied.

These results will be of use to the international ILC damping ring community

even if the exact conceptual design recommended here is not selected as the ILC

damping wiggler.



Appendix A

Wiggler Field-Fitting Benchmark
Benchmarking the particle accelerator simulation codes used by different scientists

is an important component of validating initial simulation results. Computer sim-

ulations are a crucial part of particle accelerator design and operation, and, like

the entire field of accelerator physics, this process is often very collaborative as it

crosses the national and international accelerator laboratories. Therefore, bench-

marking the computer programs developed and used by different scientists is a

first step in validating the results and conclusions of the many different accelerator

codes available.

The full nonlinear wiggler model described in Section 5.4.1 is only available in

a limited number of accelerator codes utilized world-wide. In the codes where it

does exist, the full nonlinear wiggler model is a relatively new addition and should

be benchmarked against other codes. Three separate pieces of simulation code are

required to achieve the full nonlinear wiggler model, they are the codes to generate

a discrete table of magnetic field values, then to create an analytic fit to the wiggler

field, and ultimately to track a charged particle through the specified wiggler field.

The discrete table of magnetic field values comes from Radia or OPERA-3d and

for benchmarking purposes every researcher uses the same field table. In the case

of the Cornell wigglers, the OPERA-3d magnetic field table has been extensively

compared with experimental measurements of the field in the existing wigglers and

detailed agreement has been verified. With this good agreement, the OPERA-3d

field table of a version of the Cornell wiggler was used for studies to benchmark the

field fitting and wiggler tracking procedures used in the ILC damping ring design
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community.

Detailed comparisons were performed between the field fitting and wiggler

tracking procedures used throughout the ILC damping ring community [53] and

in greater detail for two codes, Bmad [21] and COSY [54]. For Bmad, the Cornell-

developed Cartesian-based iterative fitting methods described in Section 5.4.3 was

used. For COSY, the field fit is generated in cylindrical coordinates by combining

the field data on the surface of a cylinder which encloses the magnetic volume with

the requirements of Maxwell’s equations [55]. The wiggler tracking procedures in

Bmad and COSY are slightly different but based on the same integration method

to generate the map, it is a symplectic method developed by E. Forest [56].

To verify that the two codes produce the same map and tracking results given

identical analytic representation of the magnetic field, particle tracking studies

were compared for a single-mode wiggler. A single-mode wiggler is equivalent to

the infinitely wide and long wiggler given in Equation 5.9. In this analysis the

wiggler parameters used were B0 = 1.67 T and kw = 2π/0.4. The coefficients of

the Taylor maps generated by Bmad and COSY show very good agreement for all

coefficients except the ones which are below 108 in COSY (see Figure A.1). This

small difference is likely indicative of a difference in precision between Bmad and

COSY and does not impact the wiggler-related results.

After agreement was shown for Bmad and COSY with identical single-mode

wigglers, results were computed for the two codes for multi-mode fits performed

separately to the same field data. Using the Cornell wiggler magnetic field data

extending over a transverse region of x = ±48 cm, y = ±26 cm, field fits were

generated from Bmad and COSY and compared. The Cornell iterative fitting

method achieved residuals at the level of |Bfit − Bdata|rms = 47 G with 136 terms
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Figure A.1: Comparison of Bmad- and COSY-generated Taylor maps for a single-mode wiggler. Clockwise from top-left:
x, px, py, y.
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in the fit. The COSY method achieved lower residuals, reaching residuals below

1 G on-axis and up to only 10 G off-axis at y = 26 mm, which is the radius of

the cylinder used for the field fit. Despite the significantly smaller residuals for

the COSY-generated fit, the coefficients of the Taylor maps again show very good

agreement (see Figure A.2) as do the on- and off-energy dynamic apertures results

(see Figure A.3).

This reveals that the particle tracking results are not critically dependent on

the precision of the magnetic field fit. Additionally, these results show reliable

agreement between the wiggler field fitting algorithms and tracking procedures

utilized in Bmad and COSY. Combined with results from other comparisons [53],

there is high confidence in the wiggler simulation techniques utilized by the ILC

damping ring design community.
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Appendix B

Damping Ring Configuration Study
Dynamic aperture, dynamic aperture with multipole field errors, and frequency

map analysis simulations were performed using the modified CESR-c wiggler in

each of the seven damping ring configuration study lattices (see Table 4.4). Dy-

namic aperture results for the linear, ideal nonlinear, and full nonlinear models of

the modified CESR-c wiggler in each of the seven lattices are given in Figure B.1.

Dynamic aperture, with multipole field errors, results for the linear wiggler model

are given in Figure B.2, and for the full nonlinear wiggler model in Figure B.3.

Frequency map analysis results for the linear wiggler model are given in Figure

B.4, and for the full nonlinear wiggler model in Figure B.5.

With the linear wiggler model and no multipole field errors all of the refer-

ence lattices achieve the aperture target of 3 × σe+,inj (see Figure B.1). However,

performances change as realities are added, including off-energy particles, nonlin-

ear wiggler models, and multipole field errors on the dipoles, quadrupoles, and

sextupoles. Frequency map analysis results reveal the tune resonances that are

causing the dynamic aperture degradation with the linear (see Figure B.4) and

full nonlinear (see Figure B.5) models of the modified CESR-c wiggler.

With the full nonlinear model of the modified CESR-c wiggler and multipole

field errors on the main ring magnets, the BRU, MCH, OCS, and PPA lattices have

a dynamic aperture larger than the 3σ target for particles off-energy by ∆p/p =

0.5 % (see Figure B.3). With even larger energy deviations (∆p/p = 1.0 %), only

the OCS lattice has 99 % of the injected particles within the dynamic aperture.

Very good agreement in all lattices between the ideal nonlinear and full nonlinear
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models confirms the initial result which came from the TESLA ring and determined

the high quality of the CESR-c wiggler.

The nearly ideal performance of the modified CESR-c wiggler and the large

dynamic aperture of the OCS lattice in all conditions was used as evidence to

make some of the key decisions for the baseline configuration of the damping

rings. Decisions included specifying a damping ring circumference of 6 km and a

beam energy of 5 GeV, like the OCS ring, and using superferric technology for the

damping wigglers, like the CESR-c wigglers. The complete analyses performed

for the ILC damping ring baseline configuration study and the recommendations

made by the collaboration are given elsewhere [12].
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Figure B.1a: Dynamic aperture results for the linear, ideal nonlinear, and full nonlinear models of the modified CESR-c
wiggler in lattices, clockwise from top-left: BRU, DAS, MCH, and OCS.
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Figure B.1b: Dynamic aperture results for the linear, ideal nonlinear, and full nonlinear models of the modified CESR-c
wiggler in lattices, clockwise from top-left: OTW, PPA, and TESLA.
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Figure B.2a: Dynamic aperture, with multipole field errors, results for the linear wiggler model of the modified CESR-c
wiggler in lattices, clockwise from top-left: BRU, DAS, MCH, and OCS. Shown are results for five random error seeds.
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Figure B.2b: Dynamic aperture, with multipole field errors, results for the linear wiggler model of the modified CESR-c
wiggler in lattices, clockwise from top-left: OTW, PPA, and TESLA. Shown are results for five random error seeds.
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Figure B.3a: Dynamic aperture, with multipole field errors, results for the full nonlinear wiggler model of the modified
CESR-c wiggler in lattices, clockwise from top-left: BRU, DAS, MCH, and OCS. Shown are results for five random error
seeds.
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Figure B.3b: Dynamic aperture, with multipole field errors, results for the full nonlinear wiggler model of the modified
CESR-c wiggler in lattices, clockwise from top-left: OTW, PPA, and TESLA. Shown are results for five random error seeds.
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Figure B.4a: Frequency map analysis results for the linear wiggler model of the modified CESR-c wiggler in lattices, clockwise
from top-left: BRU, DAS, MCH, and OCS.
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Figure B.4b: Frequency map analysis results for the linear wiggler model of the modified CESR-c wiggler in lattices, clockwise
from top-left: OTW, PPA, and TESLA.
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Figure B.5a: Frequency map analysis results for the full nonlinear wiggler model of the modified CESR-c wiggler in lattices,
clockwise from top-left: BRU, DAS, MCH, and OCS.
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Figure B.5b: Frequency map analysis results for the full nonlinear wiggler model of the modified CESR-c wiggler in lattices,
clockwise from top-left: OTW, PPA, and TESLA.
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