

LEPP REU ERL Wake Fields (Wakefields?) and Methods for Their Reduction

Jeremy Ong Mentor: Mike Billing June 20, 2008

Where do wakes come from?

- Geometrical non-uniformities (dominant effect: thousands of kV/m)
- Dielectric coatings on pipe wall (~ 500 kV/m)
- Finite conductivity in pipe wall (~ 1 kV/m)

Weiland and Wanzenberg. *Wake Fields and Impedances*. 1990 Joint US-Cern Accelerator Course

Numerical Wake Field Solvers

- URMEL computes resonant modes in cavities and cut-off frequencies of longitudinally homogeneous fields in waveguides.
- ABCI solves Maxwell's equations directly in the time domain when a bunched beam passes through a structure.

Why care?

- N.B.: The longitudinal component of wake field is the more important component (cylindrically symmetry).
- Particles within a bunch experience Lorentz forces.
- Fields left behind = energy loss
- BUT: the energy loss can be recycled

Recipe for a Possible Solution (in a nutshell)

- 1. Extract RF power from the wake of a short driving bunch (dielectric loading)
- Inject RF power in a longer bunch (correctional superposition)
- 3. Apply sloping and DC corrections

Courtesy Mike Billing

Pipe with Dielectric Layer (E-fields at Phi=0)

Calculated using URMEL-T (triangular mesh) Partially trapped mode Tapering models infinite length

What I've been doing

- Extrapolating from data calculated for a 0.6 mm bunch (explained briefly in next couple of slides)
- Writing some convenience-motivated scripts
 to parse URMEL/ABCI output files
- Familiarizing myself with the literature and existing software
- Running simulations to gain intuition

Rescaling wake data

 $W(s) \equiv Wake \text{ of } a 0.6 \text{ mm bunch}$ $W'(s) \equiv Wake \text{ of } a \text{ bunch with variable length}$ $\rho \equiv Charge \text{ density (gaussian) of } a 0.6 \text{ mm bunch}$ $\rho' \equiv Charge \text{ density (gaussian) of } a \text{ variable length bunch}$

$$W(s) = \rho \otimes W_{\delta}$$

$$\mathcal{F}\{W(s)\} = \mathcal{F}\{p\}\mathcal{F}\{W_{\delta}\}$$

$$\mathcal{F}\{W'(s)\} = \mathcal{F}\{p'\}\mathcal{F}\{W_{\delta}\}$$

$$\mathcal{F}\{W'(s)\} = \frac{\mathcal{F}\{p'\}}{\mathcal{F}\{\rho\}} \cdot \mathcal{F}\{W(s)\}$$

$$W'(s) = W \otimes \mathcal{F}^{-1} \left\{\frac{\mathcal{F}\{\rho'\}}{\mathcal{F}\{\rho\}}\right\}$$

What's next

- Design: optimize dielectric resonator and coupler
- Verification: analyze existing wake data (which may need correction)
- More reading