# Tracking Detector R&D at Cornell University and Purdue University

## Cornell University

D. P Peterson, R. S. Galik,

Purdue University

J. Miyamoto, I. P. J. Shipsey, We have requested funding for this research from NSF through UCLC.

Information available at the web site:

http://w4.cornell.edu/~dpp/tpc\_test\_lab\_info.html (which is the parent site of this presentation)

including

\* presentation to University Consortium for the Linear Collider at Santa Cruz 30-June-2002,

\* project description from the NSF proposal, 29-August-2002

(The project description can also be found at the UCLC site:

http://w4.cornell.edu/public/LC/UCLC/projects.html

# Detector Development, Cornell/Purdue Program

Systematic study spatial resolution and signal width using GEM/MicroMegas TPC readout devices

amplification device, details of spacings and gain, pad size and shape gas applied signal spreading

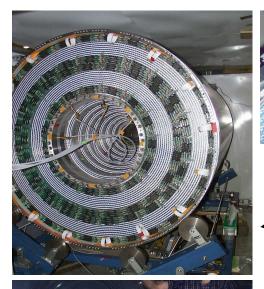
Signal spreading must be optimized for segmentation and resolution.

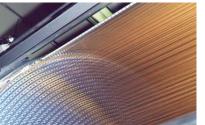
Spatial resolution and signal width studies using

traditional anode-wire-amplification read-out devices

Investigate a readout using smaller wire spacing to reduce the **ExB** effects.

#### Ion Feedback measurements


Instrument the high voltage plane, or an intermediate grid.

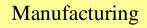

## Tracking studies in a high radiation environment

Studies of signal distortion and electric-field break-down.

### Tracking studies in a magnetic field

Cornell has the expertise and utilities to build and operate a superconducting test magnet.



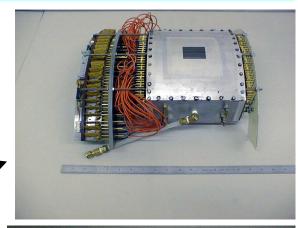



## what Cornell can offer

Experience with ...

Large drift chambers for CLEO

Test chambers





Small drift chambers

Innovative construction

calibration











D. Peterson, Cornell University, "Tracking Detector R&D at Cornell University and Purdue University" ALCPG Arlington

## what Purdue can offer

Years of experience with MPGDs, preparation and radiation hardness measurements

Micro Pattern Detector Aging (Radiation Hardness)

Example: triple GEM with PCB readout

Gas Ar/CO<sub>2</sub> 70/30 (99.99%)

GEM1= 400 V

GEM2 = 390 V

GEM3 = 380 V

PCB as e<sup>-</sup> collector

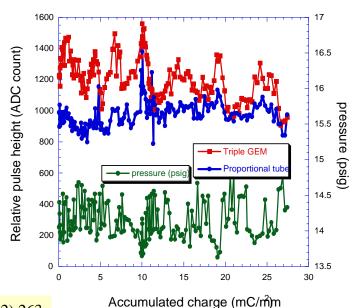
Cr X-rays (5.4 KeV)

@  $6 \times 10^4 \text{ Hz/mm}^2 \text{ for } 750 \text{hrs}$ 

Gas gain 6,000

Detector performance

small (~15% gain loss) after


~ 8 years @LHC 10 cm from IP. Minimal signs of aging.

Best result obtained with a GEM.

Similar result obtained with

a MicroMEGAS + GEM





Stolen from I. Shipsey, NIM A 478 (2002) 263

## TPC Test Chamber R&D at Cornell University and Purdue University Three Year Plan

|                      | Plan                                                                                                        | Purchases                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 <sup>st</sup> Year | track definition scintillator trigger small drift chambers test device, TPC power supplies data acquisition | VME crate Computer and LabVie discriminators for drift TDCs for drift chamber FADCs for TPC (limit power supply frame power supplies electronics boards                                                                                                                            | t chambers<br>ers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2 <sup>nd</sup> Year | expanded TPC superconducting magnet                                                                         | expanded DAQ                                                                                                                                                                                                                                                                       | \$ 121,000 equipment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3rd Year             | expanded TPC superconducting magnet                                                                         | expanded DAQ                                                                                                                                                                                                                                                                       | \$ 74,000 equipment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1st Year             | MPGD readout modules                                                                                        | printed circuit pad rea<br>GEMs, MicroMegas                                                                                                                                                                                                                                        | dout planes<br>\$ 10,000 equipment<br>\$ 16,000 student support                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                      |                                                                                                             | modules                                                                                                                                                                                                                                                                            | \$ 10,000 equipment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                      |                                                                                                             | modules                                                                                                                                                                                                                                                                            | \$ 16,000 student support<br>\$ 10,000 equipment<br>\$ 16,000 student support                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                      | 2 <sup>nd</sup> Year  3rd Year  1 <sup>st</sup> Year  2 <sup>nd</sup> Year                                  | 1st Year track definition scintillator trigger small drift chambers test device, TPC power supplies data acquisition  2nd Year expanded TPC superconducting magnet  3rd Year expanded TPC superconducting magnet  1st Year MPGD readout modules  2nd Year advances in MPGD readout | 1st Year track definition scintillator trigger small drift chambers test device, TPC power supplies data acquisition power supplies electronics boards  2nd Year expanded TPC superconducting magnet  3rd Year expanded TPC superconducting magnet  1st Year MPGD readout modules  2nd Year advances in MPGD readout modules  VME crate Computer and LabVie discriminators for drift advances in MPGD readout modules  FADCs for TPC (limit power supply frame power supplies electronics boards  expanded DAQ  expanded DAQ  printed circuit pad readout modules  printed circuit pad readout modules  2nd Year advances in MPGD readout modules |

## Short Term Activities

#### Cornell:

Purchases of electronics, set-up and testing of electronics,

are delayed until we receive UCLC funding from NFS.

(That will be late spring 2003 under the absolute best conditions.)

construction of a first TPC device construction of telescope drift chambers and trigger scintillators

We can start when technical staff and machine shop staff are available, at the completion of the CESR-Wiggler/CLEO-inner-chamber installation, ~ June 2003.

#### Purdue:

may be ready to construct a readout module