# Tracking Detector R&D at Cornell University and Purdue University

| Cornell University | Purdue University |
|--------------------|-------------------|
| D. P Peterson      | J. Miyamoto       |
| R. S. Galik        | I. P. J. Shipsey  |

We have requested funding for this research from NSF through UCLC. Information available at the web site:

 $http://w4.lns.cornell.edu/~dpp/tpc\_test\_lab\_info.html$ 

\* this presentation

\* presentation to TPC meeting at Berkeley, 18-Oct-2003,

\* presentation to UCLC meeting at Santa Cruz, 30-June-2002,

\* project description from the NSF proposal, 29-August-2002

The project description can also be found at the UCLC site:

http://w4.lns.cornell.edu/public/LC/UCLC/projects.html



### Detector Development, Cornell/Purdue Program

Systematic study **spatial resolution** and **signal width** using **GEM and MicroMegas TPC readout** devices

details of spacings and gain, pad size and shape gas mixture applied signal spreading

Spatial resolution and signal width studies using

traditional anode-wire-amplification read-out devices

Investigate a readout using smaller wire spacing to reduce the **ExB** effects. Establish a baseline for the MPGD studies.

Ion Feedback measurements

Instrument the high voltage plane, or an intermediate grid.

Tracking studies in a high radiation environment

Tracking studies in a magnetic field

Cornell has the expertise and utilities to build and operate a superconducting test magnet.



#### TPC Test Chamber R&D at Cornell University and Purdue University 3 Year Plan, from UCLC proposal

|              |                                  | Plan                                                                                                                       | Purchases                                                                                                                                                                     |                                                                                                                                |
|--------------|----------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| (at Cornell) | 1 <sup>st</sup> Year             | track definition<br>scintillator trigger<br>small drift chambers<br>test device, TPC<br>power supplies<br>data acquisition | VME crate<br>Computer and LabView<br>discriminators for drift<br>TDCs for drift chamber<br>FADCs for TPC (limit<br>power supply frame<br>power supplies<br>electronics boards | w controller<br>chambers<br>ers<br>ted)<br>\$ 52,000 equipment                                                                 |
|              | 2 <sup>nd</sup> Year             | expanded TPC superconducting magnet                                                                                        | expanded DAQ                                                                                                                                                                  | \$ 121,000 equipment                                                                                                           |
|              | 3rd Year                         | expanded TPC superconducting magnet                                                                                        | expanded DAQ                                                                                                                                                                  | \$ 74,000 equipment                                                                                                            |
| (at Purdue)  | 1 <sup>st</sup> Year             | MPGD readout modules                                                                                                       | printed circuit pad read<br>GEMs, MicroMegas                                                                                                                                  | dout planes<br>\$ 10,000 equipment<br>\$ 16,000 student support                                                                |
|              | 2 <sup>nd</sup> Year<br>3rd Year | advances in MPGD readout r<br>advances in MPGD readout                                                                     | modules<br>modules                                                                                                                                                            | <ul> <li>\$ 10,000 equipment</li> <li>\$ 16,000 equipment</li> <li>\$ 16,000 equipment</li> <li>\$ 10,000 equipment</li> </ul> |
|              |                                  |                                                                                                                            |                                                                                                                                                                               | \$ 10,000 student support                                                                                                      |



## Short Term Activities

Cornell: Construct a first TPC device, greatly influenced by the Victoria design.

14.6 cm ID field cage for a 10 cm GEM60 cm field length22.2 cm OD outer structure







D. Peterson, "Tracking Detector R&D at Cornell University and Purdue University" ALCPG SLAC 07-Jan-2004

### Short Term Activities

Cornell: Electronics Purchase: Lab funds, Sept 2003 VME Crate and Interface Struck FADC, 100 MHz, 32 channels CAEN HV crate and interface HV supplies: for GEMS (2 kV) for TPC Drift (20 kV) ~66cm

Set-up and testing of electronics (complete delivery by end of January)

Construct a first TPC device. (started, previous slide) Construct telescope drift chambers and trigger scintillators.

> Technical staff and machine shop staff are available, some residual competition from the CESRc Wiggler production.

Purdue:

Ready to construct a readout module.

