Discussion for the LP endplate

D. P. Peterson Cornell University, Laboratory for Accelerator-based ScienceS and Education

See also: http://w4.lns.cornell.edu/~dpp/linear_collider/LargePrototype.html

This project is supported by the US National Science Foundation (LEPP cooperative agreement) and an LCDRD consortium grant

Endplate/band geometry, 2006-11-09

Endplate/band geometry, 2007-01-17

before decreasing radius, outer 400 mm -> 385mm insert 377 mm -> 362 mm

Endplate/band geometry, From Peter Schade 2007-05-23

Endplate/Module model 2007-03-19

This is with equal radius-of-curvature
before decreasing radius, outer 400 mm -> 385 mm insert 377 mm -> 362 mm
"stay clear" $=357$ mm

Endplate/ Module model, 2007-05-24

This is with equal center-of-curvature
after decreasing radius, outer $400 \mathrm{~mm}->385 \mathrm{~mm}$ insert 377 mm -> 362 mm
"stay clear" $=357 \mathrm{~mm}$

Endplate/Module model, 2007-05-24

This is with the equal center-of-curvature (outside)

Endplate/Module model, 2007-05-25 (variation)

This is with not-equal center-of-curvature, not-equal radius-of-curvature.

The lower radius of curvature is set to be almost flat, 9144 cm (100 yards).

The spread-sheet-driven model works. However, the extreme change in radius uncovers an error in the model.

This is an error in the way that the constraints are applied to the module positions.

This will be fixed.
This does not affect the bounding specifications.

Endplate Drawings, 2007-05-25

Endplate Drawings, 2007-05-25

The Bounding Box, 2007-05-25

D. Peterson, "LC-TPC LP endplate", LC-TPC group meeting at LCWS07, 04-June-2007

The Bounding Box, 2007-05-25

Module Drawings, 2007-05-25

Module Drawings, 2007-05-25

Module Drawings, 2007-05-25

Stress relief test piece

This shows the first in a series of "stress relief test pieces".

This has been cut with a center opening of 30 cm wide. The "mullions" are the same size as proposed in the endplate drawing: 18 mm at the widest width, 14 mm in depth.

This is the first baseline part, with no stress relief.

It has been fully measured on a CMM. The mullion position is distorted upward by $500 \mu \mathrm{~m}$ (0.020inch).

The drawing was modified to have the strengthening section as shown in the current endplate.

Stress relief test piece

A close-up of the part shown in the previous slide.

Machining a Stress Relief Test Piece, 2007-05-25

Motivation:

A position tolerance of $<25 \mu \mathrm{~m}$ is needed for the modules to decouple the calibration of the magnetic field from the position calibration of the modules.

I am trying to provide, at delivery, $<25 \mu \mathrm{~m}$ position tolerance of the mullions. The endplate will then be evaluated after some service time to determine the ability to maintain this tolerance.

The program:
6 plates are being made to the revised drawing.
A multi-step production is used:

1) machine to $1000 \mu \mathrm{~m}$ oversize
2) machine to $750 \mu \mathrm{~m}$ oversize,
3) stress relief
4) machine to $250 \mu \mathrm{~m}$ oversize,
5) stress relief
6) machine to drawing dimensions

Stress relief processes:
2 plates - (3) heat to 325F, (5) heat to 650F
2 plates - rapid cooling to liquid N_{2}
2 plates - ultrasonic cleaner, 6 hours

Coordinate Measuring machine (CMM), 2007-05-25

CMM, 2007-05-25, Z measurements

/home/dpp/BulkDisk/StressReliefCmm/read3/Plate3.txt

Example of measurement after the $2^{\text {nd }}$ machining.

Units are milli-inch. 0.001 inch $=25.5 \mu \mathrm{~m}$

This is the Z view.
There is a $30 \mu \mathrm{~m}$ bowing in $\mathrm{z}-\mathrm{x}$.
There is a twist about x from left to right of $25 \mu \mathrm{~m}$.

3 machine 2
Z

CMM, 2007-05-25, y measurements

/home/dpp/BulkDisk/StressReliefCmm/read3/Plate3.txt

Example of measurement after the $2^{\text {nd }}$ machining.

Units are milli-inch.
0.001 inch $=25.5 \mu \mathrm{~m}$

This is the y view.
There is a $30 \mu \mathrm{~m}$ bowing in y of the indicated mullion.

3 machine 2 y

\square

Gas Seal test, 2007-05-25

Test of the o-ring seal.
It can be mounted either way.

- model of mullion
- clamping bracket

Gas Seal test

Other improvements to make...

decisions

Interface of endplate to field cage
Bolt locations

